Collective Coordinate and Collective Mass in nuclear reactions

Kai Wen

Collaborator: Takashi Nakatsukasa Nobuo Hinohara (University of Tsukuba)

Collective Dynamics

TDHF

$\Psi(t)=\frac{1}{\sqrt{A!}} \operatorname{det}\left\{\psi_{1}(t) \psi_{2}(t) \cdots \psi_{A}(t)\right\}$,
$i \hbar \frac{\partial}{\partial t} \psi_{j}(r)=h(\rho) \psi_{j}(t)$.
P. Bonche et al., Phys. Rev. C 13, 1226 (1976).
J. Maruhn, P.-G. Reinhard, P. Stevenson, and A. Umar,

Comput. Phys. Commun. 185, 2195 (2014).

ASCC

- Collective coordinates?
- Collective mass?
- Collective Hamiltonian?

Content:

DOur Method ASCC
(Adiabatic Self-consistent Collective Coordinate)
\square Results.
\square Summary

Formulation of ASCC

Assume we found the optimal q and p, we use them to label wave function $\psi(q, p)$:

$$
\begin{gathered}
\hat{P} \psi(q, p)=i \frac{\partial}{\partial q} \psi(q, p) \quad \hat{Q} \psi(q, p)=-i \frac{\partial}{\partial p} \psi(q, p) \\
\psi(q, p)=\left(1+i \hat{Q} p-\frac{1}{2} \hat{Q}^{2} p^{2}\right) \psi(q) \\
\text { (require that the collective motion is slow) }
\end{gathered}
$$

Total energy is formally:

$$
\langle\psi(q, p)| \hat{H}|\psi(p, q)\rangle=\langle q| \hat{H}|q\rangle+p\langle q|[i \hat{H}, \hat{Q}]|q\rangle+\frac{1}{2} p^{2}\langle q|[[i \hat{H}, \hat{Q}], i \hat{Q}]|q\rangle
$$

$$
I_{12}=\int_{t_{1}}^{t_{2}} d t\langle\psi(t)| i \frac{\partial}{\partial t}-\hat{H}|\psi(t)\rangle
$$

variational principle:

$$
\langle\delta \psi(q, p)| i \frac{\partial}{\partial t}-\hat{H}|\psi(q, p)\rangle=0
$$

The ASCC equations

$$
\begin{aligned}
& \delta\langle\psi| H-\frac{\partial V}{\partial q} \hat{Q}(q)|\psi\rangle=0, \\
& \delta\langle\psi(q)|\left[H-\frac{\partial}{\partial} \hat{Q}(q)\right. \\
& \delta\langle\psi(q)|\left[H-\frac{\partial V}{\partial q} \hat{Q}(q), i \hat{Q}(q)-\frac{\partial^{2} V}{\partial q^{2}} \hat{Q}(q)|\psi(q)\rangle=0,\right. \\
& M(q)
\end{aligned}
$$

The TDHF equation

$$
\delta\langle\psi(t)| i \hbar \frac{\partial}{\partial t}-H|\psi(t)\rangle=0
$$

What is " $\hat{\mathrm{P}}$ " and " $\hat{\mathrm{Q}}$ "?

Operator form of the optimal coordinate q and p :

$$
\begin{aligned}
\dot{q} & =\frac{\partial H}{\partial p} \\
\dot{p} & =-\frac{\partial H}{\partial q}
\end{aligned}
$$

Weak canonicity condition for operator forms of q and p :

$$
\left\langle\psi_{q}\right|[i \hat{P}, \hat{Q}]\left|\psi_{q}\right\rangle=1
$$

Collective fusion paths lead by "Q"

$$
{ }^{16} \mathrm{O}+\alpha \rightarrow{ }^{20} \mathrm{Ne}
$$

The ASCC equations

$$
\begin{aligned}
& \delta\langle\psi| H-\frac{\partial V}{\partial q} \hat{Q}(q)|\psi\rangle=0, \\
& \delta\langle\psi(q)|\left[H-\frac{\partial V}{\partial q} \hat{Q}(q), \frac{1}{i} \hat{P}(q)\right]-\frac{\partial^{2} V}{\partial q^{2}} \hat{Q}(q)|\psi(q)\rangle=0, \\
& \delta\langle\psi(q)|\left[H-\frac{\partial V}{\partial q} \hat{Q}(q), i \hat{Q}(q)\right]-M(q),
\end{aligned}
$$

The TDHF equation

$$
\delta\langle\psi(t)| i \hbar \frac{\partial}{\partial t}-H|\psi(t)\rangle=0
$$

What is the M ?

$$
\begin{gathered}
\mathrm{m}_{1} \\
M_{R} \neq \frac{m_{1} m_{2}}{m_{1}+m_{2}} \\
M_{R}=?
\end{gathered}
$$

ASCC mass: fission path $\alpha+\alpha \rightarrow{ }^{8} \mathbf{B e}$

$$
\begin{array}{ccc}
00 & 08 & \frac{m_{1} m_{2}}{00}=2 \\
m_{1}=4 & m_{2}=4 & m_{1}+m_{2}
\end{array}
$$

The ASCC equations

$$
\begin{aligned}
& \delta\langle\psi| H-\frac{\partial V}{\partial q} \hat{Q}(q)|\psi\rangle=0, \\
& \delta\langle\psi(q)|\left[H-\frac{\partial V}{\partial q} \hat{Q}(q),\left\|\frac{1}{N} \hat{P}(q)\right\|-\frac{\partial^{2} V}{\partial q^{2}} \hat{Q}(q)|\psi(q)\rangle=0,\right. \\
& \delta\langle\psi(q)|\left[H-\frac{\partial V}{\partial q} \hat{Q}(q), i \hat{Q}(q)\right]-\frac{1}{M(q)} \hat{P}(q)|\psi(q)\rangle=0,
\end{aligned}
$$

The TDHF equation

$$
\delta\langle\psi(t)| i \hbar \frac{\partial}{\partial t}-H|\psi(t)\rangle=0
$$

ASCC with Super fluidity (Preliminary) fission path $\alpha+a \rightarrow{ }^{8} \mathbf{B e}$

Summary

USing the ASCC method, we define an "optimal" collective coordinate.
With Skyrme interaction applied, collectiv mass with respect to this coordinated is obtained.

Perspective:

To construct collective Hamiltonian to quantize collective dynamics.

