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Understanding of microscopic mechanism of fission
＆

Unified theory for the various fission phenomena

(induced fission, cluster decay, and so on)

Approach based on GCM and CI(configuration interaction)

Advantages

✔Treat spontaneous and induced fission in the same framework

✔Combination with reaction theories (K-matrix theory, R-matrix theory…)

Motivation



We extend GCM ansatz and superpose

excited states

Extension of the GCM ansatz

In GCM, we superpose mean-field wavefunction

excited states i at each Q



1. Superpose mean field wave function (GCM ansatz)
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1. Superpose mean field wave function (GCM ansatz)

Γ𝑓

fission

absorption
2. Calculate GCM kernel and decay width Γ



1. Superpose mean field wave function (GCM ansatz)

3. Calculate Green’s function

𝐺:propagation 

2. Calculate GCM kernel and decay width Γ



Neutron absorption（channel 𝑎）

Formation of the compound nucleus

Fission or Capture（channel 𝑏）

4. Obtain transmission coefficient 𝑇𝑎𝑏(𝐸) using the Datta formula 

Γ𝑎:input channel Γ𝑏:output channel

𝐺:propagation 

𝑇𝑎𝑏 ≡ 𝑆𝑎,𝑏
2

Transition probability from channel 𝑎 to 𝑏



Hamiltonian and model space

𝑄 = −1 𝑄 = 0 𝑄 = 1

𝐸𝑐𝑢𝑡

Fission barrier

Particle-hole excitation



Hamiltonian and model space

Random interaction (proton-neutron only)

Pairing interaction

random number

𝑄 = −1 𝑄 = 0 𝑄 = 1

𝐻𝑟𝑎𝑛 + 𝐻𝑝𝑎𝑖𝑟



𝑄 = −1 𝑄 = 0 𝑄 = 1

compound nucleus

Neutron width :

Γ𝑛 𝑘𝑘′ = 𝛾𝑛Σ𝑖:𝑄=−1𝑁𝑖𝑘𝑁𝑖𝑘′
Fission width:

Γ𝑓 𝑘𝑘′
= 𝛾𝑓Σ𝑖:𝑄=1𝑁𝑖𝑘𝑁𝑖𝑘′

Capture width:

Γ𝑐 𝑘𝑘′ = 𝛾𝑐Σ𝑖:𝑄=−1𝑁𝑖𝑘𝑁𝑖𝑘′

𝑄 = −1：compound nucleus ⇒ Γ𝑛, Γ𝑐

𝑄 = 1 ：fission doorway states⇒ Γ𝑓

Γ𝑓Γ𝑛, Γ𝑐

fission 

doorway



GCM basis |𝑄⟩ is not orthogonal basis

Overlap kernel 𝑁(𝑄, 𝑄′) represents the size of non-orthogonality

Applying generalized Wick’s theorem to the overlap between excited states

Overlap kernel 



Result

Result 1. Effects of the pairing on the induced fission

Result 2. Effects of the ono-orthogonal basis

DFT generates non-orthogonal GCM basis

(c.f. R-matrix approach by Lynn)

In low energy induced fission, 

pairing does not completely vanish

Z
J. P. Bocquet and  R. Brissot,

Nucl. Phys. A 502, 213 (1989).

Even-odd effects



Calculate 𝑇𝑛,𝑓(𝐸) with different 𝐺

For simplicity, we use orthogonal basis here

Result 1. Effects of Pairing 

Pairing strength : 0 ≤ 𝐺 ≤ 0.05 MeV

Random interaction : 𝑣𝑛𝑝 = 0.03 MeV

Barrier height : 𝐵ℎ = 4 MeV

Energy scale : 𝑑 = 1 MeV

Decay width : 𝛾𝑛 = 0.001 MeV, 𝛾𝑓 = 0.1 MeV

G=0.05 MeV

G=0



Energy averaged transmission coefficient ⟨𝑇𝑛,𝑓⟩

⟨𝑇𝑛,𝑓⟩ =
1

1MeV
׬
𝐸∗−0.5

𝐸∗+0.5
𝑇(𝐸) 𝑑𝐸

・w/o random interaction:

⇒Pairing increase fission probability

・ w random interaction (realistic):

⇒Pairing competes with random interaction

w/o 
random interaction

with 
random interaction

⟨𝑇𝑛,𝑓⟩ vs 𝐺



Non-orthogonality enhances fission probability ?

Result 2. Effects of the non-orthogonality 

Pairing strength: 𝐺 = 0.05 MeV

Random interaction : 𝑣𝑛𝑝 = 0.03 MeV

Barrier height : Bh = 4 MeV

orthogonal 
basis

non-orthogonal 
basis



Relation between ⟨𝑇𝑛,𝑓⟩ and barrier height 𝐵ℎ

Overlap parameter 𝜆 = 2

Transition between compound states (Q=-1)

and the fission doorway (Q=1) by the overlap  

・⟨𝑇𝑛,𝑓⟩ decrease exponentially as 𝐵ℎ

・ 𝑇𝑛,𝑓 ≠ 0 even if 𝐻𝑟𝑎𝑛=0 and 𝐻𝑝𝑎𝑖𝑟 = 0

w residual interaction
w/o residual interaction



▪ Apply GCM+CI approach to the barrier transmission problem

▪ Pairing increases fission probability and competes random interaction

▪ Non-orthogonality of the basis increases the transmission coefficient 

▪Compare with the B-W theory and justify the transition states hypothesis

▪Realistic calculation with the basis obtained using DFT

Future perspectives

Conclusion

Summary
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