Quantum computing for nuclear structure properties？

Haozhao LIANG（梁豪兆）

Department of Physics，The University of Tokyo，Japan
December 19， 2022

東京大学

Quantum computing（or machine learning） for nuclear structure properties？

Haozhao LIANG（梁豪兆）

Department of Physics，The University of Tokyo，Japan
December 19， 2022

東京大学

Nucl ear chart

\square
\square
\square
stable nuclei
~ 300 nuclei
unstable nuclei observed so far
~ 3000 nuclei
drip-lines (limit of existence) (theoretical predictions) ~ 8000 nuclei magic numbers

Chart of Nuclei (2020s)

https://www.nishina.riken.jp/

Nucl ear chart

\underline{E}
stable nuclei
~ 300 nuclei
unstable nuclei observed so far
~ 3000 nuclei drip-lines (limit of existence) (theoretical predictions) magic numbers

Chart of Nuclei (2020s)

Superheavy elements
New Element शखा13
04 July 23 18:55
57

> How to synthesize more new elements?
> What are quantum tunneling properties of SHE?
$>$ Is there island of stability? New materials?
https://www.nishina.riken.jp/

Peri odi c Table with National flags

Elements \& Country of Discovery

Credit given to both where joint or independently discovered.
This table is not based on nationality of researcher(s) but is based on institution/funder

Open question:

$>$ Is there or where is the end of the periodic table?

Nucl ear chart

0
stable nuclei
~ 300 nuclei
unstable nuclei observed so far
~ 3000 nuclei
drip-lines (limit of existence) (theoretical predictions) magic numbers

Chart of Nuclei (2020s)

Superheavy elements

New Element श"113 04 July 23 18:55
57
> How to synthesize more new elements?
> What are quantum tunneling properties of SHE?
$>$ Is there island of stability? New materials?

Neutron-rich isotopes

- How to synthesize more new isotopes?
https://www.nishina.riken.jp/
\Rightarrow What will be the impacts for understanding origins of heavy elements?
- What will be the impacts for handling nuclear wastes?

Radi oactive i sot ope beam facilities

At omic nucl ei

Atomic nucleus is a rich system in physics
$>$ quantum system
$>$ many-body system ($A \sim 100$, spin \& isospin d.o.f.)
$>$ finite system (surface, skin, halo, ...)
$>$ open system (resonance, continuum, decay, ...)

Neutron halos

$R \sim A^{1 / 3}$? Not always!
${ }^{11}$ Li: a size as ${ }^{208} \mathrm{~Pb}$
Tanihata:1985

Spin and Isospin are essential degrees of freedom in nuclear physics.

r-process nucl eosynt hesi s and nucl ear inputs

The 11 greatest unanswered questions of physics

Question 3
 How were the heavy elements from iron to uranium made?

* Nuclear data inputs for r-process

Quantity		Effects
S_{n}	neutron separation energy	path
$T_{1 / 2}$	β-decay half-lives	abundance pattern, time scale
P_{n}	β-delayed n-emission branchings	final abundance pattern
Y_{i}	fission (products and branchings)	endpoint, degree of fission cycling G
partition functions neutron capture rates pattern (?)		
$N_{A}\langle\sigma \nu\rangle$	path (very weakly) conditions for waiting point approximation final abundance pattern during freezeout (?)	

Nucl ear inputs for r-process

Key exp. @ RIKEN

 masses
$\boldsymbol{\beta}$-decay half-lives

$\boldsymbol{\beta}$-delayed \boldsymbol{n}-emissions

(n, γ) cross-sections

\square To provide and organize all these inputs in a systematic and consistent way
$>$ e.g., changes in mass $\boldsymbol{\rightarrow}$ changes in half-lives, capture rates ...
(not hybrid databases !)
$>$ more exp. data \rightarrow more reliable extrapolation / smaller uncertainties (higher accuracy ?)

Machi ne I earni ng

Machine Learning for physics?

$>$ We learn what we need
> We learn what we have less control
> We learn what we are guaranteed
e.g., Imoto’s talk \& works by Nagai, Akashi, Sugino, et al.

NATURE REVIEWS|PHYSICS VOLUME 4|JUNE 2022|357

Machine learning and density functional theory

```
Ryan Pederson', Bhupalee Kalita(0) 2 and Kieron Burke 1,2\boxtimes
Over the past decade machine learning has made significant advances in approximating density functionals, but whether this signals the end of human-designed functionals remains to be seen. Ryan Pederson, Bhupalee Kalita and Kieron Burke discuss the rise of machine learning for functional design.
```


Machi ne I earni ng

Machine Learning for physics?

> We learn what we need
> We learn what we have less control
$>$ We learn what we are guaranteed e.g., Imoto’s talk \& works by Nagai, Akashi, Sugino, et al.

Or
We build physics (space and time) in neural networks ...
e.g., Koji Hashimoto’s talk

Nuclear mass nodel s

> Theoretically, the development of nuclear mass model can be traced back to the early age of nuclear physics, known as Bethe-Weizsacker liquid drop model in 1935.
> To take into account the nuclear shell effects: the microscopic models and the microscopic-macroscopic (mic-mac) models.

Nuclear Mass Models

Theories + Bayesi an approaches

Strutinsky's energy theorem:

 The nuclear binding energy may be separated into two main components: one large and smooth and another one small and fluctuating.$$
M(Z, N) \equiv M_{\mathrm{LDM}}(Z, N)+\delta_{\mathrm{LDM}}(Z, N)
$$

Strutinsky, NPA 95, 420 (1967)

LDM: $\sigma_{\text {RMS }} \sim 3.6 \mathrm{MeV}$
cf. Morales et al., PRC 81, 024304 (2010)

PHYSICAL REVIEW C 93, 014311 (2016)
Nuclear mass predictions for the crustal composition of neutron stars:
A Bayesian neural network approach
R. Utama, ${ }^{*}$ J. Piekarewicz, ${ }^{\dagger}$ and H. B. Prosper ${ }^{\ddagger}$

Key i deas

> "To account for the small and fluctuating contribution, we train a suitable neural network on the mass residuals between the LDM predictions and experiment, as given in the latest Atomic Mass Evaluation (AME2012)."
$>$ "Once trained, we used the resulting universal approximator $\delta_{\text {LDM }}(Z, N)$ to validate the approach and later to make predictions in regions where experimental data are unavailable."

$$
M(Z, N) \equiv M_{\mathrm{LDM}}(Z, N)+\delta_{\mathrm{LDM}}(Z, N)
$$

- Figure 1: A feed-forward neural network with a single hidden layer, two inputs Z and A, and a single output $f=\delta_{\text {LDM }}(Z, A)$

Cont ent s

\square Nuclear inputs with Bayesian approaches
> Nuclear Masses
> Nuclear β-decay half-lives

Theories＋Bayesi an approaches

Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects
Z．M．Niu（牛中明）${ }^{\mathrm{a}, \mathrm{b}}$, H．Z．Liang（梁豪兆）${ }^{\mathrm{b}, \mathrm{c}, \mathrm{d}, *}$
\square Posterior distributions of parameters are Neal1996Springer

$$
p(\omega \mid D)=\frac{p(D \mid \omega) p(\omega)}{p(D)} \propto p(D \mid \omega) p(\omega), \quad D=\left\{\left(x_{1}, t_{1}\right), \quad\left(x_{2}, t_{2}\right), \ldots, \quad\left(x_{N}, t_{N}\right)\right\}
$$

＞likelihood function $p(D \mid \omega)$

$$
p(x, t \mid \omega)=\exp \left(-\chi^{2} / 2\right), \chi^{2}=\sum_{n=1}^{N}\left[\frac{t_{n}-y\left(x_{n}, \omega\right)}{\sigma_{n}}\right]^{2}
$$

$$
\begin{array}{r}
y(x, \omega)=a+\sum_{j=1}^{H} b_{j} \tanh \left(c_{j}+\sum_{i=1}^{I} d_{j i} x_{i}\right) \\
\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}-e^{-x}}
\end{array}
$$

Numerical details

Likelihood function $p(D \mid \omega)$

$$
\begin{aligned}
& p(D \mid \omega)=\exp \left(-\chi^{2} / 2\right), \chi^{2}=\sum_{n=1}^{N}\left[\frac{t_{n}-y_{n}(x, \omega)}{\sigma_{n}}\right]^{2} \\
& t_{n}=M_{n}^{\exp }-M_{n}^{\text {th }}, y(x, \omega)=a+\sum_{j=1}^{H} b_{j} \tanh \left(c_{j}+\sum_{i=1}^{I} d_{j i} x_{i}\right) \Rightarrow M_{n}^{\text {th }}=M_{n}^{\text {th }}+y(x, \omega)
\end{aligned}
$$

* Inputs:
$\checkmark 2$ inputs (I=2): Z, A
$\checkmark 4$ inputs (I=4): Z, A, δ, P;

$$
\begin{aligned}
& \delta=\left[(-1)^{\mathrm{Z}}+(-1)^{\mathrm{N}}\right] / 2, \mathrm{P}=v_{\mathrm{n}} v_{\mathrm{p}} /\left(v_{\mathrm{p}}+v_{\mathrm{n}}\right) \\
& v_{p}=\min \left(\left|Z-Z_{0}\right|\right), v_{n}=\min \left(\left|N-N_{0}\right|\right)
\end{aligned}
$$

* Hidden units:
$\checkmark 2$ inputs (I=2): $\mathrm{H}=42$
cf. Utama, Piekarewicz, and Prosper, PRC 93, 014311 (2016)
$\checkmark 4$ inputs ($\mathrm{I}=4$): $\mathrm{H}=28$
* Number of parameters: 169
* Data: Huang et al., CPC 41 030002; Wang et al., CPC 41030003.
\checkmark Entire set: 2272 nuclei in AME2016 (Z, N>=8 and $\sigma^{\exp <=100 ~ k e V) ~}$
\checkmark Learning set: 1800 data randomly selected from entire set
\checkmark Validation set: the remaining 472 data in entire set

Rns devi ations of mass and S_{n}

> The predictions of nuclear mass and neutron-separation energy are significantly improved with the BNN approach.
$>$ After the improvement using the BNN approach with four inputs, the rms deviations are generally around 200 keV .
$>$ The BNN with four inputs is more powerful than the BNN with two inputs, especially for the neutron separation energy.

Desi gns of BNN

In order to take into account as much physics as possible
$>$ To design appropriate output(s)
> To design appropriate inputs
> To design appropriate network structure

In this work

$>$ Outputs: $E_{\text {mic }}, S_{*}, Q_{*}$
$>$ Inputs: $N, Z, E_{\text {mic }}$ (model)
> Network: 9 different Bayesian networks
Reference mass models
\square Macroscopic mass model: BW2
\square Macro-microscopic mass models: KTUY, FRDM12, and WS4
\square Microscopic models: RMF and HFB-31

- High-precision global mass models: Bhagwat and DZ28

Even- odd effects and BNN desi gns

1. $S_{n}(Z, N)=M(Z, N-1)+m_{n}-M(Z, N)$
2. $S_{n+}(Z, N)=S_{n}(Z, N+1)=M(Z, N)+m_{n}-M(Z, N+1)$
3. $S_{p}(Z, N)=M(Z-1, N)+m_{p}-M(Z, N)$
4. $S_{p+}(Z, N)=S_{p}(Z+1, N)=M(Z, N)+m_{p}-M(Z+1, N)$
5. $S_{D}(Z, N)=M(Z-1, N-1)+m_{D}-M(Z, N)$
6. $Q_{\beta+}(Z, N)=M(Z, N)-M(Z-1, N+1)-2 m_{e}$
$\Rightarrow M(Z, N-1)=M(Z, N)-m_{n}+S_{n}(Z, N)$
$\Rightarrow M(Z, N+1)=M(Z, N)+m_{n}-S_{n+}(Z, N)$
$\Rightarrow M(Z-1, N)=M(Z, N)-m_{p}+S_{p}(Z, N)$
$\Rightarrow M(Z+1, N)=M(Z, N)+m_{p}-S_{p+}(Z, N)$
$\Rightarrow M(Z-1, N-1)=M(Z, N)-m_{D}+S_{D}(Z, N)$

$$
\text { 6. } S_{D+}(Z, N)=S_{D}(Z+1, N+1)=M(Z, N)+m_{D}-M(Z+1, N+1) \Rightarrow M(Z+1, N+1)=M(Z, N)+m_{D}-S_{D+}(Z, N)
$$

$$
\text { 7. } Q_{\beta-}(Z, N)=M(Z, N)-M(Z+1, N-1)
$$

$\Rightarrow M(Z+1, N-1)=M(Z, N)-Q_{\beta-}(Z, N)$
$\Rightarrow M(Z-1, N+1)=M(Z, N)-Q_{\beta+}(Z, N)-2 m_{e}$

- : even-even

O: even-odd

O: odd-even
: odd-odd

$$
\begin{aligned}
& \bar{M}(Z, N)=M(Z, N) \\
& \bar{M}(Z, N+1)=\sum_{i=1}^{2} M^{i}(Z, N+1) \\
& \bar{M}(Z+1, N)=\sum_{i=1}^{2} M^{i}(Z+1, N) \\
& \bar{M}(Z+1, N+1)=\sum_{i=1}^{4} M^{i}(Z+1, N+1)
\end{aligned}
$$

A benchnark to FRDML 2

Fig: Panels (a) and (b) represent $\mathrm{E}_{\text {mic }}$ of FRDM12 and BNN predictions. Panel (c) represents $\Delta \mathrm{E}_{\text {mic }}$ between $\mathrm{E}_{\text {mic }}$ of FRDM12 and those predicted by BNN approach.
$\square \mathrm{BNN}_{\text {FRDM12 }}$ predictions are in excellent agreement with the $\mathrm{E}_{\text {mic }}$ of FRDM12 for nuclei in and not very far from the training region, which also shows clear shell structure information.
\square The deviations between BNN $_{\text {FRDM12 }}$ predictions and $\mathrm{E}_{\text {mic }}$ of FRDM12 are relatively large for very neutron-rich nuclei and super heavy nuclei.

Model	M	S_{n}	$\mathrm{S}_{2 \mathrm{n}}$	S_{p}	$\mathrm{S}_{2 \mathrm{p}}$	S_{D}	Q_{β}
BNNI3_4	0.093	0.092	0.125	0.097	0.130	0.113	0.109

Table: The rms of $\mathrm{M}, \mathrm{S}_{\mathrm{x}}$, and Q_{x} between FRDM12 and $\mathrm{BNN}_{\text {FRDM12 }}$ predictions for nuclei in $\mathrm{T}_{\text {set }}$ and other nuclei in FRDM12.

A benchmark to FRDM12

Fig: The rms deviations of BNN mass predictions with respect to the mass predictions of FRDM12 as a function of the minimum distance r to the isotopes in the training region. The squares and circles denote the average errors of $\mathrm{BNN}_{\text {FRDM12 }}$ and BMM for the nuclei with the same r.

- The $\mathrm{BNN}_{\text {FRDM12 }}$ can well reproduce the FRDM12 masses within 100 keV for nuclei in Lset.
- The rms deviation between $\mathrm{BNN}_{\text {FRDM12 }}$ predictions and FRDM12 masses increases as the increase of the distance r. It is very similar to the average error of $\mathrm{BNN}_{\text {FRDM12 }}$, which indicates the BNN can give reasonable evaluations of the theoretical uncertainties.

Experi ment al data

New Mass Model

Fig: Left panel: $\mathrm{E}_{\text {mic }}$ of BMM with the training data from $\mathrm{T}_{\text {set }}$ of AME16. Right panel: mass differences between the experimental data and BNN predictions.

Model	M	S_{n}	$\mathrm{S}_{2 \mathrm{n}}$	S_{p}	$\mathrm{S}_{2 \mathrm{p}}$	S_{D}	Q_{β}
BMM	$\mathbf{0 . 0 8 4}$	$\mathbf{0 . 0 7 8}$	$\mathbf{0 . 1 0 5}$	$\mathbf{0 . 0 8 3}$	$\mathbf{0 . 1 1 1}$	$\mathbf{0 . 0 9 6}$	$\mathbf{0 . 0 9 9}$
HFB31	0.559	0.451	0.456	0.489	0.496	0.566	0.557
FRDM12	0.576	0.340	0.442	0.341	0.420	0.411	0.450
WS4	0.285	0.254	0.261	0.261	0.300	0.324	0.327

\square The first nuclear mass model with accuracy within $\mathbf{1 0 0} \mathbf{~ k e V}$ is constructed. Its accuracies to S_{*} and \mathbf{Q}_{*} are also much higher than other mass models.

BMM extrapol ations

Niu and HZL, PRC 106, LO21303 (2022)

Cont ent s

\square Nuclear inputs with Bayesian approaches
> Nuclear Masses
> Nuclear β-decay half-lives

Skyr ne HFB＋pnQRPA

PHYSICAL REVIEW C 106， 024306 （2022）

Calculation of β－decay half－lives within a Skyrme－Hartree－Fock－Bogoliubov energy density functional with the proton－neutron quasiparticle random－phase approximation and isoscalar pairing strengths optimized by a Bayesian method
\square Skyrme HFB＋pnQRPA（SkO’）with a finite－range pairing force
$>$ Isovector $(T=1)$ pairing（Gogny D1S）

$$
V_{p p}^{(1)}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\sum_{i=1}^{2}\left(W_{i}+B_{i} P_{\sigma}-H_{i} P_{\tau}-M_{i} P_{\sigma} P_{\tau}\right) e^{-r_{12}^{2} / \mu_{i}^{2}}
$$

$>$ Isosclar $(T=0)$ pairing（two－Gaussian）

$$
V_{p p}^{(0)}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-V \sum_{i=1,2} g_{i} \exp \left(-\frac{r_{12}^{2}}{\mu_{i}^{2}}\right) \hat{\Pi}_{S=1, T=0},
$$

with $g_{1}=1, g_{2}=-2, \mu_{1}=1.2 \mathrm{fm}, \mu_{2}=0.7 \mathrm{fm}$
$>$ Both allowed and first－forbidden transitions $\boldsymbol{\rightarrow} \boldsymbol{\beta}$－decay half－lives

Strengths of isoscal ar pairing

\star Optimized isoscalar pairing strengths $V_{\text {opt }}$ determined to reproduce $T_{1 / 2}$ of NUBASE2016

* Isoscalar pairing strengths in Cd isotopes estimated by BNN ($V_{\text {BNN }}$)

Minato, Niu, HZL, PRC 106, 024306 (2022)
cf. Niu, Niu, HZL, Long, Niksic, Vretenar, Meng, PLB 723, 172 (2013)

Predictions of nuclear half-Iives

\star Ratios between calculated and experimental half-lives

$>$ mean deviation

$$
\bar{r}=\frac{1}{N} \sum_{i}^{N} r_{i}, \quad r_{i}=\log _{10}\left(\frac{T_{\text {calc }, i}}{T_{\exp , i}}\right),
$$

> standard deviation
$s=\sqrt{\frac{1}{N} \sum_{i}^{N} r_{i}^{2}}$.

* The results of this work, D3C*, and pnFAM

	This work		D3C *		$p n$ FAM	
	\bar{r}	s		s	\bar{r}	s
E-E	-0.009	0.294	-0.001	0.475	-0.039	0.428
E-O	-0.020	0.301	0.019	0.544	-0.055	0.428
O-E	0.043	0.406	0.153	0.608	-0.014	0.338
O-O	0.106	0.552	0.378	1.154	0.120	0.557

Minato, Niu, HZL,
PRC 106, 024306 (2022)
D3C*: Marketin, Huther, and Martinez-Pinedo, PRC 93, 025805 (2016) pnFAM: Ney, Engel, Li, and Schunck, PRC 102, 034326 (2020)

Machi ne I earni ng

Machine Learning for physics?

$>$ We learn what we need
> We learn what we have less control
> We learn what we are guaranteed e.g., Imoto's talk \& works by Akashi, Sugino, et al.

Or
We build physics (space and time) in neural networks ...
e.g., Koji Hashimoto’s talk

Cont ent s

\square Quantum computing for nuclear structure properties?
$>$ Computations with quantum circuits
$>$ Computations with quantum annealing

A pi oneering work: QC for at omi c nucl ei

Cloud Quantum Computing of an Atomic Nucleus

E. F. Dumitrescu, ${ }^{1}$ A. J. McCaskey, ${ }^{2}$ G. Hagen, ${ }^{3,4}$ G. R. Jansen, ${ }^{5,3}$ T. D. Morris, ${ }^{4,3}$ T. Papenbrock, ${ }^{4,3,{ }^{*}}$ R. C. Pooser, ${ }^{1,4}$ D. J. Dean, ${ }^{3}$ and P. Lougovski ${ }^{1, \uparrow}$
${ }^{1}$ Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{2}$ Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{3}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{4}$ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{5}$ National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

by Stefano Gandolfi*

VIEWPOINT

Cloud Quantum Computing Tackles Simple Nucleus

Researchers perform a quantum computation of the binding energy of the deuteron using a web connection to remote quantum devices.

Model setup and rai n results

Dumitrescu et al., PRL 120, 210501 (2018)
$>$ Deuteron Hamiltonian (discrete variable representation in HO basis)

$$
H_{N}=\sum_{n, n^{\prime}=0}^{N-1}\left\langle n^{\prime}\right|(T+V)|n\rangle a_{n^{\prime}}^{\dagger} a_{n}
$$

where $\quad\left\langle n^{\prime}\right| T|n\rangle=\frac{\hbar \omega}{2}\left[(2 n+3 / 2) \delta_{n}^{n^{\prime}}-\sqrt{n(n+1 / 2)} \delta_{n}^{n^{\prime}+1}\right.$

$$
\left.-\sqrt{(n+1)(n+3 / 2)} \delta_{n}^{n^{\prime}-1}\right],
$$

$$
\left\langle n^{\prime}\right| V|n\rangle=V_{0} \delta_{n}^{0} \delta_{n}^{n^{\prime}}
$$

$V_{0}=-5.68658111 \mathrm{MeV}$ $\hbar \omega=7 \mathrm{MeV}$

Results

E from exact diagonalization				
N	E_{N}	$O\left(e^{-2 k L}\right)$	$O\left(k L e^{-4 k L}\right)$	$O\left(e^{-4 k L}\right)$
2	-1.749	-2.39	-2.19	
3	-2.046	-2.33	-2.20	-2.21

N	E_{N}	$O\left(e^{-2 k L}\right)$	$O\left(k L e^{-4 k L}\right)$	$O\left(e^{-4 k L}\right)$
2	$-1.74(3)$	$-2.38(4)$	$-2.18(3)$	
3	$-2.08(3)$	$-2.35(2)$	$-2.21(3)$	$-2.28(3)$

\square The qubits come in a variety of physical implementations, with some represented by the spin up or down of atoms and others by two excited states in a superconducting circuit, for exmple.
\square In general, problem solving using quantum computers involves three main blocks:
I. formulate the problem to be solved in terms of unitary matrices
II. rewrite those matrices in terms of gates that can be realized on a given quantum computer
III. implement and try to improve the efficiency of (II), reducing the number of gates as much as possible

I nt roduct i on (by Gandol fi)

$$
E=\langle\Psi| \hat{H}|\Psi\rangle \text { with }|\Psi\rangle=U|0\rangle \text { and } W=\hat{H}
$$

$>$ At the end of these operations, the ancilla qubit is measured, returning either zero or one.
> This measurement, however, is sampling just one possibility out of many, so it is necessary to repeat the measurement many times and take the average.

Model set up and quant um programming

Dumitrescu et al., PRL 120, 210501 (2018)
$>$ Deuteron Hamiltonian (discrete variable representation in HO basis)

$$
H_{N}=\sum_{n, n^{\prime}=0}^{N-1}\left\langle n^{\prime}\right|(T+V)|n\rangle a_{n^{\prime}}^{\dagger} a_{n} .
$$

where $\quad\left\langle n^{\prime}\right| T|n\rangle=\frac{\hbar \omega}{2}\left[(2 n+3 / 2) \delta_{n}^{n^{\prime}}-\sqrt{n(n+1 / 2)} \delta_{n}^{n^{\prime}+1}\right.$

$$
\left.-\sqrt{(n+1)(n+3 / 2)} \delta_{n}^{n^{\prime}-1}\right],
$$

$$
\left\langle n^{\prime}\right| V|n\rangle=V_{0} \delta_{n}^{0} \delta_{n}^{n^{\prime}}
$$

$$
\begin{aligned}
& V_{0}=-5.68658111 \mathrm{MeV} \\
& \hbar \omega=7 \mathrm{MeV}
\end{aligned}
$$

> Quantum computers manipulate qubits by operations based on Pauli matrices

$$
\begin{aligned}
& a_{n}^{\dagger} \rightarrow \frac{1}{2}\left[\prod_{j=0}^{n-1}-Z_{j}\right]\left(X_{n}-i Y_{n}\right), \\
& a_{n} \rightarrow \frac{1}{2}\left[\prod_{j=0}^{n-1}-Z_{j}\right]\left(X_{n}+i Y_{n}\right) . \begin{aligned}
H_{2}= & 5.906709 I+0.218291 Z_{0}-6.125 Z_{1} \\
& -2.143304\left(X_{0} X_{1}+Y_{0} Y_{1}\right)
\end{aligned} \\
& H_{3}= H_{2}+9.625\left(I-Z_{2}\right)-3.913119\left(X_{1} X_{2}+Y_{1} Y_{2}\right)
\end{aligned}
$$

Model set up and quant um programming

> Variational wave function

$$
\begin{aligned}
U(\theta) & \equiv e^{\theta\left(a_{0}^{\dagger} a_{1}-a_{1}^{\dagger} a_{0}\right)}=e^{i(\theta / 2)\left(X_{0} Y_{1}-X_{1} Y_{0}\right)} \\
U(\eta, \theta) & \equiv e^{\eta\left(a_{0}^{\dagger} a_{1}-a_{1}^{\dagger} a_{0}\right)+\theta\left(a_{0}^{\dagger} a_{2}-a_{2}^{\dagger} a_{0}\right)} \\
& \approx e^{i(\eta / 2)\left(X_{0} Y_{1}-X_{1} Y_{0}\right)} e^{i(\theta / 2)\left(X_{0} Z_{1} Y_{2}-X_{2} Z_{1} Y_{0}\right)}
\end{aligned}
$$

$>$ Computing architectures
https://en.wikipedia.org/wiki/Quantum _logic _gate

- QX5 and 19Q chips: with a single qubit connected to up to three neighbors
- It works here \leftarrow only requires up to two connections for each qubit

Resul ts

$H_{2}=5.906709 I+0.218291 Z_{0}-6.125 Z_{1}$ $-2.143304\left(X_{0} X_{1}+Y_{0} Y_{1}\right)$,
$U(\theta) \equiv e^{\theta\left(a_{0}^{\dagger} a_{1}-a_{1}^{\dagger} a_{0}\right)}=e^{i(\theta / 2)\left(X_{0} Y_{1}-X_{1} Y_{0}\right)}$,

$$
\begin{aligned}
& E_{2}^{\mathrm{QX} 5}=-1.80 \pm 0.05 \mathrm{MeV} \\
& E_{2}^{19 Q}=-1.72 \pm 0.03 \mathrm{MeV} \\
& \text { thus } \\
& E_{2}=-1.74 \pm 0.03 \mathrm{MeV}
\end{aligned}
$$

\square Experimentally determined energies for H_{2}

Li pki n nodel

> Lipkin Hamiltonian

$$
H=\frac{1}{2} \varepsilon \sum_{p \sigma} \sigma a_{p, \sigma}^{\dagger} a_{p, \sigma}+\frac{1}{2} V \sum_{p p^{\prime} \sigma} a_{p, \sigma}^{\dagger} a_{p^{\prime}, \sigma}^{\dagger} a_{p^{\prime},-\sigma} a_{p,-\sigma}+\frac{1}{2} W \sum_{p p^{\prime} \sigma} a_{p, \sigma}^{\dagger} a_{p^{\prime},-\sigma}^{\dagger} a_{p^{\prime}, \sigma} a_{p,-\sigma},
$$

```
VALIDITY OF MANY-BODY APPROXIMATION METHODS
            FOR A SOLVABLE MODEL
    (I). Exact Solutions and Perturbation Theory
    VALIDITY OF MANY-BODY APPROXIMATION METHODS
        FOR A SOLVABLE MODEL
        (II). Linearization Procedures
```

VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL
(III). Diagram Summations

VALIDITY OF MANY-BODY APPROXIMATION METHODS

 FOR A SOLVABLE MODEL(IV). The Deformed Hartree-Fock Solution
D. AGASSI and H. J. LIPKIN

The Weizmann Institute of Science, Rehovoth, Israel
and
N. MESHKOV

Catholic University of America, Washington, D.C. ${ }^{\dagger}$

Li pki n rodel

> Quasi-spin formulation

$$
J_{+}=\sum_{p} a_{p,+1}^{\dagger} a_{p,-1}, \quad J_{-}=\sum_{p} a_{p,-1}^{\dagger} a_{p,+1}, \quad J_{z}=\frac{1}{2} \sum_{p \sigma} \sigma a_{p, \sigma}^{\dagger} a_{p, \sigma} .
$$

> Hamiltonian

$$
H=\varepsilon J_{z}+\frac{1}{2} V\left(J_{+}^{2}+J_{-}^{2}\right)+\frac{1}{2} W\left(J_{+} J_{-}+J_{-} J_{+}\right) .
$$

$>$ Exact solutions $(N=2,3,4,6,8$ with $W=0)$

- for $N=2$:

$$
\frac{E}{\varepsilon}=0, \pm\left[1+\left(\frac{V}{\varepsilon}\right)^{2}\right]^{\frac{1}{2}}
$$

- for $N=3$:

$$
\frac{E}{\varepsilon}= \pm\left\{\frac{1}{2} \pm\left[1+3\left(\frac{V}{\varepsilon}\right)^{2}\right]^{\frac{1}{2}}\right\}
$$

- for $N=4$:

$$
\begin{aligned}
& \frac{E}{\varepsilon}=0, \pm 2\left[1+3\left(\frac{V}{\varepsilon}\right)^{2}\right]^{\frac{1}{2}} \\
& \frac{E}{\varepsilon}= \pm\left[1+9\left(\frac{V}{\varepsilon}\right)^{2}\right]^{\frac{1}{2}}
\end{aligned}
$$

Li pki n rodel

$>$ Qubit representation of Lipkin Hamiltonian ($W=0$)

$$
H=-\frac{1}{2} \varepsilon \sum_{i=1}^{N} Z_{i}+\frac{1}{4} V \sum_{i, j=1}^{N}\left(X_{i} X_{j}-Y_{i} Y_{j}\right) .
$$

$>$ Trial wave functions $(N=2)$

$$
|\psi\rangle=U(\theta)|00\rangle=\cos \frac{\theta}{2}|00\rangle+\sin \frac{\theta}{2}|11\rangle .
$$

$>$ Quantum circuit $(N=2)$

\square Number of parameters, $O\left(2^{N}\right)$, is needed for a complete expression of the trial wave functions.

UCC and structure I earning ansatz

Quantum computing for the Lipkin model with unitary coupled cluster and structure learning ansatz＊

Asahi Chikaoka（近岡旭）${ }^{1,2}$ Haozhao Liang（梁豪兆）${ }^{1,2 \dagger}$
${ }^{1}$ Department of Physics，Graduate School of Science，The University of Tokyo，Tokyo 113－0033，Japan ${ }^{2}$ RIKEN Nishina Center，Wako 351－0198，Japan

UCC ansatz

$>$ Trial wave functions
Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

$$
\begin{aligned}
U(\theta) \equiv \exp & {\left[\sum_{i j} \theta_{i j}\left(a_{i}^{\dagger} a_{j}^{\dagger}-a_{j} a_{i}\right)\right] } \\
\mapsto \exp & \left\{i \sum _ { i j } \theta _ { i j } \frac { (- 1) ^ { j - i - 1 } } { 2 } \left[X_{i}\left(\prod_{k=i+1}^{j-1} Z_{k}\right) Y_{j}\right.\right. \\
& \left.\left.+Y_{i}\left(\prod_{k=i+1}^{j-1} Z_{k}\right) X_{j}\right]\right\}
\end{aligned}
$$

$>$ Quantum circuit $(N=3)$

UCC ansatz

> Parameters

$>$ State probabilities

> Ground-state energies

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

St ruct ure I earni ng ansatz

Trial wave functions

```
Algorithm 1 Rotoselect
Input: Function calculating expectation values with respect
    to each quantum circuit \(U:\langle M(U)\rangle\). Here, \(M\) represents
    a Hermitian operator. The quantum circuit \(U\) with the
    maximum value of the depth, \(D\), is composed of rotation
    gates at the depth \(d, U_{d}\left(\theta_{d}, H_{d}\right)=H_{d}\left(\theta_{d}\right)\) (e.g., \(R_{X}\left(\theta_{d}\right)=\)
    \(\left.\exp \left[-i \frac{\theta_{d}}{2} X\right]\right)\), and the CNOTs. Here, \(\theta_{d}\) is a parameter
    at the depth \(d\) and \(H_{d}\) is the element of the set of the
    rotation operators \(\left\{I, R_{X}, R_{Y}, R_{Z}\right\}\). Axes of rotation gates,
    i.e. \(I, R_{X}, R_{Y}\), or \(R_{Z}\), are chosen in order to minimize the
    expectation value.
Output: Optimized quantum circuit \(U_{\text {opt }}\). Here, \(U_{\text {opt }}\) is op-
    timized with respect to \(\theta_{d}\) and \(H_{d}\).
    Initialize \(\theta_{d} \in(\pi, \pi]\) and \(H_{d} \in\left\{I, R_{X}, R_{Y}, R_{Z}\right\}\) for \(d=\)
    \(1, \cdots, D\) heuristically or at random. (In practice, initialize
    all \(\theta_{d}=0\) and all \(H_{d}=I\).)
    repeat
        for \(d=1, \cdots, D\) do
            Compute \(\theta_{d, P}^{*}\) for \(P \in\left\{I, R_{X}, R_{Y}, R_{Z}\right\}\) using SMO
            method, where \(\theta_{d, P}^{*}\) is the optimized parameter
            with the selected gate \(P\).
            \(\left.H_{d} \leftarrow \arg \min _{P}\langle M(U)\rangle\right|_{U_{d}\left(\theta_{d}, H_{d}\right)=U_{d}\left(\theta_{d}^{*}, P\right)}\)
            \(\theta_{d} \leftarrow \theta_{d, H_{d}}^{*}\), where \(\theta_{d, H_{d}}^{*}\) is the optimized parameter
            with the selected gate \(H_{d}\)
            end for
    until stopping criterion is met
    return optimized quantum circuit \(U_{\text {opt }}\)
```


St ruct ure I earning ansatz

> Rotating axes
$N=3, v=0$
$d=1, q=0$
$>$ Ground-state energies

Cont ent s

\square Quantum computing for nuclear structure properties?
$>$ Computations with quantum circuits
$>$ Computations with quantum annealing

Quant um Anneal i ng

Comparison of D-Wave systems [edit]

	D-Wave One	D-Wave Two	D-Wave 2X	D-Wave 2000Q ${ }^{[57][58]}$	Advantage ${ }^{[59][60]}$	Advantage $2^{[61][62]}$
Release date	May 2011	May 2013	August 2015	January 2017	2020	2023-2024
Topology				Chimera	Pegasus	Zephyr
Code-name	Rainier	Vesuvius	W1K	W2K	Pegasus P16	
Qubits	128	512	1152	2048	5640	$7000+(7440)$
Couplers ${ }^{[63]}$	352	1,472	3,360	6,016	40,484	
Connectivity				6	15	20
Josephson junctions	24,000	?	128,000	$128,472^{[60]}$	1,030,000	
I/O lines / Control lines	?	192	192	$200{ }^{[64]}$?	
Active area				$5.5 \mathrm{~mm}^{2}$	$8.4 \mathrm{~mm}^{2}$	
On-chip memory				22 kB	130 kB	
Operating temperature (K)	?	0.02	0.015	0.015	<0.015	
Power consumption (kW)	?	15.5	25	25	25	
Buyers	Lockheed Martin	- Google/NASA/USRA - Lockheed Martin	- Los Alamos National Laboratory - Google/NASA/USRA - Lockheed Martin	- Temporal Defense Systems - Google/NASA/USRA ${ }^{[65]}$ - Los Alamos National Laboratory	- Lockheed Martin - Los Alamos National Laboratory ${ }^{[66]}$ - Jülich Supercomputing Centre ${ }^{[67][68]}$ (Forschungszentrum Jülich)	

https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://en.wikipedia.org/wiki/D-Wave_Systems\#Computer_systems

Hybri d Quant um Anneal ing (HQA)

scientific reports

OPEN Hybrid quantum annealing via molecular dynamics

Hirotaka Irie ${ }^{1,2 \boxtimes}$, Haozhao Liang ${ }^{3,4}$, Takumi Doi ${ }^{2,3}$, Shinya Gongyo ${ }^{2,3}$ \& Tetsuo Hatsuda ${ }^{2}$

> Concept of HQA

Figure 1. Concept of hybrid quantum annealing via molecular dynamics.

Hybri d Quant um Anneal i ng (HQA)

> Ising Hamiltonian

$$
\mathcal{H}_{\text {Ising }}(s)=\frac{1}{2} \sum_{i \neq j}^{N} J_{i j} s_{i} \mathcal{s}_{j}+\sum_{i=1}^{N} h_{i} s_{i},
$$

$>$ Hamiltonian for quantum annealing

$$
\mathcal{H}_{\mathrm{QA}}(\sigma ; \tau)=A(\tau)\left[-\sum_{i=1}^{N} \sigma_{i}^{x}\right]+B(\tau)\left[\frac{1}{2} \sum_{i \neq j}^{N} I_{i j} \sigma_{i}^{z} \sigma_{j}^{z}+\sum_{i=1}^{N} h_{i} \sigma_{i}^{z}\right],
$$

Hybri d Quant um Anneal ing (HQA)

> Typical trajectories

Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

Hybri d Quant um Anneal i ng (HQA)

> Flowchart of HQA

Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

Results of I sing spin-glass

$>$ Ground-state energies

Quant um computing for nucl ear physi cs

Physics Letters B 807 （2020） 135536

Projected cooling algorithm for quantum computation

Dean Lee＊，Joey Bonitati，Gabriel Given，Caleb Hicks，Ning Li，Bing－Nan Lu，Abudit Rai， Avik Sarkar，Jacob Watkins

Facility for Rare Isotope Beams and Department of Physics and Astronomy，Michigan State University，East Lansing，MI 48824，USA

Lipkin model on a quantum computer

Michael J．Cervia，A．B．Balantekin，S．N．Coppersmith，Calvin W．Johnson，Peter J．Love，C．Poole，K．Robbins， and M．Saffman
Phys．Rev．C 104， 024305 －Published 3 August 2021

Simulating excited states of the Lipkin model on a quantum computer

Manqoba Q．Hlatshwayo，Yinu Zhang，Herlik Wibowo，Ryan LaRose，Denis Lacroix，and Elena Litvinova Phys．Rev．C 106， 024319 －Published 18 August 2022

