Visualization of nuclear many-body correlations with the most probable nucleon arrangement

Yusuke Tanimura and Moemi Matsumoto (Tohoku University)

← Most probable arrangements of neutrons in ²⁰Ne

M. Matsumoto and YT, PRC106, 014317 ('22)

2022/12/12 DFT2022, YITP

Many-body theory

Solution of Schrödinger eq. $H\Psi = E\Psi$ $\rightarrow \Psi(\mathbf{r}_1\sigma_1, \mathbf{r}_2\sigma_2, ..., \mathbf{r}_A\sigma_A)$

Structure, observables, ...

- ✓ $\langle \Psi | O^{(1)} | \Psi \rangle$ = Tr[$\rho^{(1)}O^{(1)}$] -- ex. size, EM moment, EM transitions, ...
- ✓ $\langle \Psi | O^{(2)} | \Psi \rangle$ = Tr[$\rho^{(2)}O^{(2)}$] -- ex. binding energy, 2-body correlation, ...

Many-body theory

Solution of Schrödinger eq. $H\Psi = E\Psi$ $\rightarrow \Psi(\mathbf{r}_1 \sigma_1, \mathbf{r}_2 \sigma_2, ..., \mathbf{r}_A \sigma_A)$

Structure, observables, ...

- ✓ $\langle \Psi | O^{(1)} | \Psi \rangle$ = Tr[$\rho^{(1)}O^{(1)}$] -- ex. size, EM moment, EM transitions, ...
- ✓ $\langle \Psi | O^{(2)} | \Psi \rangle$ = Tr[$\rho^{(2)}O^{(2)}$] -- ex. binding energy, 2-body correlation, ...
 - Method to visualize many-body correlations based on the full information of wave function
 - Structure of light nuclei
 - ✓ Hartree-Fock
 - ✓ Hartree-Fock + BCS

How to extract information out of a many-body wave function?

In quantum chemistry:

"Likely" arrangement of electrons in molecule (N-body correlation in N-body system)

Liu et al., Phys. Chem. Chem. Phys. **18**, 13385 ('16). Liu et al., Nat. Commun. **11**, 1210 ('20).

$$\langle \boldsymbol{X}
angle = \int d \boldsymbol{X} |\Psi(\boldsymbol{X})|^2$$

...

$$oldsymbol{X} = (oldsymbol{r}_1 \sigma_1, \dots, oldsymbol{r}_N \sigma_N)$$

How to extract information out of a many-body wave function?

In quantum chemistry:

"Likely" arrangement of electrons in molecule (N-body correlation in N-body system)

Liu et al., Phys. Chem. Chem. Phys. **18**, 13385 ('16). Liu et al., Nat. Commun. **11**, 1210 ('20).

$$\langle \boldsymbol{X}
angle = \int d \boldsymbol{X} |\Psi(\boldsymbol{X})|^2$$

$$oldsymbol{X} = (oldsymbol{r}_1 \sigma_1, \dots, oldsymbol{r}_N \sigma_N)$$

Similar analysis can be made for nuclear wave functions? \rightarrow Simple $|\Psi|^2$ maximization as the 1st step

...

$|\Psi|^2$ maximization

<u>M. Matsumoto and YT, PRC106, 014317 ('22).</u>

System of *N* (= even) identical Fermions **Probability density of finding the particles simultaneously at** $(r_1\sigma_1,...,r_N\sigma_N)$:

to be maximized

$$\rho^{(N)}(\boldsymbol{r}_1\sigma_1, \boldsymbol{r}_2\sigma_2, \dots, \boldsymbol{r}_N\sigma_N) = |\Psi(\boldsymbol{r}_1\sigma_1, \boldsymbol{r}_2\sigma_2, \dots, \boldsymbol{r}_N\sigma_N)|^2$$

$|\Psi|^2$ maximization

M. Matsumoto and YT, PRC106, 014317 ('22).

System of *N* (= even) identical Fermions **Probability density of finding the particles simultaneously at** $(r_1\sigma_1,...,r_N\sigma_N)$:

$|\Psi|^2$ maximization

M. Matsumoto and YT, PRC106, 014317 ('22).

to be maximized

Spins fixed

#up = #down

System of *N* (= even) identical Fermions **Probability density of finding the particles simultaneously at** $(r_1\sigma_1,...,r_N\sigma_N)$:

 $\rho^{(N)}(\boldsymbol{r}_1\sigma_1, \boldsymbol{r}_2\sigma_2, \dots, \boldsymbol{r}_N\sigma_N) = |\Psi(\boldsymbol{r}_1\sigma_1, \boldsymbol{r}_2\sigma_2, \dots, \boldsymbol{r}_N\sigma_N)|^2$

$${}_{0}^{(N)}(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\ldots,\boldsymbol{r}_{N})=\left|\Psi(\boldsymbol{r}_{1}\uparrow,\ldots,\boldsymbol{r}_{N/2}\uparrow,\boldsymbol{r}_{N/2+1}\downarrow,\ldots,\boldsymbol{r}_{N}\downarrow)
ight|^{2}$$

Short-range & attractive nature of nuclear force $\rightarrow max(\rho_0^{(N)})$ is the global maximum of $|\Psi|^2$

Set up

a-cluster (and other possible) correlations in N=Z light nuclei

- Hartree-Fock calculation
 - ✓ SLy4 interaction
 - ✓ Time-reversal symmetry
 - ✓Axial and reflection symmetries
 - ✓ HF+BCS: constant-gap approx.

- Maximization
 - $\checkmark \rho^{(N)}_{0}(r_{1},...,r_{A})$ is maximized with conjugate-gradient method
 - ✓ initial (*r*₁,...,*r*_A) is generated randomly

E. Chabanat et al., Nucl. Phys. **A635**, 231 (1998). Vautherin, Phys. Rev. C**7**, 296 (1973).

$$ho_0^{(N)}(m{r}_1,m{r}_2,\ldots,m{r}_N)=ig|\Psi(m{r}_1\uparrow,\ldots,m{r}_{N/2}\uparrow,m{r}_{N/2+1}\downarrow,\ldots,m{r}_N\downarrow)ig|^2$$

Remarks: symmetries

• Due to axial symmetry, $|\Psi|^2$ is invariant under rotation about z axis.

• Hartree-Fock wave function

 $\langle x_1, \dots, x_A | \Psi \rangle = \det B_n \det B_p$ = (neutron determinant)*(proton determinant) $(B_q)_{ij} = \langle x_i | \varphi_j^{(q)} \rangle$ q = p or n

→No explicit correlation between neutrons and protons $\rightarrow |\Psi|^2$ does not depend on relative angle between n and p about z axis.

• The same applies to reflection symmetry

Remarks: correlations in Hartree-Fock

Mean-field (Hartree-Fock) theory

Correlations in HF

- Explicit: Pauli principle
- Implicit/explicit: interaction through the mean field ("long-range correlation")
 - \rightarrow size
 - → deformation (symmetry breaking)

protons ≈ neutrons

• α clusters at top/bottom

protons ≈ neutrons

α clusters at top/bottom
12 nucleons on xy plane

protons ≈ neutrons

Results: HF+BCS g.s. of ²⁰Ne

(a) HF (b) HF+BCS 10^{-1} 10^{-1

blue: neutron spin up skyblue: neutron spin down Most probable arrangement of neutrons Protons ≈ neutrons

Attractive correlation between spin-up and -down

Result (1)²⁰Ne

Probability variation as a function of the relative angle (θ) around the z axis between spin-up and –down neutrons

Results: HF+BCS g.s. of ²⁰Ne

Protons \approx neutrons

Ground states of ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, and ²⁸Si

Ground states of ⁸Be, ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, and ²⁸Si

Results: Deformed states of ¹⁶O

FIG. 9. The HF+BCS potential-energy curve of the ¹⁶O nucleus as a function of the quadrupole moment Q_2 . The HF + BCS result

 \leftarrow Potential energies obtained with Q_2 -constrained HF + BCS

$$Q_2 = \int d^3 r \ r^2 Y_{20}(\hat{\boldsymbol{r}}) \rho(\boldsymbol{r})$$

Results: Deformed states of ¹⁶O

FIG. 9. The HF+BCS potential-energy curve of the ¹⁶O nucleus as a function of the quadrupole moment Q_2 . The HF + BCS result

$$Q_2 = \int d^3 r \ r^2 Y_{20}(\hat{\boldsymbol{r}}) \rho(\boldsymbol{r})$$

proton arrangement ≈ neutron arrangement

Summary and perspectives

- $|\psi|^2$ -maximization method
 - ✓ cluster correlations in mean-field wave functions in light nuclei
 - ✓ Intuitive picture on correlations embedded in many-body state
 - ✓ New viewpoint to a nuclear many-body wave function

Summary and perspectives

- $|\psi|^2$ -maximization method
 - \checkmark cluster correlations in mean-field wave functions in light nuclei
 - ✓ Intuitive picture on correlations embedded in many-body state: New viewpoint to a nuclear many-body wave function
- Global behaviors of |ψ|² with Markov-chain Monte-Carlo sampling?
 ✓ fluctuation around the maximum
 - ✓ local maxima
- More correlated states
 - n-p mixing (explicit n-p correlation)
 - ✓ (semi-)magic core/cluster appears?
 - RPA, GCM (collective motion/fluctuation)
- Other phenomena
 - ✓ molecular-bond structure
 - \checkmark valence neutrons in n-rich nuclei
 - \checkmark nucleon motions in reactions