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1. Analysis on partially/effectively interacting Kohn-Sham systems towards the
combined theory of DFT and WFT

2. Conditional wavefunction theory for scattering problems beyond mean-field methods
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Background: electronic systems
Schrodinger equation for many-electron systems

Hlpn(rl, 0-1, 1‘2, 0-2, "',TN, O-N) — En 'Pn(rl, 0'1,1‘2, 0-2, *ee ,TN, O-N)

Ab-initio Hamiltonian (nuclei are treated as classical particles; Born-Oppenheimer

approximation)

N 5 N M
Pj
= D am * 2
=1 ¢

Jj=1a=1 ‘ J

Example 1. Hydrogen atom: 1 electron, 1 proton

2
H = — ~ p—Z |1‘—R|
e I S RCRT
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Background: electronic systems
Example 2. Hydrogen molecule: two electrons, two protons

~ Pl D3 1
="+ 2 _
2m,  2m, |1‘1 — R1|
1 1
+ +

1

Calculate the ground state energy
by changing the proton-proton

distance

0—0

Potential energy (kJ/mol)

—432

1 1

Ir1 —R;| |ry —Ry| |1y — Ry

Andy Schmitz, “General Chemistry: Principles, Patterns, and
Applications”, 2012

I E(R) as a function of R

r=45

ro Internuclear distance, r (pm) —

Observed

bond distance
inH, 5/43




Background: electronic systems

Many-electron Schrodinger equation

HY, (ry,01,73,03,-,Ty,0y) = Ep W (1r1,01,73,05,-, Ty, Oy)

N )2 N M 7.7
H = 2]+zz +z +ZIR —I;H
mMe HiE ]>k|r _rkl b

Glass is transparent Metals are conductivity

If this equation can be solved,
various material properties
can be understood.
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Background: difficulty in quantum many-body problems

Many-electron Schrodinger equation

Hll"n(rl, 0-1, 1‘2, 0-2, -",TN, O-N) — ETl Wn(rl, 0'1,1”2, 0-2, '",TN, O-N)

1=y 2 Yy
= Ral |7' _rkl IR, _Rbl

j>k

e,

O The increase in the number of electrons corresponds to the increase Iin the
dimension of the wavefunction, resulting in the large dimensional problems
(exponential wall)

O Many-body Schrodinger equations are often practically unsolvable.

O In practice, one needs approximated methods.
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Wavefunction theory (WFT, quantum chemistry approach)

Hartree-Fock method:

Wavefunction is approximated by a single Slater determinant

HF
Y (1, 00,12,09,

'rN' O-N) — \/m

1
= ——=|¢p1 (r1,01), P2(12,03), -, dn(1y, Op)

(LIJHF qujHF)

l Minimizing the energy (variational principle) E = (QHF [QHF)

Hartree-Fock equation: Schrodinger-like equation for one-particle orbitals

M
a

+ vy(r) + 0

o Zr— w (T) + D

T

Hartree potential

bn (r) = EnPn (r)

Fock operator
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Wavefunction theory (WFT, quantum chemistry approach)

Configuration interaction (Cl) method:
Expand the variational space with a superposition of particle-hole states
W) = T|WHF)
1-particle 1-hole  2-particle 2-hole
T = Cy + z CA] &Zii] + z CAB]K aAﬁZc’i]aK + -
A] A>B,J>K
Coupled Cluster (CC) method

WJCI) — eT‘|q;HF>

€ Wavefunction-based approach offers a systematic way of the accuracy
Improvement by expanding the variational space.

€ However, the computational costs tend to be larger, especially for larger systems. s



Density functional theory (DFT)

(Trivial) Once the positions and charges of nuclei are given, the ground state electron
density is determined by solving the Many-electron Schrddinger equation.

qun(rlJo-lerJO-ZJ TNy O-N) — En Wn(rl'o-lirZJO-Z' TNy O-N)

n(r) =N fdrz o dry |lpn(r1»01;7‘2;02; TN UN)|2

0-1’.. .,O-N

e EEE mEm EEs EE EEE EEE EEE EEE D EEE EEE SN EEE DS EEE EEE SN BN EEE BEE EEn B EEe B S B B S EEe B B S S B B B S SEE B S S B San S SEE R RS SEE B SEm S R S S . . = e

(Question) If the ground electron density is known, can we know the position and
charges of the nuclei?

Answer = Yes (Kato’s theorem) From cusp structure, one can find the

_ positions and charges of nuclei
1s state of Hydrogen-like atom

s( ) _ —Zp|r—Rp| o 1 dn(r)
Prslr) e » Za 2n(r) dr

Sharp structure at nucleus (Cusp) i 10/43



Density functional theory (DFT)

Hohenberg-Kohn theory (Runge-Gross theorem for time-dependent system)

For a general Hamiltonian with given particle-particle interaction w(|r; — ry|),

N

A=Y [t )] + 3wl =l

j=1 J>k

there is one to one correspondence between the one-body external potential v,,; (1)
and the ground state one-body density n(r).

Vext(T) t=————p n(r)

$

Kohn-Sham mapping

Based on the one-to-one correspondence, one can consider a mapping from many-

body interacting problems to many-body non-interacting problems. aa



Density functional theory (DFT)

Kohn-Sham mapping

1-to-1 correspondence

- Fully interacting system

L
H = Z [ﬁ + vext(rj)] +
j=

> w(lry = 7))

>k

(HK theorem)
ﬁ

1 Kohn-Sham mapping

- Non-interacting system
(Kohn-Sham system)

N 2
s = Y[+ ()
=1

Ground state density

n(r)
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Density functional theory (DFT)

Kohn-Sham equation
2
2m,

+ vgs(M) | @;(r) = €¢;(7)

Kohn-Sham potential

Vks (r) = Vext (r) + Uy (r) + Uxc (r)

A

Exchange-correlation potential:

- v,..(r) is defined so that the density of Kohn-Sham system reproduces the
density of interacting system.

- Exact explicit expression is not known. So, it must be approximated in practical
calculations.

- The accuracy of the KS-DFT calculation depends much on the accuracy of
v,..(r). Currently, the accuracy of KS-DFT is limited. 13/43



WaveFunction Theory (WFT) and Density Functional Theory (DFT)

WaveFunction Theory (WFT)

[0 By expanding the variational space, the accuracy can be straightforwardly improved
(high accuracy)

[0 In the large variational space, the computational costs becomes similar to the original
many—body Schrédinger equation (high cost)

Density Functional Theory (DFT)

0 Thanks to the Kohn—Sham mapping, the central equation becomes non—interacting
problems in practical calculations (low cost)

0 The exact expression of the exchange—correlation potential/functions is not known.
The systematic improvement is not so straightforward (low accuracy)

Can we combine the strong points of WFT and DFT to
realize a low-cost & high-accuracy method?
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Aim of this work

Examples of the combinations of WFT and DFT

O Including a part of the nonlocal Fock operator ¥ into the exchange-correlation
potential v,..(r) (Hybrid functional): e.g. J. Chem. Phys. 105, 9982 (1996).

O Configuration interaction (multi-configuration) with Kohn-Sham orbitals from DFT:
e.g. Chem. Phys. Lett. 259, 128 (1996)

»

— These combinations of WFT and DFT are very successful to recover some
correlation effects beyond the simple DFT calculation!

— However, (as far as I understood) the theoretical background is still under
development towards more accurate extension with WFT.

Aim of this work

We explore the properties of partially/effectively interacting Kohn—Sham systems in order
to develop a combined WFH-DFT approach towards low—cost & high—accuracy methods.
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Effectively interacting Kohn-Sham systems
E. Fromager, J. Toulouse, H.J.A. Jensen, J. Chem. Phys. 126, 074111 (2007)

Kohn-Sham mapping

- Fully interacting system 1-to-1 correspondence
(HK theorem)
Ground state density
Z[ b veu(r)| + 3wl = ) [
j=1 j>k n(r)
1. DFT is responsible for the N
modified Kohn-Sham mapping A (e“\
,\,\O \\S\GO
— Effectively-interacting Kohn-Sham system \&
N pz
H.c = z [_f + volr: ] + z W ro—r 2. WFT is responsible for the
o Ll2m ws(1)) = err(Irs = 7l) mm) Schrodinger equation

Hys|Wks) = E|Wks)
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KS mapping to effectively interacting Kohn-Sham systems
|
I
|
I
|
I
|
|
|
|
|
|
|
I

1. DFT takes care the resirual
Interaction:

Wres(T) = w(r) — Werf (r)

Modified KS mapping

- Fully interacting system

Z[ b veue(r)| + 3wl = i)

j>k

2. WFT takes care the effective
interaction w, s (1).

By optimally chosing the effective

interaction, one can rely on strong

1 1. DFT is responsible for the
points of both WFT and DFT!

modified Kohn-Sham mapping

— Effectively interacting Kohn-Sham system
v 2. WFT Is responsible for the

R Schrodinger equation
Hgs = z [ + vgs(r )] z werr(|1j — 7k .
j=1 >k ) Hys|Wks) = E|Wks)
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Exact Kohn-Sham potentials for effectively interacting KS systems

1D Helium (1-dimensional 2-electron system) 2
Nuclear potential Veyt (X)) = —
H = Vx? + g2
Hw(xlixZ) — EW(.X']_,XZ) 1
2 Interaction —
—~ 1 62 W(X) \/xZ + 0-2
=) |=557+Veu ()| + Wl — 2]
=1 X; Softening parameter ¢ = 0.5 a.u
1 1. No-interacting system
Weff(x) =0
Effectively interacting Kohn-Sham systems 2. Ya-Iinteracting system
2 1
_ 1 02 Werr(x) = =w(x)
Hgs = z l—zﬁ + VKS(xj) + Weff(lxl — X2|) 4_ _
= Xj 3. Long-range interacting system

Werr(x) = erf(\/x2 + 02) w(x)
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How to obtain the exact Kohn-Sham potential (Iterative procedure)

1. Compute the target density by solving the many-body Schrodinger equation
ﬁW(xl, XZ) — Ellu(xl, XZ) ‘ ptarget(x) — Zf dx’|lP(x,x’)|2

2. Compute the density of the Kohn-Sham system under a trial potential vl(f;(x)

H\KSl‘UKS(xl:xz) = ExsWxs(x1,x72)

) pO(x) = 2 dx' [Wes(x, x7)|?

2

_ 1 072 :

Hyg = z [_Eazx- + vg(xj) + Werr(lxg — x30)
j=1 !

3. Update the Kohn-Sham potential and return to the procedure 2.

p(i) (X) o ptarget(x)
p(i) (x) + ptarget(x) + €

v,(gl) (x) = v,((ig(x) + «a

4. Repeat the procedures 2 and 3 until the residual error, |[p® (x) — p**9¢t(x)|, becomes
small enough 10/43



Exact exchange-correlation potential for 1D Helium atom

V. (a.u.) > (@.u.)

-dv, /dx (a.u.)

(a) Density

Exchange-correlation potential

Vs(T) = Veye (1) + v (1) + vy (1)

v (1) = [ dr'p(r)Wyes(r — 1)

- (b) Potential

No-interaction Wres (T) — W(r) — Werr (r)

1/4- lnteractlon e e e | e e e e e e e e e e e e e e e e = = = =

1. No-interacting system
Weff(x) =0

2. 1/4-interactinglsystem
Weff(x) = ZW(X)

3. Long-range interacting system
Werr(X) = erf(\/x2 + 02) w(x)

~6 Long—range interacting system has the
weakest exchange—correlation force! 20/43



Asymptotic behavior of the exact exchange-correlation potential

R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994).

For simplicity, here we consider an atom with nuclear charge Z surrounded by N
electrons.

YA
Vis(1) = — ” + vy (1) + vy (1)

For large r (far from nucleus)

e Z N

V ~——+—+
e KS(T) r r ch(r)

/

A far electron should see v, (1) potential should have the following asymptotics:
the charge of Z — (N — 1).

V(1) = - for large r
21/43



Exact exchange-correlation potential for 1D Helium atom

V,c (a.u.)

Ve (a.u.)

-0.7

-0.8

0.99 Biaxrs e

-0.20 r (¢) Longlrange inte;action |

0.25 | a exp(-b x)\.:)é%c Y
2 3 4 5

| (a) No-interaction

VXC

-1/x+p

- (b) 1/4-interaction

X (a.u.)

Asymptotics of v,..(r)

1 mp Asymptotics of _1
(Typical Coulomb system)

= Asymptotics of — 7
(identical to the residual interaction)

Wres(1T) = w(r) — w, fr (r)

=) Exponential decay
(identical to the decay of density)

- Local density approximation (LDA)

may work well?
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Electronic correlation in the many-body wavefunction

Electronic correlation # Effects cannot be described by a single-Slater determinant

HY (x1, %) = E¥ (x4, x3)

Natural orbital analysis /

pt M (x,x") = Zf dx, W (x, x)¥W*(x", x,) = anﬁb}m (x)¢]N0*(x)

If there is no electronic correlation (the case of the single Slater determinant):
nj =1 (forl <j < Ngjc)
n; = 0 (otherwise)

If many Slater determinants are required, many orbitals have non-zero occupation.

A set of natural orbitals provides a minimum number of configurations (multi-Slater

determinants).
23/43



Electronic correlation in the many-body wavefunction

Electronic correlation # Effects cannot be described by a single-Slater determinant

HY (x1, %) = E¥ (x4, x3)

Natural orbital analysis

pIROM (x,x") = ) mipl® (1) p) O ()

J
Nirg o NG Assuming the decreasing order
)k
J=1

The natural orbitals give the best low lank approximation of the 1RDM.

Eckart—Young—Mirsky theorem for the low rank approximation and the singular value decomposition.

24/43



Electronic correlation in effectively-interacting KS systems

Test case for 1D Helium (2-electron system)
Occupation distribution of natural orbitals 1. Fully-interacting system

O . ; - T T : ; T T T I T . .
1077 Original fully-interacting system o ] 2. 7Interacting system
, ' 1/4-interaction ™ ' 1
10 ; . Long-range interaction 4 Weff(x) = ZW(x)
104 We . 3. Long-range interacting system
-
% 6 - Tghe . Werr(x) = erf(\/x2 + 02) w(x)
Q i A N
3 : - : ® Dynamical
Q 8 | 4 mne, .
O 10 A Hgpe, correlation
N me, ]
10-10 | ‘A '-:. - . it i ¢
: me ong-range interacting sysiem
- Static .='! » e ot
1012 L at A e R requires a smaller number of
correlation | a L Slater determinants!

1 3 5 7 9 11 13 15 17 19 21 23 25
Serial number of natural orbitals 25/43



Electronic correlation in effectively-interacting KS systems

Test case for 1D Helium (2-electron system)

Occupation distribution of natural orbitals

O ._ 1 I || I 1 I 1 1 1
10 Original fully-interacting system @
1/4-interaction =
1072 : Long-range interaction 4
. o [
-4 i A
c 10 ® o
O R
8 107 ¢ am_ o
3 ' m® Dynamical
O -8 A me ® .
O 107 A Ege, correlation 1
: Hpe, .
-10 L A = O,
10 | A 5o,
- Static "ng o -
10-12 | . A . .
correlation A i3

3 5 7 9 11 13 15 17 19 21 23 25
Serial number of natural orbitals

Static correlation

The correlation can be well
described by a small number of
Slater determinants.

WFT tends to well describe it,
while DFT tends to fall to
describe.

Dynamical correlation

The correlation can be well
described by many Slater
determinants.

WFT tends to fail to describe It
while DFT tends to well
describe.
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Properties of effectively-interacting Kohn-Sham systems

Exact exchange-correlation potential

—_~
>

g
a

Vye (a.U.)

-dv, /dx (a.u.)

1.5

1.0 1
05 |

0.0

1.0 1
0.0 ¢
-1.0 F

-2.0 ¢
05

0.0

-0.5

(@)

INo-interéction
1/4- mteractlon

Asymptotics of v, .(r

I (a) No-interaction

XC
-1 /x+9

Vye
3l4x+c

- (c) Long range mteractlon

VXC

a exp(-b x)+c

3

X (a.u.)

The long-range interacting KS system has the weakest exchange-correlation potential with a

4

5

6

Occupation

) SAS,ARubio, PRA 101, 012510 (2020)

Correlation in the wavefunction

' O'rigin:al fuI'Iy-in'terac';ting'syst'em e
1/4-interaction =
102 @ Long-range interaction 4
e
-4 A
10 ® .
5 Tue .
10 AN
me n®
-8 a Fgoe
10" a : :
10710 “ : 2
12 A s
10 . 'I.

13 5 7 91113151719212325

Serial number of natural orbitals

simpler asymptotics. Moreover, its wavefunction contains the weaker correlation.

=

With the range-separation, DFT can take care its preferred dynamical correlation, while
the WFT can take care its preferred static correlation.
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for the first S.A. Sato, A. Rubio, Phys. Rev. A 101, 012510 (2020).

Background

O Wavefunction theory (WFT) tends be accurate but high cost. On the other hand,
DFT tends to be low cost but less accurate.

This work

O We want to develop a low-cost & high-accuracy method by combining WFT and
DFT.

O For this, we studied the exact Kohn-Sham potential of effectively-interacting Kohn-
Sham systems.

O The results indicate that the range-separation of Coulomb interaction with the
effectively-interacting Kohn-Sham systems can offer a combination of DFT and
WEFT, where the static correlation can be treated in the WFT, while the dynamical
correlation can be treated in the DFT (right theory In the right place!).

Outlook

O Developing the local density approximation for effectively-interacting KS system.

O Extension of the analysis to time-dependent Systems. e/



2. Conditional wavefunction theory for scattering problems beyond mean-field methods
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Introduction: Conditional wavefunction theory

- Aim of research
Accurate description of particle-particle scattering process

- Why scattering?
(1) Relaxation of photo-carrier (electron-phonon scattering)

t \Conduction band 6,&@\(‘9

electron

Photo excitation

Energy

Valence band

Bloch wave-vector,k
30/43



Introduction: Conditional wavefunction theory

(i) Relaxation of photo-carrier (electron-electron scattering)

R Conduction band

e-e scatteringf

electron

electron

A

Photo excitation

Energy

hole

Valence band

Bloch wave-vector,k

Particle-particle scattering process is important to describe photo-induced
nonequilibrium dynamics (excitation/relaxation)!

However, it is difficult to describe by a mean-field theory...
31/43



Failure of mean-field theory for scattering

Example: Impact ionization (e-e scattering in 1D)

o Target Hydrogen atom
Projectile electron (bound electron)

Collision!
‘ > \'/

- Gaussian wavepacket with the Kinetic energy of 0.6 a.u.

Projectile electron

Target 1D Hydrogen

- One electron is bound by the soft Coulomb, v,,50n(x) = —1/V2 + x2.
- The binding energy is 0.5 a.u.

Kinetic energy is larger than the binding energy!

32/43



Impact ionization in 1D system

Result of Exact TDSE simulation
0.35 . . ; : :

Bound electron of Hydrogen

03 1 .

0.25 | )

0.2 ]

p(X) (a.u.)

0.15 1

Projectile electron
0.05 J

0 /:\ ! A :

-150 -10 -50 0 50 100 150
X (a.u.) 33/43
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Failure of mean-field theory for scattering
0.35

0.3t

p(X) (a.u.)

0.25 1
0.2 1
0.15 1
0.1 1
0.05

t=4.11fs,  Exact TDSE

:: GS density ———-
If
I
I: ' lonization
I
|l
A
| |

I i J 1 \L A{”l/' \r\

40 20 0 20 40 60 80 100
X (a.u.)
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Failure of mean-field theory for scattering
0.35

0.3t
0.25 1
0.2 t
0.15

p(X) (a.u.)

0.1
0.05

| No back-
scattering!

-y

t=4.11fs

|

L]

" Exact TDSE
Extended TDHF “
GS density ———-

Two Slater dete
' NoO 1onization!

Mean-field fails...

N\

rminants approach

-40

-20

0

20 40 60 80 100
X (a.u.)
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Failure of mean-field theory for scattering

Realistic scattering process (classical description)

Target Hydrogen atom

Projectile electron
J (bound electron)

Mean-field description
% N/~
Electron cloud

Does classical trajectory help to capture correlation? 26/43



Conditional wavefunction approach

G. Albareda, et al, PRL 113, 083003 (2014)
Schrodinger equation for 1D two-particle system

0 . a
ialp(xe)xii t) — qu(erXi; t) }{m t Xl (t)
H=T,+T; +v(x,) +V(X;) + w(x,, X;) (\P(xe,Xi, t)

R

Conditional wavefunctions PAN
Electronic part \\—/ —
>

¢glec(xe» t) = llu(xe:Xia(t); t) Xi

d
iaqbglec(xe» t) — [Te + U(Xe) + W(xe'Xia(t)) + nglec(xe)]gbglec(xe: t)

lonic part
Gion(Xi t) =¥ (xZ (1), X;, t)

d
iafﬁi%n(Xi; t) = [T; + V(X;) + w(xd (1), Xi) + nipn (XD ]pion (Xi, )
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Conditional wavefunction approach

G. Albareda, et al, PRL 113, 083003 (2014)
Schrodinger equation for 1D two-particle system

d _ a
iaW(xe,Xi, t) — qu(erXi; t) }{m 1 Xl (t)

H=T,+T; +v(x,) +V(X;) + w(x,, X;) (tp(xe,xi, t)
Conditional wavefunctions \ o n

¢glec(xe: t) = qj(xe:Xia(t); t)
q')l%n(XiI t) = Lp(xea (t):Xil t)

Xi
Bohmian trajectory {3
| Re [qba’* (., )20 g2 (x ,t)]
ixa(t) _ ]elec(xg(t)) _ elec\*e [ Ox, *elec\e =8
dt € pelec(xg(t)) |¢glec(xglec(t); t)lz
%Xia(t) _ jion(Xia(t))

pion (X2())



Conditional wavefunction approach

Conditional wavefunction scheme with Hermitian approximation

0
d
iﬁqbglec(xe: t) — [Te + U(Xe) + W[xerXia(t)] + naec(xe)]qbglec(xe' t)

0
d
iaqbgm(xi; t) = [T; + V(X;) + wlxZ (), X;] + 3£, (XD ]pion (X, t)

Bohmian trajectory -
Re [(pZiZc (Xe, t) 76_368 ¢glec(xe: t)]
Xe

7 (¢glec|¢glec> - 0 (qbl%nlqbiaon)

ixa(t) _ jelec(xg(t)) _ =x¢ (t)
dt € Pelec (xg (t)) |¢glec (xglec (t), t) |2
iX-a(t) _ Jion(X{ (D)) E Observable
dt l Pion (Xla(t)) : < A>= (¢glec|A|¢glec> . (qbl%nlAlqbi%n)
I
I
|
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Impact ionization in 1D hydrogen

Example: Impact ionization (e-e scattering in 1D)

o Target Hydrogen atom
Projectile electron (bound electron)

Collision!
‘ > \'/

- Gaussian wavepacket with the Kinetic energy of 0.6 a.u.

Projectile electron

Target 1D Hydrogen

- One electron is bound by the soft Coulomb, v,,50n(x) = —1/V2 + x2.
- The binding energy is 0.5 a.u.

40/43



Impact ionization in 1D hydrogen

035 M _471ts|  Exact TDSE
03 ¢ ﬁ Extended TDHF
GS density ———-
0.25 t
' No ionization!
E 0.2 t P 4
X 015 | |
o} No back- Failure of mean-field...
0.1 ¢ |
scattering!
0.05 | ‘ & :
0 et i I H—”l/'{:—/%

40 -20 0 20 40 60 80 100
X (a.u.) 41/43



Impact ionization in 1D hydrogen

095 M¥_471fs|  Exact TDSE
0.3 | CWF
Extended TDHF
0.25 | GS density ———
5_30; 0.2 t Impact ionization is captured!! _
< 045 | I
%
0.1 ¢
0.05 _
0 I

-40 20 0 20 40 60 80 100
X(a.u.) 42143



Summary

- We are investigating many-body phenomena (e-e, electron-ion, and so
on) based on the conditional wavefunction approach.

G. Albareda, K. Lively, SAS, A. Kelly, A. Rubio, J. Chem. Theory Comput. 17, 7321 (2021)
- The conditional wavefunction approach considers semi-classical
(Bohmian) trajectories in addition to wavefunction.

- The semi-classical trajectories help to capture important correlation effect
for scattering problems.

Out look
- Develop more accurate description beyond the Helmitian approximation.
G. Albareda, K. Lively, SAS, A. Kelly, A. Rubio, J. Chem. Theory Comput. 17, 7321 (2021)
- Develop more realistic description combining ab-initio scheme (e.qg.
TDDFT)

- M licati . '
ore applications Thank you for your attention! 43/43
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