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Mirror Symmetry
- from 3d to 2d
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1996 Eguchi-H-Xiong

While computing topological string amplitudes, we noticed

mirror symmetry :

G - model < > Landau-Ginzburg model
N-|
X = P Y =(C)
=V, —Y)e ~C+VY,+ -+ <
W=e +~--+€Y|+€ | "

c.f. 1992 Fendley-Intriligator ~ S-matrix

1993 Batyrev  quantum cohomology

1994 Givental J-function vs periods



mirror symmetry in 2d (2,2) QFTs

T

N

Vv

Q Q, Q. Q
Ow), , VL),

chiral, twisted chiral
MC , M

A-model, B-model

Tv
Qr Qp Q- Q-
U, LU,
twisted chiral, chiral
MK ? MC

B-model, A-model



— The mirror symmetry

G - model < > Landau-Ginzburg model
N-|
X = Cp"" V=)
=Y, = Th- ~C+Y 4+ Y
W=ce +'--+€Yl+€ | "

was later explained and generalized using

2d (2,2) gauged linear 0 -model. 2000 H-Vafa

N =

CP
|

appears as effective target at Fayet-lliopoulos § =Retl >0

~ G=0U0, V=cCcn®™



G(\z N) :{ subspace of CN of dimension k }

U ) - S“L(u,a:)/_ oo (B
U k) x U (Nl [ “ )}

[[¢

dim Glk,N) = kR (N-k)

X (Glwn) = (1)
cf G(N)= CP



and "found" mirror symmetry :

g - model < > Landau-Ginzburg model

— k (N-k) Ya.s
>< B G(k'N) \(—- (Cx) > (e >|sasu, s b s Wk
size= T

(

—Yl a, ‘Yau ‘0«,+(
l+Z Y(O( - Yoo )

W

~t+ Y
£ e e, Nk

generalizing the h=| case.

It works for the topological string amplitudes bUt X



G (kN) 6 -model:

@ G(k,N) iscompact v discrete spectrum
@ X = k(N-k) vacua with mass gap

@ SUN) symmetry ~» N-| Noether charges

((Cx)km-k), W ) LG-model :

2

U= (w’l

@ #Crit(W) < k(N-k) M

M < : runaway potential

@)~
v~  continuous spectrum

- k (N-k
@ T K(@‘)HN t»)): 2° ) k (N-k) topological charges



This is a problem!

. e b o k(N—k)
In EHX1996 a remedy by partial compactification of (o,

was proposed but no systematic way was found.

2005 Rietsch found a systematic way that solves D , @ and

possibly also @ :

SL.CY
PV

v - Langlands dual

(Cx)k(N-k) - Y C



We would like to understand

o How does \\_.. appear?

ERX

o Whether/Why Rietsch’s Y IS correct?

Why Langlands dual ?



Gauged linear 6-model ?

GleN) e~ G =Ulk), V=(Cc)"

but the analysis of HV2000 does not straightforwardly apply to

non-Abelian gauge groups




Compactification

4d N = 1 4d N = 2 ad N =4

O\ /&~ O\ /A~

3d N =2 3d N =4

O\ /4
2d (2,2)

O . circle

— . Segment



Compactification

4d N = 1 4d N= 2 4d N = 4

O A O o Do

3d N =2 3d N = 4

CX / mlrror symmetry

mirror symmetry



2001 Aganagic-H-Karch-Tong

partial SUSY
breaking

3dN=2 < 3d N=4
9

O mirror symmetry

with Abelian G of
2d (2,2) D de Boer-H-Ooguri-Oz-Yin 1996
mirror symmetry

with Abelian G of HV2000



3d N = 4 gauge theory

A G = Uk

H = Hom (C, ct) e H
C




3d N = 4 gauge theory

N

:

In 4 SUSY term :

G = Ulk)

H = Hom (C. C*) @ H
C

G = Ulk)
\V = Hom (€. €)@ Hom (¥, ")
@® End (C")

W = tr(N@@Q



3d N = 4 gauge theory

Fayet-lliopoulos =(0,0,$) 3§ >0:

J@ M .,..= M, = TGN g:“”

base

Breaking N =4 to N =2:
background scalar X to U0 C SUR > YU, R-symmetry

~y mass X, X, =2X to (J, é D

?—’N % M. = G(kN)

vector multiplet scalar _ _
Then send X — 00 to isolate it.



3d N = 4 mirror symmetry

v

T <
Q.
SUR),, SLQ),

vector, hyper
M., M,

mass, Fl

T V
Q.
SUR)Y, SUQR)L.

hyper, vector
M,, M,

FI, mass



3d N = 4 mirror symmetry

assume N > 2k

N
WV

SUN O g

N -2l |
Hanany-Witten 1996



vV

3d N = 4 mirror symmetry
(4) (4)

N
<
g(‘(-)
1| My

: . &) ) @)
mirror map : "= m, — m

also N-| masses <«- N-| Fls



N=4—>2 X-deformation: gives masses as

Will send X— 00 eventually.



LHS
Set i(‘\) _ NX 4 S(Z)

and looknear (O —~ —X

M, = GG

Size = § ©

\ 4

RHS = ?

N\



RHS @ Set VW(?’=0, W\(;): Nx +« €% andlook near G~ —~

kX

(h-0x

b+t )X

2X

2k2)x

0

X

3X

ClX

(2k-1)X

2X

2k X




RHS : Light fields are

1




Compactification on SR = \R/sz 7 §3A - §(2)

|
§2J\ = ?-T(R 534 < match at M = —m

2d (G(kN) ¢°-model has dynamical scale /\ so that

Sar (W) = N log (M)

) N \ B
Thus gu =S, = =R log (mR/\) = NY




2Y 2Y
0y 3y
kY : | :
bt 1Y . . :
- (2k-2)Y @Y
(-1)Y

2k




Integrating out matter fields including Kaluza-Klein modes, we obtain

AW = =2 e+ 80 fog(m+ i2)~1)

M, = <Q;)G/>+[3;Y) (3;= { (I \/ L
T

=2 for T
2d vector multiplet scalar (shifted)

b_éﬂ = _ Q? \Oj (m * LV)‘)
d Ga o "

- a TR M, -TRwW/

= ; Q. |°j ( € — € )

— T SjV\P; R 4+ ...

2 Q. e ‘ _

cancels with classical term and X-massed contributions
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~ 1 \SgnQ;.QRR@ kg
Wet = = = : v
<Q¢,G>+@®

: — Sgwn clT(R( £,6>
= — Z (TKR/\) S 9 @

\__ﬁ A 3.=1
R-o O Q;='2

Notealso (Q = 6-30\—\-LA2/' A, = A,L-#LR

@)= TR 6 &+ ¢

1]

Thusas R— 0,

1
(rn)



3. =1 fields are all but T’s, i.e.

Pgod hOod
O O
\@(‘@\ o
(D
N —<®a,@>




However, we obtained a model without partial compactification.

We must have made some mistake somewhere....

Also, relation to Langlands duality (if any) is not clear.

Perhaps, it is better to consider compactification on segment.

4d N =4

/ E
— S-duality

3d N = 40
/_. mirror symmetry
It is indeed an active area

2d (2,2)
D of research...

mirror symmetry
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