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Topological string and plane
partition

Veneziano type amplitudes as a building block
of Nekrasov partition function (q=1).
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Inspired by Okounkov-Reshetikhin-Vafa (hep-th/0209208)
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Topological string and plane
partition

Counting of plane partitions by discrete time
evolution of the Young diagram
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Figure 3: A 3d partition and its diagonal slices
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Topological string and plane
partition

Generating function of the numbers of plane partitions

1
Ms(q) = H (1—q") (Z k ( k)2>

n=I

MacMahon function and the Hodge integral

Zrop = exp (X N /M c31<H>> = Ma(g)?

g

d=—c

Perivation of topological vertex (hep-th/0309208)
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Refined MacMahon function

MacMahon function of degree d

Ma(q) =PE.[fa(@)],  falg) = W
Unfortunately d=4 fails to count solid partitions

Plethystic exponential : Character of symmetric algebra

1
P.E.[F(t1,t2,--- ,t¢)] = exp (Z EF(t’f,t’;,--- ,t?)) :
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Refined MacMahon function

Let us introduce the following “refinement”

M(k) |: :| (q) P.E. [ k )(q1; TG 7tk’q):|
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We will see the generating functions of BPS state counting
are expressed in terms of refined MacMahon functions
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Generalized AVHM equations
AVHM description of 4d Yang-Mills Instanton
ADHM = BPS condition for D0-D4 system
Introduce two vector spaces = “Chan-Paton bundles”

dime N =n dim¢ K =k
for P4 brane for V0 brane
Bi, € Home(K,K)  I,J' € Home (N, K)
pc = [B1,Ba] +1J =0  Fterm condition
P-term condition can be traded with the stability condition



Generalized AVHM equations
One can consider BPS condition for P0-P6 and P0-P8 systems

P0-P6 BPS condition
Bi2s, Y € Home(K,K) I=J' € Home(N, K)

ue = [B;, B+ %eijk Blrl o0 s D
P0-P8 BPS condition (only for Calabi-Yau)
Bi1234 € Home(K,K) I=J' € Home(N, K)
pe = [Bay Bi] + 5 unea [BY, BY] =0

Lis required for imposing the stability condition
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Generalized ADPHM equations

(Virtual) Dimensions of the moduli space
FGLe C——-{(Bi; 1)} —— {ADHM]

symmetry Variables Constraints
dim¢ M4A%HM = 2nk, dime Mg]%HM =10 dim¢ Mi%HM = nk,

Only M33um has regular tangent space
M3 cannot be hyperKaehler
The action of (q1,--- ,94) on C? and the maximal torus of

Un) : (€™,---,e™) induce the topic action on M3ty
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Equivariant characters

Fixed points of the toric action are labelled by partitions
(d=2), plane partitions (d=3) and solid partitions (d=4)

At each fixed point the (virtual) tangent space of M3,
is decomposed into the rep. space of the toric action

This is the equivariant charactor and it gives the weight
of the localization computation of path integral

Localization = sum over the fixed points
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Topological partition function
Zioblai-g) — (PEDarle)) = BPE[Elg:q)]

(PE.[xx(2:)]) =) a"P.E.[x«(@)] Llocalization

-1 —1 —1
6D SE hgy ™ hgy ™ hags
Zoop,uq) = M3 [ o ] (1)

Nekrasov (2008), Okounkov (2015)
M theoretic! ¢ :=h"%2q, q5:=h 2q"
41G29394q5 = 1
The coupling const is on an equal footing with a:
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Topological partition function

gt hasl Ay h
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Awata-HK. (2009)
It does NOT depend on the Coulomb woduli (a1, - ,a,)

78D M(4)l gigz | 9293 931 | Y ] :
top,U(1),adj — o 0 a3 a4 Mlq ,LL gL (1)

. (k) (4) I Nekrasov (2017)
It is NOT A5 but M5Y which appears

m(ejteg)(egtez)(ez+eq)
Ztop U(1),adj o M3(q) e
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BPS/VOA correspondence 77

Z q'™(Infinite Product) = Infinite Product

“Super-Integrability” ?
Exchange relation of VOA

7: (2, W)V )V (w) = gji(w, 2)V (w)V (2)

By oz w)i= (¢ qui(z ¢ Tujle fo W)
Ping-lohara-Miki algebra

VEV of vertex operators, screening operators
—> Infinite product
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BPS/VOA correspondence 77

M theory vertex vy )= Y (—9)"a(xn)

T—(A\,u,v)
is proposed for computing Z82  Nekrasov-Okounkov (2014)
In a particular limit
q1,93 — 0, (|a1| << lgs|); g2 — 00; h = fixed
Vi,uv reduces to the refined TV (intertwiner of PIM)
Awata-Feigin-Shiraishi (2012)
Is there any underlying VOA for M theory vertex?

Concerning z22

top

Is there any VOA acting on the space of solid partitions?
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