
Haozhao LIANG（梁豪兆）

Department of Physics, The University of Tokyo, Japan

December 19, 2022

YITP Workshop
"Fundamentals in density functional theory (DFT2022)"

December 7–20, 2022, Kyoto U., Japan

Quantum computing
for nuclear structure properties?



Haozhao LIANG（梁豪兆）

Department of Physics, The University of Tokyo, Japan

December 19, 2022

YITP Workshop
"Fundamentals in density functional theory (DFT2022)"

December 7–20, 2022, Kyoto U., Japan

Quantum computing (or machine learning) 
for nuclear structure properties?



https://www.nishina.riken.jp/

Chart of Nuclei (2020s)
~ 3000 nuclei

stable nuclei ~ 300 nuclei
unstable nuclei observed so far ~ 3000 nuclei
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Superheavy elements
 How to synthesize more new elements?
 What are quantum tunneling properties of SHE?
 Is there island of stability? New materials?



Periodic Table with National flags

Open question:
 Is there or where is the end of the periodic table?
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Chart of Nuclei (2020s)
~ 3000 nuclei

stable nuclei ~ 300 nuclei
unstable nuclei observed so far ~ 3000 nuclei
drip-lines (limit of existence)（theoretical predictions) ~ 8000 nuclei
magic numbers

Nuclear chart

Superheavy elements
 How to synthesize more new elements?
 What are quantum tunneling properties of SHE?
 Is there island of stability? New materials?
Neutron-rich isotopes
 How to synthesize more new isotopes?
 What will be the impacts for understanding origins of 

heavy elements? 
 What will be the impacts for handling nuclear wastes?



NSCL (USA)
FRIB (2022)

GANIL 
(France)
SPIRAL2 
(2019)

ISOLDE, CERN
HIE-ISOLDE (2014)

GSI (Germany)
FAIR (2025-2027)

RIBF RIKEN (Japan)
SRC+BigRIPS (2007)

EURISOL (Europe)
(Planned)

TRIUMF 
ISAC I-II

RAON (Korea) 
(2025)

Existing
Upgrading

IMP (China)
HIAF (2022)

Radioactive isotope beam facilities



Atomic nuclei

Atomic nucleus is a rich system in physics 
 quantum system
 many-body system (A ~ 100, spin & isospin d.o.f.)
 finite system (surface, skin, halo, …)
 open system (resonance, continuum, decay, …)

Spin and Isospin are essential degrees
of freedom in nuclear physics.

Tanihata:1985

Neutron halos R ~ A1/3? Not always!
11Li: a size as 208Pb



r-process nucleosynthesis and nuclear inputs

The 11 greatest unanswered questions of physics

Question 3
How were the heavy elements 
from iron to uranium made?



Nuclear inputs for r-process

 To provide and organize all these inputs in a systematic and consistent way

 e.g., changes in mass changes in half-lives, capture rates …
( not hybrid databases ! )

 more exp. data  more reliable extrapolation / smaller uncertainties
( higher accuracy ? )

Key exp. @ RIKEN
masses
β-decay half-lives
β-delayed n-emissions
(n, γ) cross-sections
……



Machine Learning for physics?
 We learn what we need ……

 We learn what we have less control ……

 We learn what we are guaranteed ……  
e.g., Imoto’s talk & works by Nagai, Akashi, Sugino, et al.

Machine learning



Machine Learning for physics?
 We learn what we need ……

 We learn what we have less control ……

 We learn what we are guaranteed ……  
e.g., Imoto’s talk & works by Nagai, Akashi, Sugino, et al.

Or
We build physics (space and time) in neural networks …
e.g., Koji Hashimoto’s talk

Machine learning



Nuclear mass models

 Theoretically, the development of nuclear mass model can be traced back to the
early age of nuclear physics, known as Bethe-Weizsacker liquid drop model in
1935.

 To take into account the nuclear shell effects: the microscopic models and the
microscopic-macroscopic (mic-mac) models.



Theories + Bayesian approaches

cf. Morales et al., PRC 81, 024304 (2010)

LDM: σRMS ~ 3.6 MeV

Strutinsky's energy theorem:
The nuclear binding energy may be 
separated into two main components: 
one large and smooth and another 
one small and fluctuating.

Strutinsky, NPA 95, 420 (1967)



Key ideas

 “To account for the small and fluctuating contribution, we train a suitable
neural network on the mass residuals between the LDM predictions and
experiment, as given in the latest Atomic Mass Evaluation (AME2012).”

 “Once trained, we used the resulting universal approximator δLDM(Z, N) to
validate the approach and later to make predictions in regions where
experimental data are unavailable.”

 Figure 1: A feed-forward neural network with a 
single hidden layer, two inputs Z and A, and a single 
output f = δLDM(Z, A)

Bayesian Neural Network

Utama, Piekarewicz, and Prosper, PRC 93, 014311 (2016)
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Theories + Bayesian approaches

 likelihood function p(D|ω)
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Numerical details

Inputs: 
 2 inputs (I=2): Z, A
 4 inputs (I=4): Z, A, δ, P;     δ=[(-1)Z+(-1)N]/2, P=νnνp/(νp+νn)

Hidden units:
 2 inputs (I=2): H=42
 4 inputs (I=4): H=28

Number of parameters: 169
Data:
 Entire set: 2272 nuclei in AME2016 (Z, N>=8 and σexp<=100 keV)
 Learning set: 1800 data randomly selected from entire set
 Validation set: the remaining 472 data in entire set
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cf. Utama, Piekarewicz, and Prosper, PRC 93, 014311 (2016)



Rms deviations of mass and Sn

Mass

Sn

 The predictions of nuclear mass and
neutron-separation energy are
significantly improved with the
BNN approach.

 After the improvement using the
BNN approach with four inputs, the
rms deviations are generally around
200 keV.

 The BNN with four inputs is more
powerful than the BNN with two
inputs, especially for the neutron
separation energy.

Niu and HZL, PLB 778, 48-53 (2018) 



Designs of BNN

In order to take into account as 
much physics as possible
 To design appropriate output(s)
 To design appropriate inputs
 To design appropriate network 

structure

In this work
 Outputs: Emic, S*, Q*

 Inputs: N, Z, Emic(model)
 Network: 9 different Bayesian networks

Reference mass models
 Macroscopic mass model: BW2
 Macro-microscopic mass models: KTUY, FRDM12, and WS4
 Microscopic models: RMF and HFB-31
 High-precision global mass models: Bhagwat and DZ28



Even-odd effects and BNN designs
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Niu and HZL, PRC 106, L021303 (2022)



A benchmark to FRDM12

Fig: Panels (a) and (b) represent Emic of FRDM12 and BNN
predictions. Panel (c) represents ΔEmic between Emic of FRDM12
and those predicted by BNN approach.

(a)

(b)

(c)

 BNNFRDM12 predictions are in excellent
agreement with the Emic of FRDM12 for nuclei
in and not very far from the training region,
which also shows clear shell structure information.

 The deviations between BNNFRDM12 predictions
and Emic of FRDM12 are relatively large for very
neutron-rich nuclei and super heavy nuclei.

Model M Sn S2n Sp S2p SD Qβ

BNNI3_4 0.093 0.092 0.125 0.097 0.130 0.113 0.109

Table: The rms of M, Sx, and Qx between FRDM12 and BNNFRDM12

predictions for nuclei in Tset and other nuclei in FRDM12.



A benchmark to FRDM12

Fig: The rms deviations of BNN mass predictions with
respect to the mass predictions of FRDM12 as a
function of the minimum distance r to the isotopes in
the training region. The squares and circles denote the
average errors of BNNFRDM12 and BMM for the nuclei
with the same r.

 The BNNFRDM12 can well
reproduce the FRDM12
masses within 100 keV for
nuclei in Lset.

 The rms deviation between
BNNFRDM12 predictions and
FRDM12 masses increases as
the increase of the distance r.
It is very similar to the average
error of BNNFRDM12, which
indicates the BNN can give
reasonable evaluations of the
theoretical uncertainties.



Experimental data



New Mass Model --- BMM

Fig: Left panel: Emic of BMM with the training data from Tset of AME16. Right panel: mass differences
between the experimental data and BNN predictions.

Model M Sn S2n Sp S2p SD Qβ

BMM 0.084 0.078 0.105 0.083 0.111 0.096 0.099

HFB31 0.559 0.451 0.456 0.489 0.496 0.566 0.557

FRDM12 0.576 0.340 0.442 0.341 0.420 0.411 0.450

WS4 0.285 0.254 0.261 0.261 0.300 0.324 0.327

 The first nuclear mass model with accuracy within 100 keV is constructed. Its 
accuracies to S* and Q* are also much higher than other mass models.



BMM extrapolations

Niu and HZL, PRC 106, L021303 (2022)
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Skyrme HFB+pnQRPA

 Skyrme HFB+pnQRPA (SkO’) with a finite-range pairing force

 Isovector (T = 1) pairing (Gogny D1S)

 Isosclar (T = 0) pairing (two-Gaussian)

with g1 = 1, g2 = -2, μ1 = 1.2 fm, μ2 = 0.7 fm

 Both allowed and first-forbidden transitions  β-decay half-lives



Strengths of isoscalar pairing

Minato, Niu, HZL, PRC 106, 024306 (2022)

cf. Niu, Niu, HZL, Long, Niksic, Vretenar, 
Meng, PLB 723, 172 (2013)

 Optimized isoscalar pairing strengths Vopt determined to reproduce T1/2 of
NUBASE2016

 Isoscalar pairing strengths in
Cd isotopes estimated by BNN
(VBNN)



Predictions of nuclear half-lives

 Ratios between calculated and
experimental half-lives

 The results of this work, D3C*, and pnFAM Minato, Niu, HZL, 
PRC 106, 024306 (2022)

D3C*: Marketin, Huther, and 
Martinez-Pinedo, PRC 93, 
025805 (2016)
pnFAM: Ney, Engel, Li, and 
Schunck, PRC 102, 034326 
(2020)

 mean deviation

 standard deviation



Machine Learning for physics?
 We learn what we need ……

 We learn what we have less control ……

 We learn what we are guaranteed ……  
e.g., Imoto’s talk & works by Akashi, Sugino, et al.

Or
We build physics (space and time) in neural networks …
e.g., Koji Hashimoto’s talk

Machine learning
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A pioneering work: QC for atomic nuclei



 Deuteron Hamiltonian (discrete variable representation in HO basis)

where

 Results

Model setup and main results

Dumitrescu et al., PRL 120, 210501 (2018)



 The qubits come in a variety of physical implementations, with some
represented by the spin up or down of atoms and others by two excited states
in a superconducting circuit, for exmple.

 In general, problem solving using quantum computers involves three main
blocks:

I. formulate the problem to be solved in terms of unitary matrices

II. rewrite those matrices in terms of gates that can be realized on a given
quantum computer

III. implement and try to improve the efficiency of (II), reducing the number of
gates as much as possible

Introduction (by Gandolfi)

Gandolfi, Physics 11, 51 (2018)



 At the end of these operations, the ancilla qubit is measured, returning either
zero or one.

 This measurement, however, is sampling just one possibility out of many, so it
is necessary to repeat the measurement many times and take the average.

Introduction (by Gandolfi)

Gandolfi, Physics 11, 51 (2018)



 Deuteron Hamiltonian (discrete variable representation in HO basis)

where

 Quantum computers manipulate qubits by operations based on Pauli matrices

Model setup and quantum programming

Dumitrescu et al., PRL 120, 210501 (2018)



 Variational wave function

 Computing architectures

 QX5 and 19Q chips: with a single qubit connected to up to three neighbors
 It works here only requires up to two connections for each qubit

Model setup and quantum programming

https://en.wikipedia.org/wiki/Quantum_logic_gate
https://algassert.com/quirk

Dumitrescu et al., PRL 120, 210501 (2018)

https://en.wikipedia.org/wiki/Quantum_logic_gate
https://algassert.com/quirk


 Experimentally determined energies for H2

Results

Dumitrescu et al., PRL 120, 210501 (2018)



Lipkin model

 Lipkin Hamiltonian



Lipkin model

 Quasi-spin formulation

 Hamiltonian

 Exact solutions (N = 2, 3, 4, 6, 8 with W = 0)

Lipkin, Meshkov, Glick,
Nucl. Phys. 62, 188 (1965)



Lipkin model

 Qubit representation of Lipkin Hamiltonian (W = 0)

 Trial wave functions (N = 2)

 Quantum circuit (N = 2)

 Number of parameters, O(2N), is needed for a complete expression of the trial
wave functions.



UCC and structure learning ansatz



UCC ansatz

 Trial wave functions

 Quantum circuit (N = 3)

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)



UCC ansatz

 Parameters

 Ground-state energies

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

 State probabilities



Structure learning ansatz

 Trial wave functions Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022)

 Quantum circuit (N = 3)
(an example)



Structure learning ansatz

Chikaoka and HZL, Chin. Phys. C 46, 024106 (2022) Rotating axes

 Ground-state energies
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Quantum Annealing

https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://en.wikipedia.org/wiki/D-Wave_Systems#Computer_systems

https://en.wikipedia.org/wiki/D-Wave_Systems#Computer_systems
https://en.wikipedia.org/wiki/D-Wave_Systems#Computer_systems


Hybrid Quantum Annealing (HQA)

Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

 Concept of HQA



Hybrid Quantum Annealing (HQA)

Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

 Ising Hamiltonian

 Hamiltonian for quantum annealing



Hybrid Quantum Annealing (HQA)

Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

 Typical trajectories



Hybrid Quantum Annealing (HQA)

Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

 Flowchart of HQA



Results of Ising spin-glass

Irie, HZL, Doi, Gongyo, Hatsuda, Sci. Rep. 11, 8426 (2021)

 Ground-state energies



Quantum computing for nuclear physics

QCoIn Working Group https://suuri.riken.jp/qcoin-wg/

https://suuri.riken.jp/qcoin-wg/
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