First-principles study of the lattice dielectric function in rutile TiO₂

Tomohito Amano (Department of Physics, University of Tokyo)

- T. Yamazaki¹, R. Akashi²,
- T. Tadano³, S. Tsuneyuki⁴
- ¹ JSR corp.
- ² QST
- ³ NIMS
- ⁴ Department of Physics, University of Tokyo

- Lattice dielectric properties
- Anharmonic phonon theory

> Applied to strongly anharmonic rutile TiO₂

<u>TA</u> et al. *arXiv preprint arXiv:2210.15873* (2022).

2022/12/12

YITP Workshop Fundamentals in density functional theory (DFT2022) @ Y306, Yukawa Hall, YITP, Kyoto University

Dielectric function : 5G · 6G materials

6G:100-300GHz

5G:30-60GHz

dielectric loss is important in higher frequency region (~THz)

Dielectric loss

Dielectric function

$$\tan \theta = \epsilon'' / \epsilon' \qquad \qquad \epsilon(\omega) = \epsilon'(\omega) - i\epsilon''(\omega)$$

Ionic polarization is dominant in THz region

Lattice dielectric function by phonons

Dielectric function of phonons^[1]

$$\epsilon_{\alpha\beta}(\omega) = \epsilon_{\alpha\beta}^{\infty} + \frac{1}{V_0} \sum_{(\mathbf{0},j)} \frac{S_{\alpha\beta}^{j}}{\omega_{\mathbf{0}j}^2 - \omega^2 + 2\omega_{\mathbf{0}j} \Sigma_{\mathbf{0}j}(\omega)}$$

- S :: mode oscillator strength
- ω_0 :: phonon frequency

Σ :: phonon self energy (real: frequency shift, imaginary: linewidth)

- > Anharmonic phonon calculation
 - T. Tadano et al. 2014. J. Phys. : Cond. Mat. 26.22 (2014): 225402.
 - Hellman Olle et el. Phys. Rev. B 84.18 (2011): 180301.
 - Monacelli, Lorenzo, et al. J. Phys.: Cond. Mat. 33.36 (2021): 363001.

Phono anharmonic effect is essential for dielectric function

[1] R.A. Cowley. Advances in Physics 12(48):421–480, 10 1, 1963.

ab-initio calculation on Dielectric properties

DFT calculation on Dielectric properties from anharmonic-phonon theory

- > anharmonic phonon calculations
 - Thermal Conductivity
 - Structure phase transition
 - NOT so many optical properties...
- Objective :: ab-initio dielectric function on rutile TiO₂
 - Self-consistent approach for Strongly Anharmonic materials
 - Frequency-dependence of self-energy

- Strong Anharmonicity
- gigantic dielectric constant (incipient ferroelectric)

[1] Fugallo, Giorgia, Benoit Rousseau, and Michele Lazzeri *Physical Review B* 98.18 (2018): 184307.
 [2] Tong, Zhen, et al *Physical Review B* 101.12 (2020): 125416

Lattice energy expansion (with atomic displacements)

$$\delta \boldsymbol{U} = \boldsymbol{U}_2 + \boldsymbol{U}_3 + \boldsymbol{U}_4 + \cdots$$

Harmonic Hamiltonian (ω :: harmonic phonon frequency)

$$H_0 = \sum_{\mathbf{q}j} \omega_{\mathbf{q}j} A_{\mathbf{q}j}^{\dagger} A_{\mathbf{q}j}$$

Green's function

$$G_{\mathbf{q},jj'}(\omega) = \frac{2\omega_{qj}\delta_{jj'}}{\omega_{qj}^2 - \omega^2}$$

 \mathbf{X} NO phonon-phonon interaction

- \rightarrow NO phonon linewidth
- \rightarrow impossible to calculate dielectric properties

We need higher order terms to include phonon-phonon interaction

Atomic displacement

Phonon Band structure

Anharmonic Phonon Theory^[1]

Lattice energy expansion (with atomic displacement)

$$\delta \boldsymbol{U} = \boldsymbol{U}_2 + \boldsymbol{U}_3 + \boldsymbol{U}_4 + \cdots$$

anharmonic terms (3rd,4th,,,)

Hamiltonian

2022/12/12

$$H = H_0 + U_3 + U_4 + \cdots$$

harmonic 3phonon 4phonon

Green's function

$$G_{\mathbf{q},jj'}(\omega) = \frac{2\omega_{qj}\delta_{jj'}}{\omega_{qj}^2 - \omega^2 - 2\omega_{qj}\Sigma_{\mathbf{q},jj'}(\omega)}$$

O Include phonon-phonon interaction
(1) Frequency shift
$$\Delta \omega(q, \omega, T) = -\operatorname{Re} \Sigma_q(\omega_q)$$

(2) linewidth $\Gamma(q, \omega, T) = \operatorname{Im} \Sigma_q(\omega_q)$

Anharmonic effect give rise to phonon frequency-shift & linewidth

[1] T. Tadano, Y. Gohda, & S. Tsuneyuki. (2014). Journal of Physics: Condensed Matter, 26(22), 225402

[1] T. Tadano, Y. Gohda, & S. Tsuneyuki. (2014). *Journal of Physics: Condensed Matter*, *26*(22), 225402

Self-energy of phonon

Calculate phonon frequencies self-consistently, not perturbatively

	ω-dependent	Real/Complex	Real	Imaginary
Tadpole	×	Real	SCPH	-
Loop	×	Real	SCPH	-
Bubble	0	Complex	SCPH+B	One-shot
4ph	0	Complex	One-shot	One-shot

Self-Consistent-PHonon (SCPH)

Calculate renormalized phonon frequencies including Tadpole&Loop

SCPH equation [1] : Tadpole&Loop

> Self consistent equation for ω and G^{S}

$$\begin{bmatrix} G_q^S(\omega) \end{bmatrix}^{-1} = \begin{bmatrix} G_q^0(\omega) \end{bmatrix}^{-1} - \Sigma^{\mathrm{T}} \begin{bmatrix} G^S \end{bmatrix} - \Sigma^{\mathrm{L}} \begin{bmatrix} G^S \end{bmatrix}$$
$$G_{\mathbf{q},jj'}^{\mathrm{S}}(\omega) = \frac{2\omega_{qj}^{\mathrm{S}} \delta_{jj'}}{(\omega_{qj}^{\mathrm{S}})^2 - \omega^2}$$

SCPH+bubble equation^[2] : Bubble (real part)

 \succ Self consistent equation for Ω . G^s is fixed during calculation

$$\Omega_q^2 = \left(\omega_q^S\right)^2 - 2\omega_q^S \operatorname{Re} \Sigma_q^{\mathrm{B}} [G^S, \Phi_3](\omega = \Omega_q)$$

[1] T. Tadano, S. Tsuneyki Phys. Rev. B .92.054301

[2] Tadano, Terumasa, and Wissam A. Saidi. Physical Review Letters 129.18 (2022): 185901.

[3] Tadano, Terumasa, and Shinji Tsuneyuki. Journal of the Physical Society of Japan 87.4 (2018): 041015.

Band : harmonic vs SCPH+B (r²SCAN)

[1]Traylor, Joseph Gibson, et al. *Physical Review B* 3.10 (1971): 3457.

IR active phonons : harmonic vs SCPH+B

SCPH+B well describes strongly anharmonic A2u & E1u

IR active phonon frequency

	R	2SCAN	neutron $[1]$
	harm	SCPH+B3	
A_{2u}	138.5	179.4	172.6
E_u^1	132.7	186.9	189
E_u^2	378.8	374.9	374
E_u^3	495.7	500.1	494

[1]Traylor, Joseph Gibson, et al. *Physical Review B* 3.10 (1971): 3457.

Linewidth (non-SC vs SCPH+B)

Perturbative calculation Overestimates linewidth

 $\frac{\omega \text{-independent linewidth}}{\gamma^{\text{SCPH+B}} = 2 \operatorname{Im} \Gamma[G_{\text{SCPH+B}}](\omega = \omega_{\text{SCPH+B}})}$ $\gamma^{\text{non-SC}} = 2 \operatorname{Im} \Gamma[G_{\text{harm}}](\omega = \omega_{\text{harm}})$

	non-SC		SCPH+B			FPSQ [1]	
	bubble	4ph	total	bubble	4ph	total	
$E_{\rm u}^1$	21	70	91	8.5	8.0	16	14.7
$E_{\rm u}^2$	41	7.1	48	15	1.8	16	19.3
$E_{\rm u}^3$	28	12	40	13	3.5	16	22.4
A_{2u}	29	52	81	16	9.6	26	20.0

[1] Schöche, S., et al. Journal of Applied Physics 113.16 (2013): 164102.

Linewidth (bubble vs 4ph)

4ph is as large as bubble linewidth

<u>w-independent linewidth</u>

$$\gamma^{\rm SCPH+B} = 2\,{\rm Im}\,\Gamma[G_{\rm SCPH+B}](\omega = \omega_{\rm SCPH+B})$$

Calculated linewidth [cm-1]@300K

	SC	PH+B	Exp. [1]	
	bubble	$4 \mathrm{ph}$	total	
E1u	8.54	7.95	16.4	14.7 ± 8.0
E2u	14.5	1.81	16.2	19.3 ± 2.8
E3u	12.6	3.47	16.0	22.4 ± 3.1
A2u	16.3	9.57	25.7	20.0 ± 10.2

[1] Schöche, S., et al. Journal of Applied Physics 113.16 (2013): 164102.

Dielectric function

[1] Kanehara, Kazuki, et al. Journal of the Ceramic Society of Japan 123.1437 (2015): 303-306

Dielectric function : Side peak@600cm⁻¹

Bubble-selfenergy describes the side peak

15

Conclusion

SCPH+B & frequency-dependent self-energy is important for dielectric property

Self-Consistent Phonon approach (SCPH+B) for strongly anharmonic material

* SCPH+B well describe phonon frequencies of rutile TiO₂

* Phonon frequencies renormalization by SCPH+B is important for phonon linewidths

* 4ph linewidth is as large as bubble linewidth @ 300K

Cowley's theory to use frequency-dependent self-energy

* Bubble self-energy can describe side-peak of dielectric function

* 4ph self-energy do not so frequency-dependent