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Energy-density-functional calculation with proton-neutron mixing

Proton-neutron mixing:

Single-particles are mixtures of protons and neutrons

EDF with an arbitrary mixing between protons and neutrons

= +

  ,,),( cc = +

  ,',' ),( cc

np,= np,, =

superposition of protons and neutrons

Isospin symmetry

ȁ ۧ𝑛 =ห𝜏 = ۧΤ+1 2 = 1
0

ȁ ۧ𝑝 =ห𝜏 = ۧΤ−1 2 = 0
1

Protons and neutrons can be regarded as

identical particles (nucleons) with different quantum numbers

ȁ ۧ𝑁 = 𝜙1
𝜙2

In general, a nucleon state is written as

Pairing between protons and neutrons (isoscalar T=0 and isovector T=1)

Goodman, Adv. Nucl. Phys.11, (1979) 293.

？
p n

Perlinska et al, PRC 69 , 014316(2004)

A first step toward nuclear DFT for proton-neutron pairing  and its application 

Extension of the EDF approach with rigorous treatment of the isospin d. o. f.



Isobaric analog states (IASs) : isospin multiplets

If Hamiltonian is invariant under rotation in 

isospin space, T is a good quantum number.

Bohr & Mottelson, “Nuclear Structure” vol.1

𝑇𝑧 = (𝑁 − 𝑍)/2

Isobaric symmetry

zT

E

0

T=2

21-2 -1

14C(Tz= +1)14N(Tz= 0)14O(Tz= -1)

1+

T=1 states in A=14 isobars

𝑇𝑧 = 1

𝑇𝑧 = 0

𝑇𝑧 = −1

𝑇 = 0

𝑇 = 1



Basic idea of p-n mixing

Let’s consider two p-n mixed s.p. wave functions

standard unmixed neutron and proton w. f.

standard n and p

densities

They contribute to the local density matrices as

𝜙1(𝑟)=𝜙1(𝑟, 𝑛)

𝜙2(𝑟)=𝜙2(𝑟, 𝑝)

p-n mixed

densities

Here, we consider p-n mixing at the Hartree-Fock level (w/o pairing)

(spin indices omitted for simplicity)



Hartree-Fock calculation including proton-neutron mixing (pnHF)

Extension of the density functional

],[ pn

SkyrmeE  ],[ 0 
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Extension of the single-particle states

isovectorisoscalar

Perlinska et al, PRC 69 , 014316(2004)

pn  +=0

pn  −=3

pnnp  +=1

pnnp ii  +−=2

30 ,can be written in terms of 

not invariant under rotation in isospin space

Energy density functionals are extended 

such that they are invariant under rotation in isospin space 

Standard HF

pnHF
isovectorisoscalar



HFODD  

• Skyrme energy density functional

• Hartree-Fock or Hartree-Fock-Bogoliubov

• Harmonic-oscillator basis

• No spatial & time-reversal symmetry restriction (3D 

cartetian basis)

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html

Two implementations of  p-n mixed Hartree-Fock (pnHF)

N. Schunck, et al., Comp. Phys. Comm. 216 (2017) 145.

J Dobaczewski et al, J. Phys. G: Nucl. Part. Phys. 48 (2021)102001.

HFBTHO  

Axially symmetric shape assumed （Cylindrical basis）

KS et al, PRC 88(2013) 061301(R).

Sheikh, et al, PRC 89(2014) 054317.

Good agreement in benchmark comparison

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html


w/o Coulomb force

:invariant under rotation in isospin space

zT

xT

yT

Total isospin of the system
T


T


T


Total energy should be independent of the 

orientation of T.

(and w/ equal proton and neutron masses)

How to control the isospin direction ?

p-n mixing calculation w/o Coulomb

Rotational invariance in isospace

All the isobaric analog states should give 

exactly the same energy 

“Isobaric analog states”



w/ p-n mixing and no Coulomb

Initial state: HF solution w/o p-n 

mixing (e.g. 48Ca (Tz=4,T=4) )

T

−

Isocranking term

Final state




zT

xT

yT

p-n mixed state

HF state w/o p-n 

mixing

iteration




zT

xT

yT





Isocranking calculation

: Input to control the isospin of the system

HF eq. solved by iterative diagonalization of MF Hamiltonian. 


Analog with the tilted axis 

cranking for high-spin states

By varying the titling angle,

we can obtain isobaric analog states

isospin T







zT

xT

yT





We set the azimuthal angle φ=0.

Isocranking calculations in the Tx-Tz plane.

This choice has an advantage of avoiding the time-reversal symmetry breaking

inherent to the isorotation about the Ty axis.

𝜏𝑦=
0 −𝑖
𝑖 0

𝜏𝑥=
0 1
1 0

𝜏𝑧=
1 0
0 1

H depends on only  Ƹ𝜏𝑧 in the form of 
1−ො𝜏𝑧

2

: real
: imaginary

time-reversal op.

Even with the Coulomb interaction, the Hamiltonian is invariant

under the isorotation about Tz axis.



Assume we want to obtain the T=4 & Tz=0 IAS in 48Cr (w/o Coulomb) 

zT

xT

yT

zT

xT

yT

48Ca (Tz=4)

𝑻𝒛 = 𝟒, 𝑻 = 𝟒

yT

−𝜆 𝑥t 𝑥

(b) Starting with the highest weight state.

zT

xT

yT

zT

xT




48Cr (Tz=0) 𝑻 = 𝟎

𝑇𝑥 = 4, 𝑇𝑦 = 𝑇𝑧= 0,

𝑇 = 4

−𝜆 𝑥t 𝑥

(a) Starting with the T=0 state

yT

48Cr (Tz=0)

48Cr (Tz=0)

isospin



Illustration with a simple model W. Satuła & R. Wyss, PRL 86, 4488 (2001).

To get T=1,3, ・・ states,

we make a 1p1h excitation

At each crossing freq., 

Four-fold degeneracy at ω=0

In this study, we use the Hamiltonian based on the EDF with p-n mixed densities.

( isospin & time-reversal)

(a) Starting with the T=0 state



Assume we want to obtain the T=4 & Tz=0 IAS in 48Cr (w/o Coulomb) 

zT

xT




zT

xT

yT

48Cr (g. s.) 

(T=Tz=0)
𝑻 = 𝟎

𝑇𝑥 = 4, 𝑇𝑦 = 𝑇𝑧= 0,

𝑇 = 4

−𝜆 𝑥t 𝑥

(a) Starting with the T=0 state




“excited 48Cr”

(T=4,Tz=0)

Increase T w/o changing Tz

N=Z=24

The state on the right is a state with good 𝑇𝑥 , but ෠𝑇𝑥and ෠𝑇𝑧 do not commute.

Therefore, it is not an eigenstate of ෠𝑇𝑧.

Actually, the state with 𝑇𝑧 = 0 obtained here is not a pure “48Cr”, but a mixture of 

states with different 𝑇𝑧 values, whose expectation value of 𝑇𝑧,  𝑇𝑧 is equal to 0.



zT

xT

yT

zT

xT

yT

48Ca (g. s.)

(T=Tz=4)

𝑇𝑧 = 4, 𝑇 = 4




−𝜆 𝑥t 𝑥

(b) Starting with the highest weight state.

𝑇𝑥 = 4, 𝑇𝑦 = 𝑇𝑧= 0,

𝑇 = 4

isospin

“excited 48Cr”

(T=4,Tz=0)

change the orientation of 𝑇

Another way to obtain the T=4 & Tz=0 IAS in 48Cr 

We employ this way of obtaining the state with 𝑇𝑧 =0. 

The states with 𝑇𝑧 = 0, 1, 2, . .can be obtained straightforwardly.

It is easy to estimate the size of the Lagrange multiplier Ԧ𝜆 .  

Reasons:

z

x




0 −





48Ca (Tz=4)

xT

zT

Standard HF 

The size of the isocranking frequency is determined from the difference of the

proton and neutron Fermi energies in the ȁ𝑇𝑧 ȁ = 𝑇 states.

z

x






~11MeV

p

n

⑳

㉘

p-n mixed 

㊽ ㊽- 𝜆𝑧𝑡𝑧

xT

zT
z

x






z

x




Isocranking calc.

𝑇 = 𝑇𝑧 = 4 𝑇𝑧 = 4

p-n unmixed 

𝑇𝑧 ≠ 4

𝜃 = 0 𝜃 ≠ 0

0.11=


(b) Starting with the highest weight state.

𝜆𝑧/2

𝜆𝑧/2



Calculation for A=48 nuclei w/o Coulomb

48Cr 48Ca48Ti48Fe48Ni

0.11=


0.6=


0.0=


Non-zero T states can be obtained by isocranking the initial T=0 state along Tx axis

|Tz|=T states can be obtained by isocranking the initial T=0 state along Tz axis

𝑇𝑧 ≠ 𝑇 states can be obtained by isocranking the initial 𝑇𝑧 = 𝑇 state  



<Single-particle Routhian> for T=4 states （w/o Coulomb）

50% neutron & 50% proton

No p-n mixing at |Tz|=T 

s.p. energy is Tz-independent.

red：proton

blue：neutron

s. p. isospin is parallel or anti-parallel with Ԧ𝜆



)( z

CoulombU 

With Coulomb interaction

Initial :

T
̂
− 

final :

:violates isospin symmetry

p-n mixed stateHF state w/o p-n 

mixing

The total energy is now dependent on Tz but independent of azimuthal angle 𝜑




zT

xT

yT

T








zT

xT

yT





larger  <Tz> is favored

With Coulomb, the s. p. Routhians

depend on the titling angle 𝜃


・・・



Shifted semicircle

z

Coulomb gives additional isocranking freq. effectively zoff t− 

w/ Coulombw/o Coulomb

z

x




semicircle




x

w/o Coulomb w/ Coulomb

Difference of p and n 

Fermi energies  

0

)4( −=− zpn T )4( =− zpn T

(MeV)

)4( −=−= znp T

)4( =−= zpn T

−





Calculation for A=48 nuclei w/ Coulomb included

Almost linear dep. of energy Coulomb behaves as

48Ca

48Cr

48Ti48Fe48Ni



HFODD  

• Skyrme energy density functional

• Hartree-Fock or Hartree-Fock-Bogoliubov

• Harmonic-oscillator basis

• No spatial & time-reversal symmetry restriction (3D 

cartetian basis)

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html

Two implementations of  p-n mixed Hartree-Fock (pnHF)

N. Schunck, et al., Comp. Phys. Comm. 216 (2017) 145.

J Dobaczewski et al, J. Phys. G: Nucl. Part. Phys. 48 (2021)102001.

HFBTHO  

Axially symmetric shape assumed （Cylindrical basis）

KS et al, PRC 88(2013) 061301(R).

Sheikh, et al, PRC 89(2014) 054317.

Good agreement in benchmark comparison

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html


Comparison with HFBTHO

HFBTHO：Axial symmetry 

assumed（Cylindrical basis）

HFODD  : No symmetry assumed

（3D cartetian basis）

J.A. Sheikh, N. Hinohara, J. Dobaczewski, 

T. Nakatsukasa, W. Nazarewicz, KS, PRC 89(2014) 054317

Results for T=4 Tz=0 state in A=48 

Very good agreement！

 11MeV=


 MeV0.8=


Functional: SkM*

Basis space : Nsh=10

(w/o Coulomb)

(w/ Coulomb)

Stoitsov et al.,Comp.Phys.Comm (2013)



Isocranking calculation for T~8 IASs in A=40 isobars 

w/ isospin-invariant functional

Without Coulomb, total energy is independent of Tz

𝜑 = 0

Total energy Coulomb energy




zT

xT

yT





With Coulomb, total energy behaves as

40Mg

40Ni

The T=8 component is dominant.



No p-n mixing  at |Tz|=T (𝜃′ = 0 & 180°)

The highest and lowest weight states are standard HF states

s. p. Routhian for T=8 IASs in A=40 isobars with Coulomb int.

Proton and neutron components almost equally mixed mixing at Tz=0

pure n

pure p

50% & 50% 

40Ni (Tz=8) 40Mg (Tz=-8)



<T2> for T=8 IASs in A=40 isobars

Even without Coulomb, <T2> deviates from the 
exact value 72 due to the spurious isospin
mixing within the mean-field approximation

rms radii for T=8 IASs in A=40 isobars

With decreasing <Tz>

total rms radius increases. 

Without Coulomb, total rms

radius stays constant.Isospin projection

In reality, the isospin symmetry is slightly broken. 

The total isospin T is not a good quantum number.

Isospin mixing



Why isospin projection needed?

W. Satuła et al., PRC 81, 054310 (2010).

There is spurious isospin mixing inherent to MF approaches

One typical example : g. s. of odd-odd N=Z nuclei

In HFODD, the isospin projection for p-n separated HF has been implemented.

Isospin mixing & Isospin projection



One typical example : g. s. of odd-odd N=Z nuclei

(Coulomb force & time-odd polarization neglected for simplicity)

Valence nucleons

( isospin & time-reversal symmetries)

spatial w.f. : sym.

spin     w.f. : sym. (S=1)

isospin w.f. : antisym. (T=0)

spatial w.f. : sym.

spin     w.f. : 

isospin w.f. :

 S=0 &S=1 mixed

T=0 &T=1 mixed



Bohr & Mottelson, “Nuclear Structure” vol.1

14C(Tz= +1)14N(Tz= 0)14O(Tz= -1)

1+

T=0 state -> 

time-reversal breaking

T=1 state -> 

time-reversal conserving

T=0 and T=1 states in 14N

How can we describe the T=1 state in 14N?

The p-n mixed EDF framework provides us with a natural way to describe 

time-even odd-odd IASs.

The conventional HF

can describe.

14O

14C



The x-isocranked state is

Let |0> be the isoscalar(T=0) core of A=4n nucleons.

The wave functions of the T=1 triplet with A=4n+2 are given by  

The isocranked states with ෠𝑇𝑧 = 0 are not eigenstates of ෠𝑇𝑧.

For simplicity, consider the case with isoscalar EDFs and no Coulomb int.

ȁ ۧ+↑ =
1

2
ȁ ۧ𝑛 ↑ + ȁ ۧ𝑝 ↑ ȁ ۧ+↓ =

1

2
ȁ ۧ𝑛 ↓ + ȁ ۧ𝑝 ↓

𝑇𝑧

𝑇𝑥

𝑇

Mixture of the 𝑇𝑧 = −1, 0, 1 states



ȁΦisocrank ൿ(𝑇, 𝜃 = 90°) = ς𝑖=1
2𝑇 1

2
ȁ ۧ𝑛, 𝑖 + ȁ ۧ𝑝, 𝑖

=෍
𝑇𝑧=−𝑇

𝑇

𝑐𝑇,𝑇𝑧 ȁ𝑇, ۧ𝑇𝑧

Similarly to the T=1 case, other x-isocranked states for 

other T’s (T=3, 4, 5,…)  and ෠𝑇𝑧 = 0 can be written as

𝑐𝑇,𝑇𝑧 =

2𝑇
𝑇 − 𝑇𝑧
2𝑇

Superposition of states with different Tz values

( Here, we consider the isoscalar core + 2T valence nucleons. Only the valence 

part is shown.)

𝑇𝑧

𝑇𝑥

𝑇

𝑇 = 0

…

2𝑇 n’s (𝑇𝑧 = 𝑇)

…

𝑇𝑥 = 𝑇

ȁΦisocrank ൿ(𝑇, 𝜃 = 90°)



ȁΦisocrank ൿ𝑇 = 2, 𝜃 = 90°

= ς𝑖=1
4 1

2
ȁ ۧ𝑛, 𝑖 + ȁ ۧ𝑝, 𝑖

=෍
𝑇𝑧=−2

2

𝑐𝑇,𝑇𝑧 ȁ𝑇 = 2, ۧ𝑇𝑧

=
1

4
ȁ𝑇 = 2, ۧ𝑇𝑧 = 2 + ȁ𝑇 = 2, ۧ𝑇𝑧 = −2

+
6

4
ȁ𝑇 = 2, ۧ𝑇𝑧 = 0+

1

2
ȁ𝑇 = 2, ۧ𝑇𝑧 = 1 + ȁ𝑇 = 2, ۧ𝑇𝑧 = −1

For example, the isocranked state with 𝑇 = 2, 𝜃 = 90° is given by 

The other isocranked states with 𝑇𝑧 ≠ 𝑇 can be written as superpositions of 

ȁ𝑇, ۧ𝑇𝑧 ’s.

𝑇 = 0

…

4 n’s

𝑇𝑧 = 2

…

𝑇𝑥 = 2

ȁΦisocrank ൿ(𝑇 = 2, 𝜃 = 90°)



Triple displacement energy is given by

[We define the binding energy with BE(Tz) < 0 ]

𝐵𝐸++ =
1

4
𝐵𝐸 𝑇𝑧 = 1 +

1

2
𝐵𝐸 𝑇𝑧 = 0 +

1

4
𝐵𝐸(𝑇𝑧 = −1)

𝑇𝐷𝐸 = 𝐵𝐸 𝑇𝑧 = 1 + 𝐵𝐸(𝑇𝑧 = −1) − 2𝐵𝐸 𝑇𝑧 = 0

How can we evaluate the energies for Tz=0 p-n mixed states?

We shall focus on T=1 triplets and calculated TDE’s.



T=1 triplets in A=14 isobars

14N

Tz=0, T=1 states in odd-odd 14N : Time-reversal symmetry conserved

(The origin of calc. BE is shifted by 3.2 MeV to correct the deficiency of SkM* functional in the left panel for A=14)

14O(g.s)
“14N(excited 0+)”

14C(g.s)

p-n mixed HF

no p-n mixing

(cannot be described by conventional HF）

KS+, PRC 88(2013) 061301(R).

In the first paper on the p-n mixed EDFs[KS+, PRC88(2013)], we erroneously 

used that of the x-isocraked states for the energy of 14N(excited 0+).

(Before the correction)



After the correction,

TDE(calc.) = 0.398 MeV, TDE(exp.) = 0.675 MeV

Deviation from exp.                Need for further extension of EDF?

T=1 triplets in A=14 isobars

So far, we have considered the isoscalar nuclear EDFs.

Need for isospin symmetry breaking nuclear force?



Nuclear EDFs with isospin symmetry breaking



Charge symmetry breaking (CSB) and Charge independence breaking (CIB) 

Manifestation of the CSBs and CIBs in nuclear mass : 

𝑉𝑛𝑛
𝑇=1 ≅ 𝑉𝑛𝑝

𝑇=1 ≅ 𝑉𝑝𝑝
𝑇=1

The nuclear force is almost isospin-symmetric.

Charge symmetry breaking (CSB)

difference between nn and pp :

(𝑉𝑛𝑝
𝑇=1 ≠ 𝑉𝑛𝑝

𝑇=0)

Charge independence breaking (CIB)

difference between np and the average of nn and pp : 

Mirror Displacement Energy = BE(Tz=T)-BE(Tz=-T)

Triplet Displacement Energy =BE(Tz=1)+BE(Tz=-1)-2BE(Tz=0)

(BE < 0) 

Major cause

𝑚𝑛 ≠ 𝑚𝑝

𝑚𝜋0 ≠ 𝑚𝜋±

“𝑉𝑛𝑛
𝑇=1 − 𝑉𝑝𝑝

𝑇=1”

“(𝑉𝑛𝑛
𝑇=1 + 𝑉𝑝𝑝

𝑇=1)/2 − 𝑉𝑛𝑝
𝑇=1”



Isoscalar nuclear force + Coulomb int. 

Baczyk, Dobaczewski, Konieczka, Satula, Nakatsukasa, KS,  

Phys. Lett. B778 (2018) 178.

Mirror displacement energy:

Triple displacement energy:

(T=1 triplet)

BE(Tz) < 0 

can not reproduced the experimental data. 

MDEs systematically 

underrstimated.



Introduce an isospin breaking nuclear force:

Henly, Miller, “Mesons in Nuclei ”, North Holland (1979)

Baczyk, Dobaczewski, Konieczka, Satula, Nakatsukasa, KS,  Phys. Lett. B778 (2018) 178.

𝑡0
𝐼𝐼 , 𝑡0

𝐼𝐼𝐼: interaction strength to be determined from fitting to exp. 

The corresponding contributions to EDF read

breaks both CI and CS

breaks CI but is invariant under a rotation by 𝜋 w. r. t. the y-axis in isospace

preserving CS.

The p-n mixed EDF 

calc.



Results calculated with isospin 

symmetry breaking nuclear force

MDE

TDE

MDE=BE(Tz=T)-BE(Tz=-T)

TDE=BE(Tz=1)+BE(Tz=-1)

-2BE(Tz=0)



Further extension of EDFs including NLO terms 
Baczyk et al., J. Phys. G: Nucl. Part. Phys. 46 (2019) 03LT01.



ൿȁ𝑡𝑥 = 1/2sin𝜃, 𝑡𝑦 = 0, 𝑡𝑧 = 1/2cos𝜃

= cos
𝜃

2
ȁ ۧ𝑛 + sin

𝜃

2
ȁ ۧ𝑝=

cos
𝜃

2

sin
𝜃

2

𝑡𝑧

𝑡𝑥

Ԧ𝑡
𝜃

ȁΦisocrank ۧ(𝑇 = 3/2, 𝑇𝑧 = 1/2)

= ς𝑖=1
3 ඀ฬ𝑡𝑥 =

1

2
sin𝜃1

2

, 𝑡𝑧 =
1

2
cos𝜃1/2, 𝑖

= ς𝑖=1
3 cos

𝜃1/2

2
ȁ ۧ𝑛, 𝑖 + sin

𝜃1/2

2
ȁ ۧ𝑝, 𝑖

The states with an odd # of the valence nucleon (𝑇 =
3

2
,
5

2
,…) can be 

calculated as well.

𝑇𝑧 = 3/2

𝑇 = 0

… 1

2

𝜃1/2

𝑇𝑥

𝑇𝑧



ȁΦisocrank ۧ(𝑇 = 3/2, 𝑇𝑧 = 1/2)

=
2 6

9
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = 3/2 +

2

3
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = 1/2

+
2

3
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = −1/2 +

3

9
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = −3/2

1

2

𝑇𝑧

𝑇𝑥
𝑇 𝜃1/2

ȁΦisocrank ۧ(𝑇 = 3/2, 𝑇𝑧 = −1/2)

=
2 6

9
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = −3/2 +

2

3
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = −1/2

+
2

3
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = 1/2 +

3

9
ȁ𝑇 = 3/2, ۧ𝑇𝑧 = 3/2

Similarly, 

One can calculate the energies of ȁ𝑇 = 3/2, ۧ𝑇𝑧 = ±1/2 .



ȁΦisocrank ൿ(𝑇 = 2, 𝜃 = 90°) = ς𝑖=1
4 1

2
ȁ ۧ𝑛, 𝑖 + ȁ ۧ𝑝, 𝑖

=
1

4
ȁ𝑇 = 2, ۧ𝑇𝑧 = 2 + ȁ𝑇 = 2, ۧ𝑇𝑧 = −2

+
6

4
ȁ𝑇 = 2, ۧ𝑇𝑧 = 0+

1

2
ȁ𝑇 = 2, ۧ𝑇𝑧 = 1 + ȁ𝑇 = 2, ۧ𝑇𝑧 = −1

For example, the isocranked state with 𝑇 = 2, 𝜃 = 90° is given by   

The isocranked states ≠ pure Tz=0 states

In the previous paper, for the excitation energies 

with different T’s in Cr, we erroneously used the 

energies of the x-isocranked states.

By evaluating the energies as we did for TDEs, 

the p-n mixed EDFs can be used to study the 

nuclear symmetry energy.

The p-n mixed EDFs may be useful to study the nuclear symmetry energy.

KS+, PRC 88(2013) 061301(R).



Summary

We have solved the Hartree-Fock equations based on the EDF including

p-n mixing.

Isospin is controlled by using the isocranking model.

Although the isocranked states are not eigenstates of 𝑇𝑧 except for 𝑇𝑧 = 𝑇,  

the p-n mixed single-reference EDFs can provide us with a natural way to describe

the isobaric analog states.

For odd A/2, odd-T states can be obtained by isocranking e-e nuclei 

in their ground states with time-reversal symmetry.

The extension of EDFs including the isospin breaking terms improves MDEs 

and TDEs, that are experimental manifestation of CSB and CIB, respectively 

The isospin projection for p-n mixed states is to be implemented.
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