Benchmark and application of density functional theory for superconductors

Institute for Solid State Physics, The University of Tokyo Mitsuaki Kawamura

Collaborators and papers :

- Benchmarks for Elemental bulks : M. Kawamura, Y. Hizume, and T. Ozaki, Phys. Rev. B <u>101</u>, 134511 (2020); arXiv:1911.06481.
- Effect of Spin-fluctuation in s-wave superconductors: K. Tsutsumi, Y. Hizume, M. Kawamura, R. Akashi, and S. Tsuneyuki, Phys. Rev. B <u>102</u>, 214515 (2020); arXiv:2010.06796.
- Compounds with latest SCDFT functional : In preparation
- Quaternary hydrides guided by sphere-packing : R. Koshoji, M. Fukuda, M. Kawamura, T. Ozaki, Phys. Rev. Materials <u>6</u>, 114802 (2022); arXiv:2206.04971.

DFT2022 One-Day Workshop 2022/12/12

Outline

- Introduction
 - Motivation for benchmark calculation of SCDFT
- Theory
 - SCDFT functional
 - Correction for ultrasoft pseudopotentials
- Benchmark for compounds with latest SCDFT functional
 - Elemental materials
 - Compounds
 - Verification : Sommerfeld coefficient and lattice constant
 - *T_c*
- Prediction of quaternary hydrides from sphere-packing guideline
- Summary

Motivation

First-principles calculation of superconducting state is used for

- Prediction of new superconductors
- Analysis of known superconductors (mechanism, characterization of electronic structure)

Theories for predicting the transition temperature (T_C)

• Eliashberg equation (Semi-empirical)

G. M. Eliashberg, Sov. Phys.-JETP <u>11</u> 696(1960).

$$T_{C} = \frac{\omega_{\ln}}{1.20} \exp \left[-\frac{1.04 (1 + \lambda)}{\lambda - \mu^{*} (1 + 0.62\lambda)} \right] \xrightarrow{\lambda, \omega_{\ln}} \frac{1000}{1.20} \frac$$

111 El monnan, 1 1(<u>107</u>, 001 (1000

• Eliashberg equation (Non-empirical)

W. Sano, *et al.*, PRB <u>93</u>, 094525 (2016). T. Wang, PRB <u>102</u>, 134503 (2020). Tackling the difficulty in Frequency integration

DFT

Density functional theory for superconductors (SCDFT)
 Fully non-empirical
 M. Lüders *et al*, PRB <u>72</u>, 024545 (2005).

$$\lambda = \sum_{\mathbf{q}\nu} \lambda_{\mathbf{q}\nu}$$
$$\ln \omega_{\ln} = \frac{1}{\lambda} \sum_{\mathbf{q}\nu} \lambda_{\mathbf{q}\nu} \ln \omega_{\mathbf{q}\nu}$$
$$\lambda_{\mathbf{q}\nu} = \frac{2}{D(0)\omega_{\mathbf{q}\nu}} \sum_{\mathbf{q}\nu} \left| g_{n\mathbf{k}n'\mathbf{k}+\mathbf{q}}^{\nu} \right|^{2}$$

$$\times \delta(\xi_{n\mathbf{k}})\delta(\xi_{n'\mathbf{k}+\mathbf{q}})$$

^{4/15} Intro Earlier Applications of SCDFT

	El-Ph	EI-EI	T_{C} (Calc.)	$T_{C}(Exp.)$	
AI	Averaged	Tomas-Fermi	0.90 K	1.18 K	Marques2005
Та	Averaged	Tomas-Fermi	3.7	4.48	Marques2005
Pb	Averaged	Tomas-Fermi	6.9	7.2	Marques2005
Nb	Averaged	Tomas-Fermi	9.5	9.3	Marques2005
MgB ₂	Band-dep.	RPA(static)	34.1	39	Floris2005
Pb	Full (<i>n, k</i>)	RPA(static)	5.25	7.2	Floris2007
CaC ₆	Full (<i>n, k</i>)	RPA(static)	9.4	11.5	Sanna2007
H ₂ @450GPa	Full (<i>n, k</i>)	RPA(static)	242	-	Cudazzo2010
β −Li _{0.5} ZrNCI	Averaged	RPA(static)	4.3	10-15.2	Akashi2012
Cs_3C_{60}	Full (<i>n, k</i>)	RPA(static)	15.7	35	Akashi2013
Li@25GPa	Averaged	RPA(dynamical)	3.2	5-17	Akashi2013
Li@25GPa	Averaged	RPA(static)	6.8	5-17	Akashi2013
H₃S	Averaged	RPA(dynamical)	155	203	Akashi2015
YNi ₂ B ₂ C	Full (<i>n, k</i>)	ALDA	13.8	15.4	Kawamura2017
FeSe	Band-dep.	RPA(static) spin-fluctuation	8	3	Essenberger2016

No systematical verification Purpose : To find where

Purpose : To find where does it work well and where does it fail.

Improvement of SCDFT

Prepare for the materials exploration

5/15

Method Density functional theory for superconductors (SCDFT)

Extension of DFT to the superconducting order parameter

$$\begin{array}{l} \text{Minimize } E[\rho] \\ \chi(\mathbf{r},\mathbf{r}') \equiv \left\langle \hat{\psi}_{\uparrow}(\mathbf{r})\hat{\psi}_{\downarrow}(\mathbf{r}') \right\rangle \end{array}$$

- Band structure (Crystalline potential)
- Spin-orbit coupling
- Phonons and Electron-phonon interaction
- Inter-electron Coulomb interaction
- Spin-fluctuation

Universal functional (approximated)

For normal DFT, LDA $E_{XC}[\rho] = \int d^3 r \varepsilon_{XC}(\rho(\mathbf{r}))$, GGA, \cdots are used.

For SCDFT, Kohn-Sham Perturbation theory (like OEP) is used. M. Lüders et al., PRB <u>72</u>, 024545 (2005).

$$\begin{array}{l} \hline \begin{array}{l} \hline \end{tabular} \hline \end{tabular} & \text{Screened exchange and spin-fluctuation} \\ \hline \end{tabular} & \text{figure} & \text{fi$$

Benchmark for elemental materials

M. Kawamura, Y. Hizume, T. Ozaki, PRB <u>101</u>, 134511 (2020).

• Norm-conserving PP (SG15)

8/15

Result

- Quantum ESPRESSO
- GGA-PBE functional
- Cutoff(WFC) : From SSSP criteria
- phonon **q**-grid :
 Proportional to BZ size (8³ for AI)
- **k**-grid : $2 \times \mathbf{q}$ -grid (SCF), $4 \times \mathbf{q}$ -grid (DOS, $\widehat{\Pi}_0$),
- Empty bands: $20 \times N_{atom}$ (without SOI) $40 \times N_{atom}$ (with SOI)
- No Z_C , Lüders2005 functional

Include/exclude

- Spin-fluctuation (SF)
- Spin-orbit interaction (SOI)

- SF always reduces T_c s for the elemental systems.
- SOI is significant only for Tc, Sn, Re, TI, and Pb.
- Reproducing the noSC in alkaline, alkaline-earth, noble metals, and Sc (with SF).

11/15 Result

Verify calculation with lattice constant and Sommerfeld coefficient

- Eliashberg-combined functional (EC) enhance (reduce) T_c for small (large) λ
- Overestimate T_c for small- T_c systems, and underestimate for materials including boron ?

Result Prediction of quaternary hydrides

- Finding new hydride superconductors
- Relatively low pressure (10 GPa)
- 23 compounds found

R. Koshoji, M. Fukuda, M. Kawamura, T. Ozaki, Phys. Rev. Materials <u>6</u>, 114802 (2022); arXiv:2206.04971.

			-
S	EFs (eV/f.u.)	Material names	- Valence
	-12.20	$H_{12}ScY_2La$	0
	-11.87	$H_{12}ScSc_2Y$	± 0
	-11.60	$H_{12}ScY_2Zr$	+1
	-11.58	$H_{12}ScY_2Hf$	+1
	-11.45	$H_{12}ScSc_2Hf$	+1
	-11.12	$H_{12}ScY_2Ca$	-1
	-11.05	$H_{12}ScY_2Sr$	-1
	-10.82	$H_{12}TiY_2Ca$	± 0
	-10.78	$H_{12}TiY_2Sr$	± 0
	-10.49	$H_{12}ScLa_2Sr$	-1
	-10.26	$H_{12}ScLa_2Ba^*$	-1
	-10.15	$H_{12}CaZr_2Zr$	+2
	-10.15	$H_{12}TiLa_2Sr$	± 0
	-10.13	$H_{12}TiSc_2Zr$	+2
	-10.12	$H_{12}TiY_2Ba$	± 0
	-10.00	$H_{12}TiLa_2Ba$	± 0

- Structure prototype by sphere packing
- Insert elements
- Metallic
- Hole-doped
- Less anharmonic

14/15

Result

Numerical conditions

- Quantum ESPRESSO, DFPT
- 8³ k-grid, 4³ q-grid
- WFC cutoff: 60 Ry
- Standard Solid-State Pseudopotential, ultrasoft
- GGA-PBE、Eliiashberg-combined (Sanna2020)、 plasmon $Z_{\rm C}$ 、SF

	H ₁₂ ScY ₂ Ca	H ₁₂ ScY ₂ Sr	H₃S
DOS [/spin/eV/atom]	0.076	0.079	0.079
λ	0.65	0.68	2.73
$\omega_{ m ln}$ [K]	591	550	1248
$T_c \ (\mu^* = 0.13)$	12.4	13.7	32.1
T_c (no SF)	10.6	11.5	203
T_c (SF)	5.7	6.7	190

Integrated local density of states (ILDOS)

$$\rho(\mathbf{r}, \varepsilon_{\rm F} - \Delta, \varepsilon_{\rm F} + \Delta) \equiv \int_{\varepsilon_{\rm F} - \Delta}^{\varepsilon_{\rm F} + \Delta} d\varepsilon \sum_{n\mathbf{k}} \delta(\varepsilon - \varepsilon_{n\mathbf{k}}) |\varphi_{n\mathbf{k}}(\mathbf{r})|^2$$

- Relatively low freq.←small pressure
- Why is the el-ph coupling small? We can see the shape of electronic states around Femi level (±1eV).

^{15/15} Summary

Method and Implementation

- We developed method for treating SOI together with SF.
- We applied the formalism of susceptibilities etc. with ultrasoft pseudopotential. Especially for the spin-fluctuation integral (new).
- Implemented them to Superconducting-Toolkit (SCTK)

Benchmark for elemental materials

- The calculations, including SOI and SF, reproduce quantitatively the experimental T_c s. and absence of the superconductivity in the alkaline, alkaline earth, and noble metals and Sc.
- SF is essential especially for the transition metals, and the effect of SOI is small for elemental systems excepting Tc, Sn, Re, TI, and Pb.

- Eliashberg-combined functional (EC) enhance (reduce) T_c for small (large) λ
- Overestimate T_c for small- T_c systems, and underestimate for materials including boron ?

Quaternary hydrides

• We predict new hydride SC. It has weak el-ph because of its ionic nature.