Recent Advances in Orbital-Free Density Functional Theory and Machine Learning Approaches to Develop Kinetic Energy Functionals

Fumihiro Imoto (Schrödinger Inc.)

Previously at Oshiyama Group (Nagoya Univ.) and Imada Group (Waseda Univ.)

1

Contents

- Introduction
 - Orbital-free density functional theory (OFDFT)
 - OFDFT scheme and kinetic energy density functionals (KEDFs)
- Recent advances
- Previous works and aims of the work
- Methods
 - Neural network (NN) used for our KEDF
 - Training of NN toward kinetic energy functional derivative (KEFD)
 - Augmentation of the NN enhancement factor
- Results
 - Accuracy of NN KEDF
 - O(N) scaling of OFDFT computation
- Summary

Introduction: Orbital-free density functional theory (OFDFT)

• Kohn-Sham density functional theory (KSDFT) $E_{tot}[\rho] = T_s[\rho] + E_H[\rho] + E_{xc}[\rho] + E_{ext}[\rho]$

Kinetic energy $T_s[\{\phi_i\}_{i=1}^N] = \frac{1}{2}\sum_{i=1}^N \int |\nabla \phi_i(\mathbf{r})|^2 d\mathbf{r}$

<u>Matrix diagonalization and orbital orthonormalization with $O(N^3)$ </u>

• Orbital-free density functional theory (OFDFT), O(N) method

Open problem 1:

- ✓ Local pseudopotentials (PPs) should be used instead of nonlocal PPs.
- ✓ Ab initio pseudopotentials are available only for limited elements.

Open problem 2:

✓ The optimal method to solve OFDFT Euler equation has not been established.

Open problem 3:

✓ Accurate kinetic energy density functional (KEDF) $T_s[\rho]$ has not yet been constructed for non-metallic systems.

Introduction: OFDFT scheme and KEDFs

- OFDFT schemeEuler equation $\frac{\delta T_s[\rho]}{\delta \rho(r)} + v_{ext}(r) + \frac{\delta E_{H}[\rho]}{\delta \rho(r)} + \frac{\delta E_{xc}[\rho]}{\delta \rho(r)} = \mu$ Kinetic energy functional derivative (KEFD)Kohn-Sham (KS) potential $\Leftrightarrow \left[-\frac{\nabla^2}{2} + \left(\frac{\delta T_s[\rho]}{\delta \rho(r)} + \frac{\nabla^2 \sqrt{\rho(r)}}{2\sqrt{\rho(r)}} \right) + v_{KS}([\rho]; r) \right] \sqrt{\rho(r)} = \mu \sqrt{\rho(r)}$ Schrödinger-like equation^[1] that is solved self-consistently in
our work. [1] M. Levy et al., Phys. Rev. A **30**, 2745 (1984).
- Kinetic energy density functionals (KEDFs)
 - 1. Semilocal KEDFs defined as enhancement factors
 - ✓ lattice constants (<2 % error), bulk moduli (<15 % error)

Generalized gradient approximation (GGA) $T_s[\rho] = \int \tau^{\text{TF}}(\mathbf{r}) F[\rho] d\mathbf{r}$

enhancement factor

State-ofthe-art semilocal KEDFs I **LKT** (Luo-Karasiev-Trickey)^[2] Thomas-Fermi (TF) KEDF is exact in homogeneous density.

[2] K. Luo et al., Phys. Rev. B 98, 041111(R) (2018). [3] L. A. Constantin et al., J. Phys. Chem. Lett. 9, 4385 (2018).

- 2. Nonlocal KEDFs
 - ✓ lattice constants (<1 % error), bulk moduli (<10 % error)</p>
 - ✓ heavier computational cost with $O(N\log N)$ scaling

Recent advances: Nonlocal pseudopotential (NLPP) energy density functional

• Nonlocal pseudopotentials in OFDFT scheme

$$E_{tot}[\rho] = T_{s}[\rho] + E_{H}[\rho] + E_{xc}[\rho] + E_{II}[\{R_{a}\}] + \int \rho(\mathbf{r})V_{loc}(\mathbf{r})dr + E_{nl}[\rho]$$

$$E_{nl}[\rho] = \int \int V_{nl}(\mathbf{r}', \mathbf{r})\gamma_{s}(\mathbf{r}, \mathbf{r}')d\mathbf{r}d\mathbf{r}'$$

$$V_{nl}(\mathbf{r}', \mathbf{r}) = \langle \mathbf{r}'|\hat{V}_{nl}|\mathbf{r}\rangle$$

$$\gamma_{s}(\mathbf{r}, \mathbf{r}') = \sum_{i}f_{i}\psi_{i}(\mathbf{r})\psi_{i}^{*}(\mathbf{r}')$$
Assessment of the accuracy
$$\int_{u}^{u} \int_{u}^{u} \int_{u}^{$$

Recent advances: Nonlocal pseudopotential (NLPP) energy density functional

• Nonlocal pseudopotentials in OFDFT scheme

Assessment of the accuracy

Fig. 2 Relative energies for random structures of elemental Li. The results are calculated by OF-DFT using BLPS, OEPP and NLPPF in comparison with that by KS-DFT using the PAW method. Blue dash-dotted and red dashed lines are the least-square fittings of WT-BLPS and WT-NLPPF results, respectively.

		Method	HCP	FCC	BCC	SC
Li	Bo	KS-PAW	13.9	13.6	13.9	12.1
		WT-NLPPF	13.5	13.5	13.7	11.0
	Vo	KS-PAW	20.280	20.372	20.396	20.580
		WT-NLPPF	19.483	19.462	19.352	20.844
	ER	KS-PAW	0.000	0.000	0.001	0.120
		WT-NLPPF	0.000	0.000	0.001	0.152
Mg	Bo	KS-PAW	35.8	35.5	34.8	22.7
		WT-NLPPF	33.0	31.3	31.3	21.2
	Vo	KS-PAW	22.838	23.071	22.826	27.478
		WT-NLPPF	23.194	23.924	23.730	28.274
	ER	KS-PAW	0.000	0.012	0.029	0.382
		WT-NLPPF	0.000	0.011	0.031	0.372
Be	Bo	KS-PAW	123.3	119.7	124.1	74.5
		WT-NLPPF	91.5	90.5	87.2	63.3
	Vo	KS-PAW	7.910	7.875	7.822	10.274
		WT-NLPPF	7.690	7.942	7.798	10.160
	ER	KS-PAW	0.000	0.080	0.099	1.004
		W/T-NI PPF	0.000	0.058	0.082	0 561

1 10 1821 .

[Ref.] Q. Xu et al., Nature Comm. 13, 1385 (2022).

6

Previous works and aims of the work^[Ref.]

Previous neural network (NN) KEDF

✓ Semilocal NN KEDFs $T^{NN}[\rho]$ were developed as the enhancement factors $F^{NN}[\rho]$.

$$T^{\mathrm{NN}}[\rho] = \int \tau^{\mathrm{TF}}(\boldsymbol{r}) F^{\mathrm{NN}}[\rho] d\boldsymbol{r}$$

✓ OFDFT Euler eq. was not solved with the functional derivative of the NN KEDF.

Training data was taken from atoms/molecules^[1-4] or periodic solids^[5].

Refs. [4,5] use inverse distances from nuclei positions $\{R_m\}$, $1/|r - R_m|$, as inputs for NN.

[1] K. Yao and J. Parkhill, J. Chem. Theory Comput. 12, 1139 (2016).
[2] J. Seino *et al.*, J. Chem. Phys. 148, 241705 (2018).
[3] J. Seino *et al.*, Chem. Phys. Lett. 734, 136732 (2019).
[4] M. Fujinami *et al.*, Chem. Phys. Lett. 748, 137358 (2020).
[5] P. Golub and S. Manzhos, Phys. Chem. Chem. Phys. 21, 378 (2019).

• Develop a scheme to solve OFDFT Euler eq. using the functional derivative of the NN KEDF $T^{NN}[\rho]$.

Schrödinger-like eq. that is equivalent to the Euler eq.
$$\left[-\frac{\nabla^2}{2} + \left(\frac{\delta T^{NN}[\rho]}{\delta\rho(r)} + \frac{\nabla^2\sqrt{\rho(r)}}{2\sqrt{\rho(r)}}\right) + v_{KS}([\rho];r)\right]\sqrt{\rho(r)} = \mu\sqrt{\rho(r)}$$

• Predict structural parameters of semiconductors via the solution of OFDFT Euler eq.

[Ref.] F. Imoto, M. Imada, and A. Oshiyama, Phys. Rev. Research **3**, 033198 (2021).

Methods: Neural network (NN) used for our KEDF

• General definition of NN

 $z_{j}^{(l)} = \sigma^{(l)} \left(a_{j}^{(l)} \right) = \sigma^{(l)} \left(\sum_{k=0}^{D_{l-1}} W_{jk}^{(l)} z_{k}^{(l-1)} \right)$ $\sigma^{(l)} \left(a_{j}^{(l)} \right) \text{ is ELU for each layer with } 1 \leq l \leq N-1$ and an identity function for an output layer (l = N).

• Definition of our NN KEDF

$$T^{NN}[\rho] = \int \tau^{TF}(\mathbf{r}) F^{NN}(s^2, q; \mathbf{W}) d\mathbf{r}$$

NN KEDF as the enhancement factor

Input layer Hidden layers Output layer $W_{D_{1}2}^{(1)}$ Z_{D_1} Z_{D_2} $W_{1D_2}^{(3)}$ Response Descriptors variable $(z_{D_2-1}^{(2)})$ (1) $z_1^{(3)}$ $(z_2^{(0)})$ $F^{\rm NN}(s^2,q)$ q = (Z_{D_1-1}) $(z_1^{(0)})$ $s^{2} =$ W₁₀⁽³⁾ $(z_0^{(0)})$ $z_{0}^{(1)}$ $z_{0}^{(2)}$ Bias

 $z_j^{(l)}$: output from the *j*-th neuron in the *l*-th layer *l*: layer index D_l : number of neurons in the *l*-th layer $\{W_{jk}^{(l)}\}$: fitting parameters trained in NN

ELU (exponential linear unit):

$$\sigma \left(a_j^{(l)} \right)$$

$$= \begin{cases} a_j^{(l)}, & \text{if } a_j^{(l)} > 0 \\ \exp \left(a_j^{(l)} \right) - 1, & \text{if } a_j^{(l)} \le 0 \end{cases}$$

Dimensionless gradients and Laplacian:

 $s = |\nabla \rho| / [2(3\pi^2)^{1/3} \rho^{4/3}]$ $q = \nabla^2 \rho / [4(3\pi^2)^{2/3} \rho^{5/3}]$

Thomas-Fermi (TF) KEDF:

 $\tau^{\rm TF} = (3/10)(3\pi^2)^{2/3}\rho^{5/3}$

exact form in homogeneous density

Methods: Training of NN toward KEFD

• We minimize the cost function for kinetic energy functional derivative (KEFD).

$$L = \frac{1}{N_t} \sum_{n=1}^{N_t} \frac{1}{2} \left[\frac{\delta T^{\text{NN}}(\boldsymbol{r}_n)}{\delta \rho} - \frac{\delta T^{\text{KS}}(\boldsymbol{r}_n)}{\delta \rho} \right]^2$$

 N_t : total number of of the training data 13,824 real-space grid points r_n in diamond

• The training data $\delta T^{KS}(\mathbf{r})/\delta \rho$ is computed from Kohn-Sham (KS) eigenvalues ε_i and KS orbitals $\phi_i(\mathbf{r})$.

$$\frac{\delta T^{\mathrm{KS}}(\boldsymbol{r})}{\delta \rho} = \frac{1}{\rho^{\mathrm{KS}}(\boldsymbol{r})} \sum_{i} f_{i} \left[-\frac{1}{2} \phi_{i}^{*}(\boldsymbol{r}) \nabla^{2} \phi_{i}(\boldsymbol{r}) + \left(\varepsilon^{\mathrm{HOKS}} - \varepsilon_{i} \right) |\phi_{i}(\boldsymbol{r})|^{2} \right]$$

 $\varepsilon^{\text{HOKS}}$: the highest-occupied KS eigenvalue f_i : occupation n ε_i : KS eigenvalue of the *i*-th KS orbital $\rho^{\text{KS}}(\mathbf{r}) = \sum_i f_i | \phi$

 f_i : occupation number of the *i*-th KS orbital $ho^{\text{KS}}(\mathbf{r}) = \sum_i f_i |\phi_i(\mathbf{r})|^2$: KS density

✓ <u>F^{NN} is trained</u> by also using the following analytical expression of KEFD

$$\frac{\delta T^{\rm NN}}{\delta \rho} = c_0 \rho^{2/3} \left[\frac{5}{3} F^{\rm NN} - \frac{8}{3} s^2 \frac{\partial F^{\rm NN}}{\partial (s^2)} - \frac{5}{3} q \frac{\partial F^{\rm NN}}{\partial q} \right] - \frac{3}{20} \nabla \cdot \left[\frac{\partial F^{\rm NN}}{\partial (s^2)} \frac{\nabla \rho}{\rho} \right] + \frac{3}{40} \nabla^2 \left(\frac{\partial F^{\rm NN}}{\partial q} \right)$$

$$c_0 = 3(3\pi^2)^{2/3}/10$$

Next, we apply physical constraints on NN KEDF.

Methods: Training of NN toward KEFD

Functional derivative of subsystem NN KEDFs

$$\frac{\delta \tilde{T}_s}{\delta \rho} = c_0 \rho^{2/3} \left[\frac{5}{3} \tilde{F} - \frac{8}{3} s^2 \frac{\partial \tilde{F}}{\partial (s^2)} - \frac{10}{3} q^2 \frac{\partial \tilde{F}}{\partial (q^2)} \right] - \frac{3}{20} \nabla \cdot \left[\frac{\partial \tilde{F}}{\partial (s^2)} \frac{\nabla \rho}{\rho} \right] + \frac{3}{20} \nabla^2 \left(q \frac{\partial \tilde{F}}{\partial (q^2)} \right)$$

Training meta-GGA functional derivative

[Note] $\partial \gamma_{1k}^{(L)} / \partial w_{ii}^{(l)}$ can be calculated by the "generalized backpropagation".

[Ref.] IEEE Trans. Neural. Netw. **22** , 936-947 (2011).

Methods: Training of NN toward KEFD

Natural gradient method

$$G_{ij}(\{w\}) = \frac{1}{N_b} \sum_{p=1}^{N_b} \frac{\partial}{\partial w^i} \left(\frac{\delta T_s^{NN}(\mathbf{r}_p)}{\delta \rho} \right) \frac{\partial}{\partial w^j} \left(\frac{\delta T_s^{NN}(\mathbf{r}_p)}{\delta \rho} \right)$$

wⁱ: one-dimentionally arranged NN parameter {**w**}, # of parameters=*N*_w Cost function: $L = \frac{1}{N_{b}} \sum_{p=1}^{N_{b}} \frac{1}{2} \left[\frac{\delta T_{s}^{NN}(\mathbf{r}_{p})}{\delta \rho} - \frac{\delta T_{s}^{KS}(\mathbf{r}_{p})}{\delta \rho} \right]^{2}$

• Training using the metric by subsystem NN KEDF Directly optimize the subsystem KEDF \tilde{T}_s

$$\tilde{F}(s,q) \equiv X(q^4)F^{(0)}(s^2,q^2) + [1 - X(q^4)]F^{NN}(s^2,q^2)$$

$$G_{ij}(\{w\}) = \frac{1}{N_b} \sum_{p=1}^{N_b} \frac{\partial}{\partial w^i} \left(\frac{\delta \tilde{T}_s(\mathbf{r}_p)}{\delta \rho}\right) \frac{\partial}{\partial w^j} \left(\frac{\delta \tilde{T}_s(\mathbf{r}_p)}{\delta \rho}\right)$$
Cost function: $L = \frac{1}{N_b} \sum_{p=1}^{N_b} \frac{1}{2} \left[\frac{\delta \tilde{T}_s(\mathbf{r}_p)}{\delta \rho} - \frac{\delta T_s^{KS}(\mathbf{r}_p)}{\delta \rho}\right]^2$

Methods: Augmentation of the NN enhancement factor

We augment NN enhancement factor as $\tilde{F}^{NN}(s^2, q)$ by requiring to satisfy known physical constraints.

$$\tilde{F}^{\text{NN}}(s^2, q) \equiv X(q)F^{(0)}(s^2, q) + [1 - X(q)]F^{\text{NN}}(s^2, q),$$
where $X(q) = \exp(-Aq^4)$ and $F^{(0)} = \frac{5}{3}s^2 + e^{-(40/27)s^2} + \beta q^2.$

$$\tilde{F}^{\text{NN}}(s^2, q) \text{ satisfies the following limits:}$$
(a) $s \to 0, q \to 0$: $\tilde{F}^{\text{NN}} \to 1 + 5s^2/27$
(b) $s \to \infty, q \to 0$: $\tilde{F}^{\text{NN}} \to 5s^2/3$
We determine β as 0.382 so that the inverse of the response function computed by $\tilde{F}^{\text{NN}}(s^2, q)$
reproduces the Lindhard function in $s \to 0, q \to 0$
limit.
Inverse response function by $\tilde{F}^{\text{NN}}(s^2, q)$
in $s \to 0, q \to 0$:
 $-\frac{1}{\chi_0(\eta)} = \frac{\pi^2}{k_F} \left(1 + \frac{\eta^2}{3} + \frac{9}{5}\beta\eta^4\right)$

[Note] A is determined as 31.6 so that self-consistent field (SCF) density becomes minimum.

3

Λ

• Self-consistent-field (SCF) electron density compared with the Kohn-Sham (KS) density

	diamond(tr ained)	graphene	ds-Si	fcc-Si	β-tin Si	3C-SiC	bcc-Li	fcc-Al
NN	1.15	0.65	0.36	0.12	0.24	0.62	4.19	0.10
NN ^[bare]	0.94	0.48	0.31	0.09	0.21	0.61	2.15	0.08
PGSL0.25	1.29	0.71	0.44	0.16	0.26	0.71	5.30	0.12
LKT	1.68	0.67	0.51	0.11	0.31	0.96	5.57	0.11
TF(1/5)vW	2.06	0.32	0.55	0.58	0.49	1.20	5.76	0.35

Root mean square error (RMSE) of SCF density in $10^{-2} \times \text{bohr}^{-3}$ with respect to the KS density

	fcc-Cu	bcc-Na	NaCl	ratio
NN	8.42	2.88	2.20	1
NN ^[bare]	8.78	1.65	1.28	0.78
PGSL0.25	11.2	4.12	3.47	1.26
LKT	12.9	4.30	3.78	1.36
TF(1/5)vW	25.8	5.08	3.18	2.15

"ratio" indicates the ratio of RMSE to NN's RMSE averaged over all 11 solids.

- ✓ State-of-the-art KEDFs:
 - 1. PGSL0.25^[1]
 - 2. LKT^[2]
- ✓ Conventional KEDF:

TF(1/5)vW (Thomas-Fermi + (1/5) von Weizsäcker)^[3]

[1] L. A. Constantin et al., J. Phys. Chem. Lett. 9, 4385 (2018). [2]
K. Luo et al., Phys. Rev. B 98, 041111(R) (2018). [3] A. Berk, Phys.
Rev. A 28, 1908 (1983).

ds: diamond structured

13

- SCF electron density compared with the Kohn-Sham density
 - ✓ Even for 7 atoms (Li, C, Na, Al, Si, Cl, Cu) and 6 molecules (Li₂, C₂, Na₂, Al₂, Si₂, Cl₂), "ratio" for NN is smaller than the previous KEDFs.

		ratio	
	11 solids	7 atoms	6 molecules
NN	1	1	1
NN ^[bare]	0.78	1.95	0.83
PGSL0.25	1.26	3.26	1.28
LKT	1.36	1.74	1.45
TF(1/5)vW	2.15	1.03	1.46

"ratio" indicates the ratio of RMSE to NN's RMSE averaged over all systems.

11 solids: diamond, graphene, diamond-structured Si, fcc-Si, β-tin Si, 3C-SiC, bcc-Li, fcc-Al, fcc-Cu, bcc-Na, NaCl

• SCF electron density compared with the Kohn-Sham density

Densities in diamond-structured (ds) Si

• Equilibrium lattice constants

The relative errors in % with respect to the KS values.

The Blank "—" indicates the total energy monotonically decreases with respect to the volume expansion.

	diamond (trained)	graphene	ds-Si	fcc-Si	β -tin Si $a_0 (c_0/a_0)$	3C-SiC	bcc-Li
NN	-2.53	0.29	-0.46	-0.22	0.17 (-1.67)	2.28	-0.83
NN ^[bare]	-11.0	-2.62	-3.80	-3.32	_	-3.94	-5.10
PGSL0.25	-2.47	-0.32	-0.15	1.42	1.69 (-1.67)	1.65	-0.33
LKT	-4.95	-1.59	-1.04	-0.16	-0.47 (-1.12)	1.42	-0.46
TF(1/5)vW	_	6.24	5.86	5.40	_	10.9	-3.54

	fcc-Al	fcc-Cu	bcc-Na	NaCl	MARE
NN	1.68	2.33	-0.91	3.61	1.39
NN ^[bare]	-5.16	6.64	-5.18	-5.35	4.74
PGSL0.25	3.62	4.12	-0.38	2.10	1.66
LKT	2.32	3.21	-0.50	2.12	1.66
TF(1/5)vW	4.76	4.21	-3.51	10.5	6.10

MARE:

Mean absolute relative errors in % with respect to the KS values averaged over the systems.

 NN performs best on average (minimum MARE)

• Bulk moduli

The relative errors in % with respect to the KS values.

The Blank "-" indicates the total energy monotonically decreases with respect to the volume expansion.

	diamond (trained)	ds-Si	fcc-Si	β-tin Si	3C-SiC	bcc-Li	fcc-Al
NN	25.7	-14.6	5.93	5.10	-36.2	4.03	2.06
NN ^[bare]	165	-16.5	10.4	_	2.85	26.8	66.5
PGSL0.25	32.4	-6.60	-13.0	-12.7	-11.8	3.78	-13.0
LKT	76.8	-4.00	19.5	18.5	-7.72	2.52	10.9
TF(1/5)vW	_	-60.4	-60.0	_	-74.3	10.1	-43.2

	fcc-Cu	bcc-Na	NaCl	MARE
NN	6.96	3.50	6.94	11.1
NN ^[bare]	44.3	26.2	25.1	38.4
PGSL0.25	-12.4	3.75	-11.5	12.1
LKT	10.7	2.61	-8.20	14.5
TF(1/5)vW	-44.1	10.1	-73.9	47.0

MARE:

Mean absolute relative errors in % with respect to the KS values averaged over the systems.

- NN performs best on average (minimum MARE)
- Poor performance of NN^[bare]
 indicates the importance of the physical constraints.

Results: O(N) scaling of OFDFT computation

- Computational time for a single SCF iteration
 - ✓ 4H-SiC supercell with 576–4704 atoms
 - ✓ We implemented the OFDFT Euler eq. solver in real space using RSDFT code^[1-3].

[1] J.-I. Iwata et al., J. Comput. Phys. 229, 2339 (2010).
[2] Y. Hasegawa et al., Int. J. High Perform. Comput. Appl. 28, 335 (2014).
[3] J.-I. Iwata, https://github.com/j-iwata/RSDFT.

Schrödinger-like eq. that is equivalent to the Euler eq.:

$$\begin{bmatrix} -\frac{\nabla^2}{2} + \left(\frac{\delta T_s[\rho]}{\delta \rho(\mathbf{r})} + \frac{\nabla^2 \sqrt{\rho(\mathbf{r})}}{2\sqrt{\rho(\mathbf{r})}}\right) + v_{\rm KS}([\rho];\mathbf{r}) \end{bmatrix} \sqrt{\rho(\mathbf{r})} = \mu \sqrt{\rho(\mathbf{r})}$$

- We use 36 eigenvectors for the diagonalization.
- real-space grid-spacing = 0.39 Å
- $\sqrt{
 ho(r)}$ is the eigenvector with the lowest eigenenergy.

Computational time in OFDFT scales as O(N).

Results: O(N) scaling of OFDFT computation

• Division of "SCF time/iteration" t_{SCF} into some segments.

 $t_{\rm SCF} = t_1 + t_2 + t_3 + t_{\rm others}$

- t₁: Subspace Diagonalization, Conjugate Gradient, Gram-Schmidt
- t₂: Update density, Hartree, exchange-correlation potentials, total energy

Summary

- For 24 different systems including semiconductors, metals, an ionic meterial, atoms, and molecules, neural network (NN) kinetic energy density functional (KEDF) reproduces density better than previous KEDFs.
- For 11 solids, NN KEDF provides better structural properties than previous KEDFs.
- Our implementation of orbital-free density functional theory (OFDFT) shows *O*(*N*) scaling.

The choice of the kinetic energy functional derivative (KEFD) as training data is important.

✓ KEFD appears directly in the Euler equation.

$$\left[-\frac{\nabla^2}{2} + \left(\frac{\delta T_s[\rho]}{\delta\rho(\mathbf{r})} + \frac{\nabla^2\sqrt{\rho(\mathbf{r})}}{2\sqrt{\rho(\mathbf{r})}}\right) + v_{\rm KS}([\rho];\mathbf{r})\right]\sqrt{\rho(\mathbf{r})} = \mu\sqrt{\rho(\mathbf{r})}$$

✓ KEFD learning assists reproducing the physical quantity related to the first derivative of the total energy.

$$\frac{\delta E_{\text{tot}}[\rho]}{\delta \rho(\boldsymbol{r})} = \frac{\delta T_{s}[\rho]}{\delta \rho(\boldsymbol{r})} + v_{\text{ext}}(r) + \frac{\delta E_{\text{H}}[\rho]}{\delta \rho(\boldsymbol{r})} + \frac{\delta E_{\text{xc}}[\rho]}{\delta \rho(\boldsymbol{r})}$$

END