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From neutron star merger to “kilonova”
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Timemerger

gravitational wave

~10 ms ~1 s 1-10 days

dynamical  
mass ejection

post-merger 
mass ejection

“kilonova”

Kilonova: 
• Thermal emission (looks like single-temperature blackbody in UV-Optical-NIR) 
• Radioactively-powered by r-process elements



https://www.ligo.caltech.edu/WA/news/ligo20180817

By decoding kilonova emission…
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r-process nucleosynthesis mass ejection mechanism

heavier elements than iron



P-Cygni feature around 1 μm
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Sneppen, Damgaard+ 2024

Sr II ?
well investigated by LTE radiative transfer modeling 
but ionization states may actually deviate from LTE 

due to non-thermal electrons from beta decay

Watson+ 2019; 
Domoto+ 2021, 2022; 

Gillanders+ 2022

He I ?
Perego+ 2022; 
Tarumi+ 2023; 

Sneppen+ 2024

well known for supernova case  
but non-LTE ionization modeling is required

→ Non-LTE ionization modeling is needed for both elements 

kilonova AT2017gfo 
associated with GW170817



1. Non-LTE ionization modeling 

2. Constraints from observation 

3. Comparison with numerical simulation



Non-LTE ionization model

6Sneppen, Damgaard+ 2024

Helium

Strontium

• 19 bound states for He I, ground state for He II and He III 
• Consider both radiative and collisional processes 
• Also consider non-thermal ionization

• Consider up to 5th-ionized state (i.e. Sr VI)

ni+1

ni
= (

ni+1

ni )
*

+
1
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·q
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LTE population non-thermal ionization  
correction



Non-LTE effect for Strontium
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typical range until 5 days 
after the merger

Sr II is dominant over-ionized up to III-VI states

typical range until 5 days 
after the merger

non-LTE



1. Non-LTE ionization modeling 

2. Constraints from observation 

3. Comparison with numerical simulation



Conversion to the element abundance
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τsob =
πe2

mec
λl fltnl

• Absorption line strength can be estimated by Sobolev optical depth:

τsob nion ntotal
observed 
spectra

Depend on ionization model

nl nion



Required conditions from observation
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: Sobolev optical depth on the photosphereτ0

At all the epoch,  is requiredτ0 ∼ 1



Constraints on the  planeρHe − ρSr
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dashed: LTE for Sr 
solid: Non-LTE for Sr

1/ 2 ≲ τ0 ≲ 2



Constraints on the  planeρHe − ρSr
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photoionization 
effect

over-ionization 
by Non-LTE effect

dashed: LTE for Sr 
solid: Non-LTE for Sr

1/ 2 ≲ τ0 ≲ 2



Constraints on the density profile
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: mass density at 1 day after mergerρt3
d

LTE for Sr

1.43 days
2.42 days

3.41 days
4.40 days

He

Sr

▼: upper limit
shaded region: 10-90% contribution to the line

1.43 days
2.42 days

3.41 days
4.40 days

He

Sr
non-LTE for Sr
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LTE for Sr

1.43 days
2.42 days

3.41 days
4.40 days

He

Sr

1.43 days
2.42 days

3.41 days
4.40 days

He

Sr
non-LTE for Sr

in 0.15c ≲ vr ≲ 0.25c
Sr mass (non-LTE) Sr mass (LTE)

4 × 10−5 ≲
MHe

M⊙
≲ 3 × 10−4

6 × 10−7 ≲
MSr

M⊙
≲ 1 × 10−52 × 10−5 ≲

MSr

M⊙
≲ 1 × 10−3

integrate density

Constraints on the density profile

He mass



1. Non-LTE ionization modeling 

2. Constraints from observation 

3. Comparison with numerical simulation



Usually in numerical simulation papers…
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They usually show spatially integrated abundance Fujibayashi+ 2023

Now we can discuss spatially resolved abundance

short-lived remnant case long-lived remnant case



Short-lived remnant case
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He

Sr
total

dynamical + post-merger• Sr alone can roughly reproduce GW170817,  
    but Sr density in the simulation is a bit low. 
• When trying to match density,  
    He contribution cannot be ignored.

▼: upper limit
shaded region: 10-90% contribution to the line



Long-lived remnant case
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dynamical + post-merger

dynamical + post-merger

▼: upper limit
shaded region: 10-90% contribution to the line

• Sr is OK but He is too much.

He

Sr

total



Difference of mass ejection mechanism
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short-lived remnant case long-lived remnant case

dynamical ejecta is dominant post-merger ejecta is dominant

solid line: dynamical ejecta 
dashed line: post-merger ejecta



Comparison with outer mass
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in the solar mass Short-lived remnant case Long-lived remnant case

dynamical

total

He

Sr

post-
merger

total

He

Sr

2.86 × 10−3 (4.65 × 10−3)

4.68 × 10−9 (4.68 × 10−9)

1.18 × 10−7 (1.18 × 10−7)

5.35 × 10−7 (5.35 × 10−7)

4.29 × 10−6 (4.59 × 10−5)

6.15 × 10−5 (9.41 × 10−5)

4.70 × 10−4 (6.58 × 10−4)

2.56 × 10−4 (2.71 × 10−4)

1.33 × 10−3 (2.03 × 10−3)

3.00 × 10−3 (3.85 × 10−3)

1.26 × 10−5 (2.20 × 10−5)

4.29 × 10−6 (5.17 × 10−6)

4 × 10−5 ≲
MHe

M⊙
≲ 3 × 10−4

mass in  (mass in )0.15c ≲ vr ≲ 0.25c vr ≳ 0.15c

(roughly) within inferred range

too much

More specifically, long-term hydrodynamical modeling is important.

2 × 10−5 ≲
MSr

M⊙
≲ 1 × 10−3

Sr for LTE: 6 × 10−7 ≲
MSr

M⊙
≲ 1 × 10−5



Conclusion & Summary
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• We construct Non-LTE ionization model for He and Sr in neutron star merger ejecta. 

• Non-LTE ionization model is very important not only for He but Sr. 

• Compared with numerical simulation results,  
   short-lived case is roughly consistent with the inferred density profile in GW170817.


