YITP Workshop

"Fundamentals in density functional theory (DFT2022)" December 7–20, 2022, Kyoto U., Japan

Quantum computing for nuclear structure properties?

Haozhao LIANG (梁豪兆)

Department of Physics, The University of Tokyo, Japan December 19, 2022

YITP Workshop

"Fundamentals in density functional theory (DFT2022)" December 7–20, 2022, Kyoto U., Japan

Quantum computing (or machine learning) for nuclear structure properties?

Haozhao LIANG (梁豪兆)

Department of Physics, The University of Tokyo, Japan December 19, 2022

Nuclear chart

Nuclear chart

https://www.nishina.riken.jp/

Periodic Table with National flags

Elements & Country of Discovery

Credit given to both where joint or independently discovered. This table is not based on nationality of researcher(s) but is based on institution/funder Curated by Dr Jamie Gallagher, @jamiebgall Download available at jamiebgall.co.uk/resources

Open question:

> Is there or where is **the end** of the periodic table?

Nuclear chart

Radioactive isotope beam facilities

Atomic nuclei

Atomic nucleus is a rich system in physics

> quantum system

Neutron halos

- > many-body system ($A \sim 100$, spin & isospin d.o.f.)
- Finite system (surface, skin, halo, ...)
- > open system (resonance, continuum, decay, ...)

¹¹Li ²⁰⁸Pb

R ~ *A*^{1/3}? Not always! ¹¹Li: a size as ²⁰⁸Pb

Tanihata:1985

Spin and **Isospin** are essential degrees of freedom in nuclear physics.

r-process nucleosynthesis and nuclear inputs

The 11 greatest unanswered questions of physics

Question 3 How were the heavy elements from iron to uranium made?

★ Nuclear data inputs for *r*-process

Quantity		Effects
S _n	neutron separation energy	path
$T_{1/2}$	β -decay half-lives	abundance pattern, time scale
P_n	β -delayed <i>n</i> -emission branchings	final abundance pattern
Y_i	fission (products and branchings)	endpoint, degree of fission cycling
		abundance pattern (?)
G	partition functions	path (very weakly)
$N_A \langle \sigma \nu \rangle$	neutron capture rates	conditions for waiting point approximation
		final abundance pattern during freezeout (?)

Nuclear inputs for r-process

Key exp. @ RIKEN masses β -decay half-lives β -delayed *n*-emissions (n, γ) cross-sections

To provide and organize all these inputs in a systematic and consistent way

 \blacktriangleright e.g., changes in mass \rightarrow changes in half-lives, capture rates ...

(not hybrid databases !)

➤ more exp. data → more reliable extrapolation / smaller uncertainties (higher accuracy ?)

Machine learning

Machine Learning for physics?

- ➢ We learn what we need
- ➤ We learn what we have less control
- We learn what we are guaranteed e.g., Imoto's talk & works by Nagai, Akashi, Sugino, et al.

NATURE REVIEWS | PHYSICS VOLUME 4 | JUNE 2022 | 357

Machine learning and density functional theory

Ryan Pederson¹, Bhupalee Kalita¹,² and Kieron Burke^{1,2}

Over the past decade machine learning has made significant advances in approximating density functionals, but whether this signals the end of human-designed functionals remains to be seen. Ryan Pederson, Bhupalee Kalita and Kieron Burke discuss the rise of machine learning for functional design.

Machine learning

Machine Learning for physics?

- ➢ We learn what we need
- ➤ We learn what we have less control
- We learn what we are guaranteed e.g., Imoto's talk & works by Nagai, Akashi, Sugino, et al.

Or

We build physics (space and time) in neural networks ... e.g., Koji Hashimoto's talk

Nuclear mass models

- Theoretically, the development of nuclear mass model can be traced back to the early age of nuclear physics, known as Bethe-Weizsacker liquid drop model in 1935.
- To take into account the nuclear shell effects: the microscopic models and the microscopic-macroscopic (mic-mac) models.

Nuclear Mass Models

Theories + Bayesian approaches

Strutinsky's energy theorem:

The nuclear binding energy may be separated into two main components: one large and smooth and another one small and fluctuating.

 $M(Z,N) \equiv M_{\rm LDM}(Z,N) + \delta_{\rm LDM}(Z,N)$

Strutinsky, NPA 95, 420 (1967)

cf. Morales et al., PRC 81, 024304 (2010)

Key ideas

- "To account for the small and fluctuating contribution, we *train* a suitable neural network on the mass residuals between the LDM predictions and experiment, as given in the latest Atomic Mass Evaluation (AME2012)."
- > "Once trained, we used the resulting **universal approximator** $\delta_{\text{LDM}}(Z, N)$ to validate the approach and later to make predictions in regions where experimental data are unavailable."

Utama, Piekarewicz, and Prosper, PRC 93, 014311 (2016)

Contents

Nuclear inputs with Bayesian approaches

- Nuclear Masses
- > Nuclear β -decay half-lives

Theories + Bayesian approaches

Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects

Physics Letters B 778 (2018) 48-53

Z.M. Niu (牛中明)^{a,b}, H.Z. Liang (梁豪兆)^{b,c,d,*}

Posterior distributions of parameters are Neal1996Springer

 $p(\omega | D) = \frac{p(D | \omega) p(\omega)}{p(D)} \propto p(D | \omega) p(\omega), \quad D = \{(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)\}$

 \succ likelihood function $p(D|\omega)$

$$p(x,t \mid \omega) = \exp(-\chi^2/2), \ \chi^2 = \sum_{n=1}^{N} \left[\frac{t_n - y(x_n, \omega)}{\sigma_n} \right]^2$$

Numerical details

Likelihood function $p(D|\omega)$

$$p(D \mid \omega) = \exp(-\chi^2 \mid 2), \ \chi^2 = \sum_{n=1}^{N} \left[\frac{t_n - y_n(x, \omega)}{\sigma_n} \right]^2$$
$$t_n = M_n^{\exp} - M_n^{\operatorname{th}}, \ y(x, \omega) = a + \sum_{j=1}^{H} b_j \tanh\left(c_j + \sum_{i=1}^{I} d_{ji} x_i\right) \Longrightarrow M_n^{\operatorname{th}} = M_n^{\operatorname{th}} + y(x, \omega)$$

 \star Inputs:

- ✓ 2 inputs (I=2): Z, A
- ✓ 4 inputs (I=4): Z, A, δ , P;

$$\delta = [(-1)^{Z} + (-1)^{N}]/2, P = v_{n}v_{p}/(v_{p} + v_{n})$$

$$v_{p} = \min(|Z - Z_{0}|), v_{n} = \min(|N - N_{0}|)$$

 \star Hidden units:

- ✓ 2 inputs (I=2): H=42
- ✓ 4 inputs (I=4): H=28
- \star Number of parameters: 169
- ★ Data: Huang et al., CPC 41 030002; Wang et al., CPC 41 030003.
 - ✓ Entire set: 2272 nuclei in AME2016 (Z, N>=8 and σ^{exp} <=100 keV)
 - ✓ Learning set: 1800 data randomly selected from entire set
 - ✓ **Validation set**: the remaining 472 data in entire set

cf. Utama, Piekarewicz, and Prosper, PRC 93, 014311 (2016)

Rms deviations of mass and S_n

- The predictions of nuclear mass and neutron-separation energy are significantly improved with the BNN approach.
- After the improvement using the BNN approach with four inputs, the rms deviations are generally around 200 keV.
- The BNN with four inputs is more powerful than the BNN with two inputs, especially for the neutron separation energy.

Niu and HZL, PLB 778, 48-53 (2018)

Designs of BNN

In order to take into account as much physics as possible

- To design appropriate output(s)
- To design appropriate inputs
- To design appropriate network structure

In this work

- > **Outputs:** E_{mic} , S_* , Q_*
- > **Inputs:** N, Z, E_{mic} (model)
- Network: 9 different Bayesian networks

Reference mass models

- □ Macroscopic mass model: BW2
- □ Macro-microscopic mass models: KTUY, FRDM12, and WS4
- □ Microscopic models: RMF and HFB-31
- □ High-precision global mass models: Bhagwat and DZ28

Even-odd effects and BNN designs

$$\begin{array}{ll} 1. \ S_n(Z,N) = M(Z,N-1) + m_n - M(Z,N) & \Rightarrow M(Z,N-1) = M(Z,N) - m_n + S_n(Z,N) \\ 2. \ S_{n+}(Z,N) = S_n(Z,N+1) = M(Z,N) + m_n - M(Z,N+1) & \Rightarrow M(Z,N+1) = M(Z,N) + m_n - S_{n+}(Z,N) \\ 3. \ S_p(Z,N) = M(Z-1,N) + m_p - M(Z,N) & \Rightarrow M(Z-1,N) = M(Z,N) - m_p + S_p(Z,N) \\ 4. \ S_{p+}(Z,N) = S_p(Z+1,N) = M(Z,N) + m_p - M(Z+1,N) & \Rightarrow M(Z+1,N) = M(Z,N) + m_p - S_{p+}(Z,N) \\ 5. \ S_D(Z,N) = M(Z-1,N-1) + m_D - M(Z,N) & \Rightarrow M(Z-1,N-1) = M(Z,N) - m_D + S_D(Z,N) \\ 6. \ S_{D+}(Z,N) = S_D(Z+1,N+1) = M(Z,N) + m_D - M(Z+1,N+1) & \Rightarrow M(Z+1,N+1) = M(Z,N) - m_D + S_D(Z,N) \\ 7. \ Q_{\beta-}(Z,N) = M(Z,N) - M(Z+1,N-1) & \Rightarrow M(Z+1,N-1) = M(Z,N) - Q_{\beta-}(Z,N) \\ 8. \ Q_{\beta+}(Z,N) = M(Z,N) - M(Z-1,N+1) - 2m_e & \Rightarrow M(Z-1,N+1) = M(Z,N) - Q_{\beta+}(Z,N) - 2m_e \end{array}$$

Niu and HZL, PRC 106, L021303 (2022)

 $+S_D(Z,N)$

A benchmark to FRDM12

Fig: Panels (a) and (b) represent E_{mic} of FRDM12 and BNN predictions. Panel (c) represents ΔE_{mic} between E_{mic} of FRDM12 and those predicted by BNN approach.

BNN_{FRDM12} predictions are in excellent agreement with the E_{mic} of FRDM12 for nuclei in and not very far from the training region, which also shows clear shell structure information.
 The deviations between BNN_{FRDM12} predictions and E_{mic} of FRDM12 are relatively large for very neutron-rich nuclei and super heavy nuclei.

Model	Μ	S _n	S _{2n}	S _p	S _{2p}	S _D	Q _β
BNNI3_4	0.093	0.092	0.125	0.097	0.130	0.113	0.109

Table: The rms of M, S_x , and Q_x between FRDM12 and BNN_{FRDM12} predictions for nuclei in T_{set} and other nuclei in FRDM12.

A benchmark to FRDM12

Fig: The rms deviations of BNN mass predictions with respect to the mass predictions of FRDM12 as a function of the minimum distance r to the isotopes in the training region. The squares and circles denote the average errors of BNN_{FRDM12} and BMM for the nuclei with the same r.

The BNN_{FRDM12} can well reproduce the FRDM12 masses within 100 keV for nuclei in Lset.

 The rms deviation between BNN_{FRDM12} predictions and FRDM12 masses increases as the increase of the distance *r*. It is very similar to the average error of BNN_{FRDM12}, which indicates the BNN can give reasonable evaluations of the theoretical uncertainties.

Experimental data

New Mass Model --- BMM

Fig: Left panel: E_{mic} of BMM with the training data from T_{set} of AME16. Right panel: mass differences between the experimental data and BNN predictions.

Model	М	S _n	S _{2n}	S _p	S _{2p}	S _D	Q _β
BMM	0.084	0.078	0.105	0.083	0.111	0.096	0.099
HFB31	0.559	0.451	0.456	0.489	0.496	0.566	0.557
FRDM12	0.576	0.340	0.442	0.341	0.420	0.411	0.450
WS4	0.285	0.254	0.261	0.261	0.300	0.324	0.327

□ The first nuclear mass model with accuracy within **100 keV** is constructed. Its accuracies to *S*_{*} and *Q*_{*} are also much higher than other mass models.

BMM extrapolations

Contents

Nuclear inputs with Bayesian approaches

- Nuclear Masses
- > Nuclear β -decay half-lives

Skyrme HFB+pnQRPA

PHYSICAL REVIEW C 106, 024306 (2022)

Calculation of β -decay half-lives within a Skyrme-Hartree-Fock-Bogoliubov energy density functional with the proton-neutron quasiparticle random-phase approximation and isoscalar pairing strengths optimized by a Bayesian method

Futoshi Minato (湊太志),^{1,*} Zhongming Niu (牛中明),^{2,†} and Haozhao Liang (梁豪兆),^{3,4,‡}

Skyrme HFB+pnQRPA (SkO') with a finite-range pairing force

> Isovector (T = 1) pairing (Gogny D1S)

$$V_{pp}^{(1)}(\boldsymbol{r}_1, \boldsymbol{r}_2) = \sum_{i=1}^2 \left(W_i + B_i P_\sigma - H_i P_\tau - M_i P_\sigma P_\tau \right) e^{-r_{12}^2/\mu_i^2},$$

Solution (T = 0) pairing (two-Gaussian)

$$V_{pp}^{(0)}(\boldsymbol{r}_1, \boldsymbol{r}_2) = -V \sum_{i=1,2} g_i \exp\left(-\frac{r_{12}^2}{\mu_i'^2}\right) \hat{\Pi}_{S=1,T=0},$$

with $g_1 = 1, g_2 = -2, \mu_1 = 1.2$ fm, $\mu_2 = 0.7$ fm

Both allowed and first-forbidden transitions $\rightarrow \beta$ -decay half-lives

Strengths of isoscalar pairing

Predictions of nuclear half-lives

mean deviation \geq

$$\bar{r} = \frac{1}{N} \sum_{i}^{N} r_i, \quad r_i = \log_{10} \left(\frac{T_{\text{calc},i}}{T_{\exp,i}} \right),$$

standard deviation \succ

$$s = \sqrt{\frac{1}{N} \sum_{i}^{N} r_i^2}.$$

The results of this work, D3C*, and pnFAM \star

	ne results o	Minato, Niu, HZL,						
	This w	ork	D3C*		pnFAM		PRC 106, 024306 (2022)	
	\overline{r}	s	\bar{r}	s	\bar{r}	s	D3C*: Marketin, Huther, and	
E-E	-0.009	0.294	-0.001	0.475	-0.039	0.428	Martinez-Pinedo, PRC 93,	
E-O	-0.020	0.301	0.019	0.544	-0.055	0.428	025805 (2016)	
O-E	0.043	0.406	0.153	0.608	-0.014	0.338	phram: Ney, Engel, LI, and Schunck PDC 102 034326	
0-0	0.106	0.552	0.378	1.154	0.120	0.557	(2020)	

Machine learning

Machine Learning for physics?

- ➢ We learn what we need
- ➤ We learn what we have less control
- We learn what we are guaranteed e.g., Imoto's talk & works by Akashi, Sugino, et al.

Or

We build physics (space and time) in neural networks ... e.g., Koji Hashimoto's talk

Contents

Quantum computing for nuclear structure properties?

- Computations with quantum circuits
- Computations with quantum annealing

A pioneering work: QC for atomic nuclei

PHYSICAL REVIEW LETTERS 120, 210501 (2018)

Editors' Suggestion

Featured in Physics

Cloud Quantum Computing of an Atomic Nucleus

E. F. Dumitrescu,¹ A. J. McCaskey,² G. Hagen,^{3,4} G. R. Jansen,^{5,3} T. D. Morris,^{4,3} T. Papenbrock,^{4,3,*} R. C. Pooser,^{1,4} D. J. Dean,³ and P. Lougovski^{1,†}
¹Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
²Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
³Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁴Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
⁵National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

by Stefano Gandolfi*

VIEWPOINT

Cloud Quantum Computing Tackles Simple Nucleus

Researchers perform a quantum computation of the binding energy of the deuteron using a web connection to remote quantum devices.

Model setup and main results

Dumitrescu et al., PRL 120, 210501 (2018)
 Deuteron Hamiltonian (discrete variable representation in HO basis)

$$H_{N} = \sum_{n,n'=0}^{N-1} \langle n'|(T+V)|n \rangle a_{n'}^{\dagger} a_{n}.$$

where $\langle n'|T|n \rangle = \frac{\hbar\omega}{2} \Big[(2n+3/2)\delta_{n}^{n'} - \sqrt{n(n+1/2)}\delta_{n}^{n'+1} - \sqrt{(n+1)(n+3/2)}\delta_{n}^{n'-1} \Big], \qquad V_{0} = -5.68658111 \text{ MeV}$
 $\langle n'|V|n \rangle = V_{0}\delta_{n}^{0}\delta_{n'}^{n'}. \qquad \hbar\omega = 7 \text{ MeV}$

Results		F	from avaat die	gonalization		:
		E	from exact dia	igonalization		
	N	E_N	$O(e^{-2kL})$	$O(kLe^{-4kL})$	$O(e^{-4kL})$	
	2	-1.749	-2.39	-2.19		
	3	-2.046	-2.33	-2.20	-2.21	$E_{\text{exact}} = -2.22 \text{ MeV}$
		E	from quantum	computing		
	N	E_N	$O(e^{-2kL})$	$O(kLe^{-4kL})$	$O(e^{-4kL})$	
	2	-1.74(3)	-2.38(4)	-2.18(3)		
	3	-2.08(3)	-2.35(2)	-2.21(3)	-2.28(3)	

Gandolfi, Physics 11, 51 (2018)

□ The **qubits** come in a variety of physical implementations, with some represented by the **spin up or down of atoms** and others by **two excited states in a superconducting circuit**, for exmple.

- In general, problem solving using quantum computers involves three main blocks:
- I. formulate the problem to be solved in terms of unitary matrices
- II. rewrite those matrices **in terms of gates** that can be realized on a given quantum computer
- III. implement and try to improve the <u>efficiency</u> of (II), <u>reducing the number of</u> <u>gates</u> as much as possible

Introduction (by Gandolfi)

 $E = \langle \Psi | \hat{H} | \Psi \rangle$ with $| \Psi \rangle = U | 0 \rangle$ and $W = \hat{H}$

- At the end of these operations, <u>the ancilla qubit is measured</u>, returning either zero or one.
- This measurement, however, is sampling just one possibility out of many, so it is necessary to repeat the measurement many times and take the average.

Gandolfi, Physics 11, 51 (2018)

Model setup and quantum programming

 \geq

Dumitrescu et al., PRL **120**, 210501 (2018) **Deuteron Hamiltonian** (discrete variable representation in HO basis)

$$\begin{split} H_{N} &= \sum_{n,n'=0}^{N-1} \langle n' | (T+V) | n \rangle a_{n'}^{\dagger} a_{n}. \\ \text{where} \quad \langle n' | T | n \rangle &= \frac{\hbar \omega}{2} \left[(2n+3/2) \delta_{n}^{n'} - \sqrt{n(n+1/2)} \delta_{n}^{n'+1} \\ &- \sqrt{(n+1)(n+3/2)} \delta_{n}^{n'-1} \right], \\ \langle n' | V | n \rangle &= V_{0} \delta_{n}^{0} \delta_{n'}^{n'}. \end{split} \quad \begin{split} V_{0} &= -5.68658111 \text{ MeV} \\ \hbar \omega &= 7 \text{ MeV} \end{split}$$

> Quantum computers manipulate qubits by operations based on Pauli matrices

$$\begin{split} a_n^{\dagger} &\to \frac{1}{2} \left[\prod_{j=0}^{n-1} -Z_j \right] (X_n - iY_n), \\ a_n &\to \frac{1}{2} \left[\prod_{j=0}^{n-1} -Z_j \right] (X_n + iY_n). \end{split} \begin{array}{l} H_2 &= 5.906\,709I + 0.218\,291Z_0 - 6.125Z_1 \\ &- 2.143\,304(X_0X_1 + Y_0Y_1), \\ H_3 &= H_2 + 9.625(I - Z_2) - 3.913\,119(X_1X_2 + Y_1Y_2). \end{split}$$

Model setup and quantum programming

Variational wave function

Dumitrescu et al., PRL 120, 210501 (2018)

$$U(\theta) \equiv e^{\theta(a_0^{\dagger}a_1 - a_1^{\dagger}a_0)} = e^{i(\theta/2)(X_0Y_1 - X_1Y_0)},$$

$$U(\eta, \theta) \equiv e^{\eta(a_0^{\dagger}a_1 - a_1^{\dagger}a_0) + \theta(a_0^{\dagger}a_2 - a_2^{\dagger}a_0)}$$

$$\approx e^{i(\eta/2)(X_0Y_1 - X_1Y_0)} e^{i(\theta/2)(X_0Z_1Y_2 - X_2Z_1Y_0)}$$

https://en.wikipedia.org/wiki/Quantum_logic_gate https://algassert.com/quirk

Computing architectures

• **QX5** and **19Q** chips: with a single qubit **connected to up to three neighbors**

Results

 \square Experimentally determined energies for H_2

Dumitrescu et al., PRL 120, 210501 (2018)

Lipkin model

Lipkin Hamiltonian

$$H = \frac{1}{2}\varepsilon \sum_{p\sigma} \sigma a_{p,\sigma}^{\dagger} a_{p,\sigma} + \frac{1}{2}V \sum_{pp'\sigma} a_{p,\sigma}^{\dagger} a_{p',\sigma}^{\dagger} a_{p',-\sigma} a_{p,-\sigma} + \frac{1}{2}W \sum_{pp'\sigma} a_{p,\sigma}^{\dagger} a_{p',-\sigma}^{\dagger} a_{p',-\sigma} a_{p,-\sigma} ,$$

VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL

(I). Exact Solutions and Perturbation Theory

VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL

(II). Linearization Procedures

VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL

(III). Diagram Summations

VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL

(IV). The Deformed Hartree-Fock Solution

D. AGASSI and H. J. LIPKIN The Weizmann Institute of Science, Rehovoth, Israel

and

N. MESHKOV Catholic University of America, Washington, D.C.[†]

Lipkin model

> Quasi-spin formulation

$$J_{+} = \sum_{p} a_{p,+1}^{\dagger} a_{p,-1}, \qquad J_{-} = \sum_{p} a_{p,-1}^{\dagger} a_{p,+1}, \qquad J_{z} = \frac{1}{2} \sum_{p\sigma} \sigma a_{p,\sigma}^{\dagger} a_{p,\sigma}.$$

Hamiltonian

$$H = \varepsilon J_z + \frac{1}{2}V(J_+^2 + J_-^2) + \frac{1}{2}W(J_+J_- + J_-J_+).$$

 \blacktriangleright Exact solutions (N = 2, 3, 4, 6, 8 with W = 0)

• for
$$N = 2$$
:

$$\frac{E}{\varepsilon} = 0, \pm \left[1 + \left(\frac{V}{\varepsilon}\right)^2\right]^{\frac{1}{2}},$$
• for $N = 3$:

$$E = \left[1 - \left[(V)^2\right]^{\frac{1}{2}}\right]$$

$$\frac{E}{\varepsilon} = \pm \left\{ \frac{1}{2} \pm \left[1 + 3 \left(\frac{V}{\varepsilon} \right)^2 \right]^2 \right\} \,,$$

• for N = 4:

$$\frac{E}{\varepsilon} = 0, \pm 2 \left[1 + 3 \left(\frac{V}{\varepsilon} \right)^2 \right]^{\frac{1}{2}},$$
$$\frac{E}{\varepsilon} = \pm \left[1 + 9 \left(\frac{V}{\varepsilon} \right)^2 \right]^{\frac{1}{2}},$$

Lipkin, Meshkov, Glick, Nucl. Phys. **62**, 188 (1965)

Lipkin model

> Qubit representation of Lipkin Hamiltonian (W = 0)

$$H = -\frac{1}{2}\varepsilon \sum_{i=1}^{N} Z_i + \frac{1}{4}V \sum_{i,j=1}^{N} (X_i X_j - Y_i Y_j).$$

> Trial wave functions (N = 2)

$$\psi\rangle = U(\theta)|00\rangle = \cos\frac{\theta}{2}|00\rangle + \sin\frac{\theta}{2}|11\rangle.$$

> Quantum circuit (N = 2)

□ Number of parameters, $O(2^N)$, is needed for a complete expression of the trial wave functions.

UCC and structure learning ansatz

Chinese Physics C Vol. 46, No. 2 (2022) 024106

Quantum computing for the Lipkin model with unitary coupled cluster and structure learning ansatz*

Asahi Chikaoka(近岡旭)^{1,2} Haozhao Liang(梁豪兆)^{1,2†}

¹Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan ²RIKEN Nishina Center, Wako 351-0198, Japan

> Trial wave functions

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

$$U(\theta) \equiv \exp\left[\sum_{ij} \theta_{ij} (a_i^{\dagger} a_j^{\dagger} - a_j a_i)\right]$$

$$\mapsto \exp\left\{i\sum_{ij} \theta_{ij} \frac{(-1)^{j-i-1}}{2} \left[X_i \left(\prod_{k=i+1}^{j-1} Z_k\right) Y_j + Y_i \left(\prod_{k=i+1}^{j-1} Z_k\right) X_j\right]\right\},$$

> Quantum circuit (N = 3)

UCC ansatz

State probabilities

Ground-state energies

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

Structure learning ansatz

Trial wave functions

Algorithm 1 Rotoselect

- Input: Function calculating expectation values with respect to each quantum circuit $U: \langle M(U) \rangle$. Here, M represents a Hermitian operator. The quantum circuit U with the maximum value of the depth, D, is composed of rotation gates at the depth d, $U_d(\theta_d, H_d) = H_d(\theta_d)$ (e.g., $R_X(\theta_d) =$ $\exp[-i\frac{\theta_d}{2}X]$), and the CNOTs. Here, θ_d is a parameter at the depth d and H_d is the element of the set of the rotation operators $\{I, R_X, R_Y, R_Z\}$. Axes of rotation gates, i.e. I, R_X, R_Y , or R_Z , are chosen in order to minimize the expectation value.
- **Output:** Optimized quantum circuit U_{opt} . Here, U_{opt} is optimized with respect to θ_d and H_d .

Initialize $\theta_d \in (\pi, \pi]$ and $H_d \in \{I, R_X, R_Y, R_Z\}$ for $d = 1, \dots, D$ heuristically or at random. (In practice, initialize all $\theta_d = 0$ and all $H_d = I$.)

\mathbf{repeat}

```
for d = 1, \dots, D do

Compute \theta_{d,P}^* for P \in \{I, R_X, R_Y, R_Z\} using SMO

method, where \theta_{d,P}^* is the optimized parameter

with the selected gate P.

H_d \leftarrow \arg\min_P \langle M(U) \rangle |_{U_d(\theta_d, H_d) = U_d(\theta_d^*, P)}

\theta_d \leftarrow \theta_{d,H_d}^*, where \theta_{d,H_d}^* is the optimized parameter

with the selected gate H_d

end for

until stopping criterion is met

return optimized quantum circuit U_{opt}
```

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

> Quantum circuit (N = 3)(an example)

Structure learning ansatz

Rotating axes

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

Ground-state energies

Contents

Quantum computing for nuclear structure properties?

- Computations with quantum circuits
- Computations with quantum annealing

Quantum Annealing

Comparison of D-Wave systems [edit]

	D-Wave One	D-Wave Two	D-Wave 2X	D-Wave 2000Q ^{[57][58]}	Advantage ^{[59][60]}	Advantage 2 ^{[61][62]}
Release date	Release date May 2011 May 2013 August 2015 J		January 2017	2020	2023-2024	
Topology				Chimera	Pegasus	Zephyr
Code-name	Rainier	Vesuvius	W1K	W2K	Pegasus P16	
Qubits	128	512	1152	2048	5640	7000+ (7440)
Couplers ^[63]	352	1,472	3,360	6,016	40,484	
Connectivity				6	15	20
Josephson junctions	24,000	?	128,000	128,472 ^[60]	1,030,000	
I/O lines / Control lines	?	192	192	200 ^[64]	?	
Active area				5.5 mm ²	8.4 mm ²	
On-chip memory				22 kB	130 kB	
Operating temperature (K)	?	0.02	0.015	0.015	<0.015	
Power consumption (kW)	?	15.5	25	25	25	
Buyers	Lockheed Martin	Google/NASA/USRA Lockheed Martin	 Los Alamos National Laboratory Google/NASA/USRA Lockheed Martin 	 Temporal Defense Systems Google/NASA/USRA^[65] Los Alamos National Laboratory 	 Lockheed Martin Los Alamos National Laboratory^[66] Jülich Supercomputing Centre母^{[67][68]} (Forschungszentrum Jülich) 	

https://docs.dwavesys.com/docs/latest/c_gs_2.html https://en.wikipedia.org/wiki/D-Wave_Systems#Computer_systems

Scientific reports Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

OPEN Hybrid quantum annealing via molecular dynamics

Hirotaka Irie^{1,2^I}, Haozhao Liang^{3,4}, Takumi Doi^{2,3}, Shinya Gongyo^{2,3} & Tetsuo Hatsuda²

Concept of HQA

Ising Hamiltonian

$$\mathcal{H}_{\text{Ising}}(s) = \frac{1}{2} \sum_{i \neq j}^{N} J_{ij} s_i s_j + \sum_{i=1}^{N} h_i s_i,$$

> Hamiltonian for quantum annealing

$$\mathcal{H}_{\text{QA}}(\sigma;\tau) = A(\tau) \left[-\sum_{i=1}^{N} \sigma_i^x \right] + B(\tau) \left[\frac{1}{2} \sum_{i \neq j}^{N} J_{ij} \sigma_i^z \sigma_j^z + \sum_{i=1}^{N} h_i \sigma_i^z \right],$$

> Typical trajectories

➢ Flowchart of HQA

Results of Ising spin-glass

Ground-state energies

Quantum computing for nuclear physics

Physics Letters B 807 (2020) 135536

Projected cooling algorithm for quantum computation

Dean Lee*, Joey Bonitati, Gabriel Given, Caleb Hicks, Ning Li, Bing-Nan Lu, Abudit Rai, Avik Sarkar, Jacob Watkins

Facility for Rare Isotope Beams and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Lipkin model on a quantum computer

QColn Working Group

Michael J. Cervia, A. B. Balantekin, S. N. Coppersmith, Calvin W. Johnson, Peter J. Love, C. Poole, K. Robbins, and M. Saffman Phys. Rev. C **104**, 024305 – Published 3 August 2021

Simulating excited states of the Lipkin model on a quantum computer

Manqoba Q. Hlatshwayo, Yinu Zhang, Herlik Wibowo, Ryan LaRose, Denis Lacroix, and Elena Litvinova Phys. Rev. C **106**, 024319 – Published 18 August 2022

https://suuri.riken.jp/qcoin-wg/