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Introduction

• Quantum Information gives a new perspective on quantum field theories 

• New Tools in QFT: measures of entanglement, distance between states,             
complexity, OTO correlators etc. 

• 2d CFT is a perfect playground for “defining”/exploring these tools 

• Advantage: Symmetry (computation), numerics (critical points), RT (HRT)  

• We can scan and classify 2d CFTs by the properties of these tools in various 
corners of parameter space. (Ideally holographic vs non-holographic CFTs).



Universality in CFT 1+1 [Holzhey,Larsen,Wilczek’94] 

[Calabrese, Cardy’04] 
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Useful to extract the central charge (numerics)!

Ground state [Calabrese, Cardy’16] 

SA ⇠ c t SA ⇠ c ⇥ const

RT (HRT) results confirm the large c behaviour!

Can we be less universal but still under control?

Local Operator Excitations!

Quenches
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CFT in 1+1 d

A

oh

How does this change (Renyi) entanglement entropies of A?

l
“Local quench” setup

[Nozaki,Numasawa,Takayanagi’13]
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⇢A(t) = TrAc [⇢(t)] �S(n)
A (t) ?



• Q1: How much data about a CFT can we extract numerically ?  

• Q2: Large c vs “holographic” behaviour? 
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This talk: Some modest progress in these directions
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t = 0, we insert this operator at the point x = −l, which
creates an entangled pair. The pair propagates in the
left and right directions at the speed of light. When
l < t < l + L, one fragment stays on the subsystem A
and the other on B, which leads to the log 2 entropy.
When 0 < t < l or t > l + L, both fragments live in B
and thus the entropy vanishes. This argument based on
the causal propagations explains the result (15).
This behavior is universal for any primary operators in

any CFTs as is clear from (12), though the explicit value
of Renyi entropy for l < t < l+ L depends on the choice
of operator and CFT as we will study below.
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FIG. 2. The time evolution of ∆S
(2)
A

for O2. We set l =
1, L = 1.

In general CFTs, the function G(z, z̄) can be expressed
using the conformal blocks [8]:

Ga(z, z̄) =
∑

b

(Cb
aa)

2Fa(b|z)F̄a(b|z̄), (16)

where b runs over all primary fields. In our normalization,
the conformal block Fa(b|z) behaves in the z → 0 limit:

Fa(b|z) = z∆b−2∆a(1 +O(z)), (17)

∆b is the conformal dimension of Ob.
Since we found (z, z̄) → (0, 0) when 0 < t < l or t >

l + L, we get the behavior Ga(z, z̄) ≃ |z|−4∆a, as the
dominant contribution arises when b = 0 i.e. when Ob

coincides with the identity O0(≡ I). Applying (12), we

get ∆S
(2)
A = 0, as expected from the causality argument.

To analyze the entropy when the causality condition
l < t < l + L is satisfied, we need to apply the fusion
transformation, which exchanges z2 with z4 (or equally
z with 1− z):

Fa(b|1− z) =
∑

c

Fbc[a] · Fa(c|z), (18)

where Fbc[a] is a constant, called Fusion matrix [9, 10].
In the limit (z, z̄) → (1, 0), we obtain

Ga(z, z̄) ≃ F00[a] · (1− z)−2∆a z̄−2∆a . (19)

Therefore we find the following expression from (12):

∆S
(2)
A = − logF00[a]. (20)

Moreover, in rational CFTs, based on the arguments
of bootstrap relations of correlations functions [9, 11], it
was shown in [10] that F00[a] coincides with the inverse
of the quantity called quantum dimension da:

F00[a] =
1

da
=

S00

S0a
, (21)

where Sab is the modular S matrix of the rational CFT
we consider. In this way we obtain the remarkably simple
result for two dimensional rational CFTs:

∆S
(2)
A = log da, (22)

when l < t < l + L.
For example, if we consider the (p+1, p) unitary min-

imal model and choose Oa to be the (m,n) primary op-
erator [8], we can explicitly confirm (18) and (21) using

the expressions of four point functions in [12] and ∆S
(2)
A

for l < t < l+ L is found to be
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RENYI ENTROPY FOR GENERAL n

The n-th Renyi entanglement entropy can be obtained
from the formula (5) by computing the 2n point func-
tions. Owing to the previous discussions, since we are
interested in the non-trivial time period: l < t < l + L,
we can assume the limit L → ∞ and employ the simple
conformal map w = zn. Then the 2n points z1, z2, · · ·, zn
in the z coordinate are given by

z2k+1 = e2πi
k
n (iϵ+ t− l)

1
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1
n
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1
n ,
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1
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1
n

z̄2k+2= e−2πi k
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1
n = e−2πi k+1/2

n (l + t− iϵ)
1
n . (24)

Then we get

⟨O†
a(w1, w̄1)Oa(w2, w̄2) · · · Oa(w2n, w̄2n)⟩Σn

(⟨Oa(w1, w̄1)†Oa(w2, w̄2)⟩Σ1
)n

= Cn · ⟨O†
a(z1, z̄1)Oa(z2, z̄2) · · · Oa(z2n, z̄2n)⟩Σ1

, (25)

where we defined

Cn =

(

4ϵ2

n2(l2 − t2)

)2n∆a

·
2n
∏

i=1

(ziz̄i)
∆a . (26)

Quasi-particle

A

oh

�S(n)
A

RCFTs [He,Numasawa,Takayanagi,Watanabe’13]

for any member of a conformal family! [P.C, Veliz-Osorio’15],[Chen,Guo,He,Wu’15] 

log dO

Can we see this numerically at the critical point?

[Fradkin,Dong,Leigh,Nowling'08] 2+1 d:



Ising Model
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Second Renyi 
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CFT data:

3

for which f� < 0 and f+ > 0 and expand to the leading
order in ✏. The results for the � and ✏ read

�S(2),�
L ' log

p
2� ⇡✏

2N

f� + f+
f�f+

' log
p
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N
,

�S(2),✏
L ' ⇡2✏2

N2

f2
� + f2

+

f2�f2
+

' 2⇡2✏2

N2
, (14)

where we used that both f⌥ are smaller than 1.
3. Numerical approach.

We consider quantum Ising model in a transverse mag-
netic field on a 1d chain of N spins

H = �
NX

n=1

⇥
�x
n�

x
n+1 + h�z

n

⇤
, (15)

where we assume periodic boundary conditions ~�1 =
~�N+1. The model is critical for h = ±1 and unless stated
otherwise, in this article we focus on h = 1.

The model can be mapped into the free fermion sys-
tem by Jordan-Wigner transformation and our numerical
results are performed in the free-fermion setup. For de-
tails, we refer to the Appendix. After the mapping the
Hamiltonian is diagonalized as

H = �
X

k

✏k

✓
�†
k�k � 1

2

◆
, (16)

where �k are fermionic annihilation operators which anni-
hilates the ground state of H and the dispersion relation
reads

✏k = 2
q

(h� cos k)2 + sin2 k. (17)

The dispersion relation is non-linear due to the discreet
nature of the system, which results in velocity of quasi-
particles depending on momentum k. In order to distin-
guish the results of that, we simultaneously consider the
model with linearized dispersion relation, namely

H lin = �
X

k

✏link

✓
�†
k�k � 1

2

◆
, (18)

where ✏link = vF k, vF = 2 is the velocity of quasiparticles
with k ! 0 at the critical point, and �k are the same
annihilation operators as in the Ising model.

The lattice operators that have � and ✏ fields as their
leading contributions in the continuum are known [17]

�(n) = �x
n , (19)

"(n) = �x
n�

x
n+1 � �z

n. (20)

We excite the ground state of critical Ising model with
operators O(n) (which can have support on more then
1 site) and allow it to evolve. We numerically calculate
the entropy of a block of L spins at a distance l from
the excitation for di↵erent time and subtract from it the
entropy of a block with no excitation. We discuss the
results for di↵erent O(n) below.

�(n) excitation

We show results in Fig. 1.
(a) In the peak �S(2) ⇡ 0.51 log 2 (oscilating),

�S(1) ⇡ 0.54 log 2 and visible tail. Both tail and os-
cillations disappear when H lin is used. [MR: What is an
e↵ect of finite ✏ here]
(b) �(S) does not depend on block size, system size

etc. Additionally everything collapses after rescaling
time by the block size (including tails - at least up to
some corrections which are not visible in this scale)
(c) Excitation in the middle of the block, so quasiparti-

cle with the same absolute momentum traveling left and
right should be leaving the block in the same time. (Still
there can be entanglement between di↵erent k, or en-
tanglement between quasiparticles traveling in the same
direction – can we check it somehow?). The signal dis-
appears (almost, check if this depends on N) when H lin

is used.

✏(n) excitation

The results are presented in Fig. 2.
(a) Non-zero signal. With sharp peaks when the signal

is entering and leaving the block, which then disappears
in a long tail. When H lin is used, in the plateau �S(2) ⇡
0.28, and �S(2) ⇡ 0.56. Additional peaks when entering
(leaving) the block. Possible interpretation of finite ✏
(but we cannot exclude other interpretations ...) [MR:
Can we compare in some plot with finite ✏ in CFT.]
(b) everything collapses after rescaling time by the

block size (including tails - at least up to some corrections
which are not visible in this scale)
(c) We can recover the value of at the platue of H lin

if we put the block next to the excitation. This can be
used in MPS calculations.

�(n+ 1)� �(n) excitation

4. General excitations.

Using the map to free fermions we can also study more
general excited states by acting with local operators on
the chain. However the computations in CFT using the
replica trick become much more cumbersome and were
only done for two excitations in [23]. This section will
then serve as a collection of new predictions for the evo-
lution of the Rényi entanglement entropies in CFT.
We begin with states were operators were few operators
were inserted on su�ciently separated sites and in some
distance to the entangling block. We chose the block to
be large enough so that there is a time where all the
quasiparticles are inside. From numerical results it is
clear that in such excited states the entanglement en-
topy is a sum of the quantum dimensions of the operators
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lution of the Rényi entanglement entropies in CFT.
We begin with states were operators were few operators
were inserted on su�ciently separated sites and in some
distance to the entangling block. We chose the block to
be large enough so that there is a time where all the
quasiparticles are inside. From numerical results it is
clear that in such excited states the entanglement en-
topy is a sum of the quantum dimensions of the operators

3

for which f� < 0 and f+ > 0 and expand to the leading
order in ✏. The results for the � and ✏ read

�S(2),�
L ' log

p
2� ⇡✏

2N

f� + f+
f�f+

' log
p
2� ⇡✏

N
,

�S(2),✏
L ' ⇡2✏2

N2

f2
� + f2

+

f2�f2
+

' 2⇡2✏2

N2
, (14)

where we used that both f⌥ are smaller than 1.
3. Numerical approach.

We consider quantum Ising model in a transverse mag-
netic field on a 1d chain of N spins

H = �
NX

n=1

⇥
�x
n�

x
n+1 + h�z

n

⇤
, (15)

where we assume periodic boundary conditions ~�1 =
~�N+1. The model is critical for h = ±1 and unless stated
otherwise, in this article we focus on h = 1.

The model can be mapped into the free fermion sys-
tem by Jordan-Wigner transformation and our numerical
results are performed in the free-fermion setup. For de-
tails, we refer to the Appendix. After the mapping the
Hamiltonian is diagonalized as

H = �
X

k

✏k

✓
�†
k�k � 1

2

◆
, (16)

where �k are fermionic annihilation operators which anni-
hilates the ground state of H and the dispersion relation
reads

✏k = 2
q

(h� cos k)2 + sin2 k. (17)

The dispersion relation is non-linear due to the discreet
nature of the system, which results in velocity of quasi-
particles depending on momentum k. In order to distin-
guish the results of that, we simultaneously consider the
model with linearized dispersion relation, namely

H lin = �
X

k

✏link

✓
�†
k�k � 1

2

◆
, (18)

where ✏link = vF k, vF = 2 is the velocity of quasiparticles
with k ! 0 at the critical point, and �k are the same
annihilation operators as in the Ising model.

The lattice operators that have � and ✏ fields as their
leading contributions in the continuum are known [17]

�(n) = �x
n , (19)

"(n) = �x
n�

x
n+1 � �z

n. (20)

We excite the ground state of critical Ising model with
operators O(n) (which can have support on more then
1 site) and allow it to evolve. We numerically calculate
the entropy of a block of L spins at a distance l from
the excitation for di↵erent time and subtract from it the
entropy of a block with no excitation. We discuss the
results for di↵erent O(n) below.

�(n) excitation

We show results in Fig. 1.
(a) In the peak �S(2) ⇡ 0.51 log 2 (oscilating),

�S(1) ⇡ 0.54 log 2 and visible tail. Both tail and os-
cillations disappear when H lin is used. [MR: What is an
e↵ect of finite ✏ here]
(b) �(S) does not depend on block size, system size

etc. Additionally everything collapses after rescaling
time by the block size (including tails - at least up to
some corrections which are not visible in this scale)
(c) Excitation in the middle of the block, so quasiparti-

cle with the same absolute momentum traveling left and
right should be leaving the block in the same time. (Still
there can be entanglement between di↵erent k, or en-
tanglement between quasiparticles traveling in the same
direction – can we check it somehow?). The signal dis-
appears (almost, check if this depends on N) when H lin

is used.

✏(n) excitation

The results are presented in Fig. 2.
(a) Non-zero signal. With sharp peaks when the signal

is entering and leaving the block, which then disappears
in a long tail. When H lin is used, in the plateau �S(2) ⇡
0.28, and �S(2) ⇡ 0.56. Additional peaks when entering
(leaving) the block. Possible interpretation of finite ✏
(but we cannot exclude other interpretations ...) [MR:
Can we compare in some plot with finite ✏ in CFT.]
(b) everything collapses after rescaling time by the

block size (including tails - at least up to some corrections
which are not visible in this scale)
(c) We can recover the value of at the platue of H lin

if we put the block next to the excitation. This can be
used in MPS calculations.

�(n+ 1)� �(n) excitation

4. General excitations.

Using the map to free fermions we can also study more
general excited states by acting with local operators on
the chain. However the computations in CFT using the
replica trick become much more cumbersome and were
only done for two excitations in [23]. This section will
then serve as a collection of new predictions for the evo-
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General excitations (quasi-particle phenomenology)

�S(n)
A =

kX
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log dO

| i = Oi...Ok|0i

[CFT 2 operators: Numasawa ’to appear] 
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Second Renyi entropy (Purity) (n=2 and finite interval A,primary)
J. Phys. A: Math. Theor. 42 (2009) 504005 P Calabrese and J Cardy

Figure 2. A representation of the Riemann surface R3,1. Reprinted with permission from [12].

of total length L behaves as

log Z = f1Aa−2 + f2La−1 + · · · (10)

where f 1 and f 2 are the non-universal bulk and boundary-free energies. Note, however, that
these leading terms cancel in the ratio of partition functions in (8).

In a conformal field theory, as was argued by Cardy and Peschel [14], there are also
universal terms proportional to log a. These arise from the points of the non-zero curvature of
the manifold and its boundary. In our case, these are conical singularities at the branch points.
In fact, it is precisely these logarithmic terms which give rise to the non-trivial dependence of
the final result for the entropy on the short-distance cut-off a. For the moment let us simply
note that, in order to achieve a finite limit as a → 0, the right-hand side of (8) should be
multiplied by some renormalization constant Z(A, n).

2.4. From replicated world-sheet to replicated target-space: twist fields

In the simplest instances it is possible to directly calculate the partition function on a n-sheeted
Riemann surface, but in most of the cases this is very difficult. However, the surface we
are dealing with has curvature zero everywhere except at a finite number of points (i.e. the
boundaries between A and B uj , vj above). Since the Lagrangian density does not depend
explicitly on the Riemann surface R as a consequence of its locality, it is expected that the
partition function can be expressed as an object calculated from a model on the complex
plane C, where the structure of the Riemann surface is implemented through appropriate
boundary conditions around the points with non-zero curvature. Consider for instance the
simple Riemann surface Rn,1 needed for the calculation of the entanglement entropy of a
single interval [u1, v1], made of n sheets sequentially joined to each other on the segment
x ∈ [u1, v1], τ = 0. We expect that the associated partition function in a theory defined on
the complex plane z = x + iτ can be written in terms of certain ‘fields’ at z = v1 and z = u1.

The partition function (here L [ϕ](x, τ ) is the local Lagrangian density)

ZR =
∫

[dϕ]R exp
[
−

∫

R
dx dτL [ϕ](x, τ )

]
, (11)

essentially defines these fields, i.e. it gives their correlation functions, up to a normalization
independent of their positions. However, in the model on the complex plane, this definition
makes them non-local (see for a complete discussion [12]). Locality is at the basis of most of
the results in field theory, so it is important to recover it.
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Figure 2. A representation of the Riemann surface R3,1. Reprinted with permission from [12].
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Rational CFT (diagonal)

In rational CFTs 

where the coe�cients Fbd[O] are constants, which are called fusion matrices [27]. Thus by

using (67), in the limit (z, z̄) ! (1, 0), the conformal block is reduced to the contribution

from the vacuum sector:

G(z, z̄) ' F
00

[O] · (1� z)�2�O z̄�2�O , (69)

where we employed the fact that C0

OO = 1.

Therefore we find the following expression from (33):

�S(2)

A = � logF
00

[O] = log dO, (70)

where dO = 1/F
00

[O] is called the quantum dimension [27] and is related to the S-matrix of

the modular transformation by

dO = S
0O/S00

. (71)

4.3 Large c limit

Now we move on to the large c limit of 2d CFTs. We are interested in the time period

l < t < L+ l, where we expect non-trivial results, corresponding to the limit (z, z̄) ! (1, 0)

as explained in (30). We will keep only the leading order of �O

c (⌧ 1) expansion. We will

discuss sub-leading corrections in the subsection 4.5 later.

Since we are motivated by the AdS/CFT, we are interested in those CFTs with gravity

duals. Therefore we would like to assume the existence of the gap in the spectrum such

that the density of states d(�) behaves like d(�) ⇠ O(1) for � < O(c). This corresponds

to the threshold where AdS black holes appear. Moreover, in the summation of conformal

blocks (65) we can ignore the contributions from intermediate states with large conformal

dimension �b ⇠ O(c), as their conformal blocks are exponentially suppressed in the large c

limit [29, 30].

These arguments are parallel with the paper [30], where the ground state entanglement

entropy in large c limit was analyzed. However, note that in that paper, the large c limit was

taken with �O

c kept finite because the correlation functions of twist operators were computed.

In our case, the operator O expresses the excitation above the vacuum and we do not need

any twist operators as we employed the conformal map to describe the replicated Riemann

surface ⌃
2

.

In our large c limit �O

c , �b

c ⌧ 1, we have the following simple and universal expression of

the vacuum conformal block [32, 29]:

FO(b|z) ' z�b�2�O ·
2

F
1

(�b,�b, 2�b, z), (72)

where
2

F
1

(a, b, c, z) is the hypergeometric function. This shows that for any �b ⌧ c the

conformal block FO(b|z) can only possess at most a logarithmic singularity ⇠ log(1 � z) in

the limit z ! 1.
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quantum dimension

G(z, z̄) =
X

a

F(a|z)F̄(a|z̄)

in order to extract the constant when z ! 1 z̄ ! 0

F(a|1� z) =
X

b

Fab[O]F(b|z) G(z, z̄) ' F00[O](1� z)�2hz̄�2h!

Finally

H
tot

= �
a

�H
a

⌦ H̄
a

�

da =
S0a

S00
=

dim (Ha)

dim (H0)

finite 

Information about the modular S-matrix of a CFT!



Large c [PC,Nozaki,Takayanagi’14]

[Zamolodchikov]

�S(2)
A ' 4�O · log 2t

✏

General arguments:

• conformal blocks exponentiate (factorisation)

• HRT in back-reacted geometry from a massive particle

• Heavy operator at large c CFT [Asplund,Bernamonti,Galli,Hartman’14]

�S(1)
A ⇠ c

6

log

t

✏

• Quasi-particle picture breaks-down [Asplund,Bernamonti,Galli,Hartman’15]

Origin of log(t) ?



SU(N)k  WZW

State excited by the operator in the fundamental rep.

4-point correlator from K-Z equations

h = h̄ =
N2 � 1

2N(k +N)
g↵� (�l) |0i

G(z, z̄) =
X

i,j

IiĪj
X

n

XnnF (n)
i (z)F (n)

j (z̄)

�S(2)
A = log[N ]

[P.C,Numasawa,Veliz-Osorio’16] 

3

3. Purity and entanglement scrambling. Now,
we turn our attention to entanglement. We are interested
in a local quench setup where a state is excited by a lo-
cal operator. More precisely, we take a pure state in a
1+1 dimensional CFT and divide space into two halves
A and Ā. Then, we insert a local operator O with di-
mension h = h̄ into Ā at, say x = �l, and study the
time evolution of entanglement in the system. In par-
ticular, we consider the evolution of the second Rényi
entropy; hereafter we refer to this quantity as the purity
(strictly speaking it corresponds to the logarithm of the
square of the reduced density matrix). Using the replica
method the purity can be extracted from the canonical 4-
point function G(z, z̄) ⌘ hO(0)O(z, z̄)†O(1)O†(1)i and
it reads [8]

�S

(2)
A (z, z̄) = � log

⇥|z(1 � z)|4hG(z, z̄)
⇤

, (10)

where the points entering the cross-ratios are expressed
in terms of the replica points as z

2
i = wi where

w1 = i(✏ � it) � l, w2 = �i(✏ + it) � l,

w̄1 = �i(✏ � it) � l, w̄2 = i(✏ + it) � l. (11)

As one takes ✏ ! 0, z̄ ! 0, meanwhile, z can become
either 0 or 1 for times earlier or later than l respectively.

In a RCFT given the singularity structure of G this

implies that �S

(2)
A vanishes at early times since only the

identity channel contributes. Moreover, since early and
late times are mapped to each other by the transforma-
tion (z, z̄) ! (1�z, z̄) one finds that the late time purity
can be extracted from the fusion matrix element F00[O].
Furthermore, this quantity corresponds to the inverse of
the quantum dimension of O’s conformal family. Hence,
at late times we have [8, 9]

�S

(2)
A (t) = log dO . (12)

Observe that the appearance of a constant contribution

at late time for �S

(2)
A is closely related to the singular

behavior

G(z, z̄) ! d

�1
O ((1 � z)z̄)�2h (13)

of the four-point function as (z, z̄) ! (1, 0). The au-
thors of [12] have argued that in holographic CFTs, where
the Ryu-Takayanagi formula [10] is valid, such singu-
larity disappears due to “scrambling of entanglement”.
This way, in our setup, the appearance of a the (non-
perturbative) quantum dimension at late times is re-
placed by a divergent logarithmic growth of the Rényi
entropy. Below, we will show how this behavior emerges
in the “holographic” large-c limit of WZW models.

It is also worth mentioning that the log dO increase can
be obtained from the topological entanglement entropy
[21] if one of the regions contain anyonic excitation [22].
At first sight the late time purity and the OTO are rather

similar objects i.e. both are captured by the vacuum con-
formal block. Naively, one would expect to be able to use
them interchangeably as indicators of quantum chaos, or
even to diagnose whether a CFT has a holographic dual.
This is in fact not the case and below we show a coun-
terexample displaying entanglement scrambling without
chaos.
4. On purity and OTO in SU(N)k WZW

In this section we consider the SU(N)k WZW model and
4-point function of operators g

↵
� (zi, z̄i) (and their conju-

gates) in the fundamental representation ↵ = {1, 0, ...0}
that have conformal dimension

h = h̄ =
N

2 � 1

2N

. (14)

where  = N + k. A general correlator that we employ
is

hg↵1
�1

(z1, z̄1)(g
�1)�2

↵2
(z2, z̄2)g

↵3
�3

(z3, z̄3)(g
�1)�4

↵4
(z4, z̄4)i

⌘ 1

|z12|4h|z34|4h
|z|4hG(z, z̄). (15)

Recall that we characterized OTO correlators by the
function f(z, z̄) which is related to G(z, z̄) via f(z, z̄) =
|z|2hG(z, z̄). To apply the above correlator in our OTO
we set ↵1 = ↵2, �1 = �2 and ↵3 = ↵4 with �3 = �4. On
the other hand, for the purity all the ↵s (and �s) and
must be equal.

The general 4-point functions (15) are well known so-
lutions of the Knizhnik-Zamolodchikov equations (see eg
[23]). The canonical correlator can be expanded in terms
of a�ne conformal blocks

G(z, z̄) =
X

i,j

IiĪj

X

n

XnnF (n)
i (z)F (n)

j (z̄), (16)

with i, j, n 2 {1, 2} and SU(N) factors I1 = �

↵2
↵1

�

↵4
↵3

, I2 =
�

↵4
↵1

�

↵2
↵3

. In our arguments we will only use X11 = 1, more
details can be found in [23].

Let us compute the purity first. In order to extract the
late time value, we apply the fusion transformation that
mixes conformal blocks

G(1 � z, z̄) =
X

i,j

IiĪj

X

n,m

XnncnmF (m)
3�i (z)F (n)

j (z̄) , (17)

where the relevant coe�cient is

c11 = N

�(N/)�(�N/)

�(1/)�(�1/)
= [N ]�1 = d

�1
g , (18)

with dg being the quantum dimension for the fundamen-
tal representation, where the quantum numbers are de-
fined as

[x] =
q

x/2 � q

�x/2

q

1/2 � q

�1/2
q = e

� 2⇡i
N+k

. (19)

Taking the limit of the conformal blocks for (z, z̄) !
(1, 0) (see App.A) leaves us with the log of the quantumExcitations respect level-rank duality N <-> k! 

affine blocks

2

Now take: ✏ ! 0 (z, z̄) ! (1, 0)



Large c in WZW 

Correlator becomes (h~1/2)

G(z, z̄) ' 1

|z|2 +
1

|1� z|2 +

r
�

c

✓
1

z(1� z̄)
+

1

(1� z)z̄

◆

4

dimension multiplied by the appropriate singularity such
that we get the log [N ] at late times. It is also interest-
ing to see that even though the four-point correlator is
expanded in terms of the a�ne conformal blocks, that
are sums of the Virasoro blocks, the relevant constant
is still hidden in the vacuum block. Moreover, from the
definition, we have [N ] = [k] which is in fact the conse-
quence of the level-rank duality for quantum dimensions
inherited by the purity. It will be an interesting future
problem to explore the power of level-rank duality in this
context and if it also holds for more general operators.

Let us study the OTO correlator. Extracting the mon-
odromy around z = 1 brings us to

f(z, z̄) = e

�2⇡i(h✓�2h)
X

i,j

IiĪj

X

n,m

XnnBnmf

(m)
i (z)f (n)

j (z̄).

(20)
where Bnm are the monodromy matrix elements of the
solutions of the hypergeometric equation (see e.g. [26]).
Taking the limit of (z, z̄) ! (0, 0) leaves only the terms

from f

(1)
1 and we are left with the overall exponent pref-

actor and the coe�cient B11 given by

B11 = 1 � 2ie

�i⇡(1�N
 ) sin2(⇡

 )

sin(⇡(1 � N
 ))

. (21)

After some algebra, and expressing the answer in terms
of quantum numbers we find that at late times

C

�
ij(t) ! e

�2⇡i(h✓�2h)
B11 = q

1
N + 1

2

⇣
q

�N+2
2 + [N � 1]

⌘

[N ]
.

(22)
We can compare this answer with our RCFT result
Eq.(3). Indeed, the S-matrix element for the present ex-
ample has been computed in [22] and it reads

S

⇤
↵↵

S00
= q

1
N + 1

2

⇣
q

�N+2
2 + [N � 1]

⌘
[N ] , (23)

and inserting di = dj = [N ] beautifully matches (3).
In particular, for the SU(2)k model, the late time OTO

reduces to C

�
ij(t) ! cos

⇣
2⇡

k+2

⌘
cos�1

⇣
⇡

k+2

⌘
and can be

extracted from the explicit form of the N = 2 modular
S-matrix. Note that, in general, the elements of the mod-
ular S-matrix can be complex (except the first row that
are related to quantum dimensions that are real).

Summarizing, we have shown that late time values of
the purity and OTO correlators are given in terms of the
quantum dimensions as well as the modular S-matrix. It
is interesting that, in RCFTs, OTOs give us the access
to the entire modular S-matrix whereas Rényi entropies
only to the first row S0i. It is also interesting to con-
sider the classical limit (k ! 1) of WZW models where
the purity becomes the log of the dimension of the fun-
damental representation, and the OTO correlator equals
one.

5. Large-c and scrambling without chaos
Finally, it is interesting to compare the behavior of the
purity and the OTO correlator in the large-c limit. In
the SU(N)k WZW the central charge is given by c =
k(N2�1)

k+N . By introducing the ’t Hooft coupling constant

� =
N

k

, (24)

we can define a ’t Hooft limit of large central charge with
the coupling fixed (weak or strong). The four-point corre-
lator has been analyzed in detail in this limit by [25] and
we apply their analysis in our context. For c ! 1, the
4-point correlator becomes (27) (Note that here, unlike
in [3], all our operators are light: h/c ! 0 as c ! 1).
Using this correlator, one can see that for a large cen-
tral charge the important singularities get “scrambled”,
which leads to a logarithmic growth of the purity

�S

(2)
A (t) ' 2h log

✓
2t

✏

◆
� log(2). (25)

This behavior comes from discarding terms proportional
to 1p

c
. However, if we include such corrections, then the

late time answer becomes the logarithm of the quantum
dimension in the large-c limit. It is illustrative to verify
this in the strong coupling regime, where h = 1/2 and
(27) can be computed by approximating the operators

g

↵
� (zi, z̄i) ' 1

k

Pk
i=1  

↵(zi) ̄�(z̄i) with complex fermions.
In this limit we have

G(z, z̄) ' I1Ī1

|z|2 +
I2Ī2

|1 � z|2 +

r
�

c

✓
I1Ī2

z(1 � z̄)
+

I2Ī1

(1 � z)z̄

◆
.

(26)
Using (10), it is clear that neglecting the last two terms
in the above expression leads to the logarithmic growth of
the purity and scrambling of entanglement in the large-c
limit. Another way to look at this order of limits issue
is that, at strong coupling, the time scale at which the
purity reaches the log dO can be estimated as t � l '
c1/4

2�1/4 ✏. If we then take the large-c limit first (like in
holography), we will not reach the finite constant and
we are left with the logarithmic growth with time i.e.
scrambling (see also discussion in [11]).

On the other hand, the late time value of the OTO cor-
relator comes from the first term in (26) (irrespectively
of the weak or strong coupling) and in f(z, z̄) it is just
1. For di↵erent operators ↵1 = ↵2 6= ↵3 = ↵4 only I2

vanishes so the result remains the same. Thus, OTO is a
good indicator of integrability even when entanglement
scrambles.
6. Conclusions We have shown that OTO correlators

in RCFTs approach to a universal constant at late times
which is completely determined in terms of the modular
S-matrix of the theory. We provided a non-trivial ex-
ample in the integrable SU(N)k WZW model. We also
argued in this setup, that in the large-c limit one may

�S(2)
A ' log

r
c

�

Time-scale at which the log of quantum dimension is reached

t ' l +
c1/4

2�1/4
✏

Parameters
c =

k(N2 � 1)

k +N
� =

N

k

[P.C,Numasawa,Veliz-Osorio’16] 
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Correlator becomes (h~1/2)
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dimension multiplied by the appropriate singularity such
that we get the log [N ] at late times. It is also interest-
ing to see that even though the four-point correlator is
expanded in terms of the a�ne conformal blocks, that
are sums of the Virasoro blocks, the relevant constant
is still hidden in the vacuum block. Moreover, from the
definition, we have [N ] = [k] which is in fact the conse-
quence of the level-rank duality for quantum dimensions
inherited by the purity. It will be an interesting future
problem to explore the power of level-rank duality in this
context and if it also holds for more general operators.

Let us study the OTO correlator. Extracting the mon-
odromy around z = 1 brings us to
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where Bnm are the monodromy matrix elements of the
solutions of the hypergeometric equation (see e.g. [26]).
Taking the limit of (z, z̄) ! (0, 0) leaves only the terms
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1 and we are left with the overall exponent pref-

actor and the coe�cient B11 given by

B11 = 1 � 2ie
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. (21)

After some algebra, and expressing the answer in terms
of quantum numbers we find that at late times
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We can compare this answer with our RCFT result
Eq.(3). Indeed, the S-matrix element for the present ex-
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and inserting di = dj = [N ] beautifully matches (3).
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S-matrix. Note that, in general, the elements of the mod-
ular S-matrix can be complex (except the first row that
are related to quantum dimensions that are real).

Summarizing, we have shown that late time values of
the purity and OTO correlators are given in terms of the
quantum dimensions as well as the modular S-matrix. It
is interesting that, in RCFTs, OTOs give us the access
to the entire modular S-matrix whereas Rényi entropies
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damental representation, and the OTO correlator equals
one.

5. Large-c and scrambling without chaos
Finally, it is interesting to compare the behavior of the
purity and the OTO correlator in the large-c limit. In
the SU(N)k WZW the central charge is given by c =
k(N2�1)

k+N . By introducing the ’t Hooft coupling constant

� =
N

k

, (24)

we can define a ’t Hooft limit of large central charge with
the coupling fixed (weak or strong). The four-point corre-
lator has been analyzed in detail in this limit by [25] and
we apply their analysis in our context. For c ! 1, the
4-point correlator becomes (27) (Note that here, unlike
in [3], all our operators are light: h/c ! 0 as c ! 1).
Using this correlator, one can see that for a large cen-
tral charge the important singularities get “scrambled”,
which leads to a logarithmic growth of the purity
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✓
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This behavior comes from discarding terms proportional
to 1p

c
. However, if we include such corrections, then the

late time answer becomes the logarithm of the quantum
dimension in the large-c limit. It is illustrative to verify
this in the strong coupling regime, where h = 1/2 and
(27) can be computed by approximating the operators
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In this limit we have
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Using (10), it is clear that neglecting the last two terms
in the above expression leads to the logarithmic growth of
the purity and scrambling of entanglement in the large-c
limit. Another way to look at this order of limits issue
is that, at strong coupling, the time scale at which the
purity reaches the log dO can be estimated as t � l '
c1/4

2�1/4 ✏. If we then take the large-c limit first (like in
holography), we will not reach the finite constant and
we are left with the logarithmic growth with time i.e.
scrambling (see also discussion in [11]).

On the other hand, the late time value of the OTO cor-
relator comes from the first term in (26) (irrespectively
of the weak or strong coupling) and in f(z, z̄) it is just
1. For di↵erent operators ↵1 = ↵2 6= ↵3 = ↵4 only I2

vanishes so the result remains the same. Thus, OTO is a
good indicator of integrability even when entanglement
scrambles.
6. Conclusions We have shown that OTO correlators

in RCFTs approach to a universal constant at late times
which is completely determined in terms of the modular
S-matrix of the theory. We provided a non-trivial ex-
ample in the integrable SU(N)k WZW model. We also
argued in this setup, that in the large-c limit one may

�S(2)
A ' log

r
c

�

Time-scale at which the log of quantum dimension is reached

t ' l +
c1/4

2�1/4
✏

Parameters
c =

k(N2 � 1)

k +N
� =

N

k

but no chaos!

[P.C,Numasawa,Veliz-Osorio’16] 



Conclusions/Future:

• Entanglement measures in field theory are very useful  for 
characterising local operator excitations!  

• Using QI tools we can extract more CFT data from the critical points                              
(full S and modular T matrix?) 

• How to see “holography” with QI tools  (log(t)<->? ) 

• Numerics for other Hamiltonians (Potts?) 

• General excitations at large c ? 

• Measures of chaos and relative entropy ?
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In this letter we investigate measures of chaos and entanglement scrambling in rational conformal
field theories in 1+1 dimensions. First, we derive a formula for the late time value of the out-of-time-
order correlators for these class of theories. Our universal result can be expressed as a particular
combination of the modular S-matrix elements known as anyon monodromy scalar. Next, in the
explicit setup of a SU(N)k WZW model, we compare the late time behaviour of the out-of-time
correlators and the purity. Interestingly, in the large-c limit, the purity grows logarithmically but
the out-of-time-order correlators remain constant. Therefore, we find that some systems may display
entanglement scrambling in the absence of chaos.

1. Introduction. Two-dimensional conformal field
theories (2d CFTs) have played an important role in un-
derstanding a number of interesting questions in theoret-
ical physics. In this vein they’ve become central tools in
the study of entanglement [1] and more recently quantum
chaos. Recently, Kitaev proposed that chaotic behavior
in quantum systems can be diagnosed by computing the
expectation value of the square of commutators of local
operators [2]. This essentially amounts to calculating the
out-of-time order (OTO) thermal correlator

C

�
ij(t) ⌘

D
O†

i (t)O†
jOi(t)Oj

E

�D
O†

i Oi

E

�

D
O†

jOj

E

�

. (1)

If this quantity vanishes exponentially at late times then
the quantum system is chaotic. A number of universal
properties of this object can be obtained for 2d CFTs. In
particular, its been argued that chaotic behavior might
be a telling characteristic of holographic CFTs [3–6].

On the other hand, one of the characteristic features of
CFTs at large central charge is a so-called scrambling of
entanglement [12]. One particular incarnation of scram-
bling is the evolution of Rényi entanglement entropies af-
ter local operator excitation and here we will focus on the
second Rényi entropy or simply the purity. Various stud-
ies showed that, for rational CFTs (RCFTs), purity satu-
rates to a constant equal to the logarithm of the quantum
dimension of the local operators conformal family [7–9].
Meanwhile, it is believed that in holographic CFTs (con-
sistent with Ryu-Takayanagi formula [10]) the Rényi en-
tropies will grow logarithmically with time [11, 12] (also
at large-c, the scrambling time can be naturally obtained
in a similar setup from the evolution of the mutual in-
formation in CFT and holographically [13–15][16].). This
means that in large c, holographic CFTs, the information

about non-perturbative constants (like quantum dimen-
sions or modular S-matrix) gets scrambled.

In this work we would like probe the similarity and
di↵erences between the purity and OTOs in the setup of
RCFTs and find out which specific (non-perturbative) in-
formation about the theory is forfeit by quantum chaos.
For that, we first fill the existing gap and compute the
late time value of the OTO correlators valid for any
RCFT. Next, we consider a non-trivial integrable 2d
CFT, the SU(N)k WZW model, where a number of
known results can be put in the new light of entanglement
scrambling and measures of quantum chaos. Moreover,
we consider a large-c ’t Hooft limit that shares some fea-
tures with holographic CFTs and compare the evolution
of purity and OTO correlators in this regime. We ob-
serve that, in the large-c limit, entanglement scrambles,
while the OTO approach a constant, thus, indicating the
absence of quantum chaos.

This letter is organized as follows: In Sec. 2, we com-
pute the late time value of OTO in RCFT and topological
quantum field theory (TQFT). In Sec. 3, we revise the re-
lationship between purity and entanglement scrambling.
In Sec. 4, illustrate both quantities for a SU(N)k WZW
model. Finally, in Sec. 5 study the behavior of these
quantities in the ’t Hooft limit. Finally, we conclude and
place details in two appendices.
2. Late time of OTO in RCFTs

In the present section we compute the late time value of
the OTO correlators (1) with insertion points [4]

z1 = e
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� (t+i✏1)
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� 2⇡
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,
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, z̄2 = e

� 2⇡
� (t+i✏2)

,

z3 = e

2⇡
� (x+i✏3)

, z̄3 = e

2⇡
� (x�i✏3)

,

z4 = e

2⇡
� (x+i✏4)

, z̄4 = e

2⇡
� (x�i✏4)

. (2)

The main message from these points is that for the ap-

2

propriate ordering of epsilons ✏i (see the figures) as we
increase t the cross-ratio z = (z12z34)/(z13z24) encircles
clockwise the point z = 1 in the complex plane and comes
back to 0 (this doesn’t happen with z̄). The role of the
temperature in this specific behavior of z is not crucial
and it is only used to extract the universal predictions
for the quantum chaos. More precisely, in chaotic CFTs,
these correlators are expected to damp after the so-called
scrambling time [3]. In contrast, for RCFTs, which are
integrable systems, one expects C

�
ij(t) to reach constant

values. Indeed, as we shall see, they are given by
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at late times, where S

⇤
ij is the complex conjugate of the

modular S-matrix. The argument proceeds as follows,
first we write

D
O†

i (z1, z̄1)Oi(z2, z̄2)O†
j(z3, z̄3)Oj(z4, z̄4)

E

= |z12|�4hi |z34|�4hj
f(z, z̄). (4)

Then, we express f(z, z̄) in terms of the conformal blocks
of the theory F ii

jj(p|z) (and their anti-holomorphic coun-
terparts F̄ ii

jj(p|z̄))

f(z, z̄) =
X

p

F ii
jj(p|z)F̄ ii

jj(p|z̄). (5)

At early times, since z ⇡ 0 and z̄ ⇡ 0, the contribu-
tion from the identity channel (p = 0) dominates; thus,
f(z, z̄) ⇡ 1. At late times, once again z ⇡ 0 and z̄ ⇡ 0.
However, as time goes by, the cross-ratio z traverses a
non-trivial contour around z = 1 in the complex plane
(this is not the case for z̄). As shown in [3], extract-
ing this monodromy from the explicit form of the large-c
conformal block [17] one can see the butterfly e↵ect in 2d
CFT. In RCFTs the monodromy of conformal blocks is
given by a finite matrix and we have

F ii
jj(p|z) !

X

q

MpqF ii
jj(q|z) . (6)

Because cross ratio z goes around z = 1 and finally comes
back to z = 0, the only relevant component is M00.
Therefore, we obtain

lim
t!1 G(z, z̄) = M00F ii

jj(0|z)F̄ ii
jj(0|z̄). (7)

Moreover, for RCFTs this monodromy matrix element
can be expressed in terms of the modular S-matrix as
[18]:

M00 =
S

⇤
ij

S00

S00

S0i

S00

S0j
. (8)

Below, we also derive this late time value of OTO us-
ing 3d TQFT [19]. As time passes, the operators evolve
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FIG. 1. The orbit of chiral part of operators in complex plane

O†
j

Oj

Oi(t)

O†
i (t)

3D TQFT picture

i

j

0

0

t

FIG. 2. 3d TQFT counterpart. Here, 0 denotes the identity
channel of the conformal blocks.

as depicted in Fig.1. Their orbits are mapped to 3d links
made by the corresponding anyons as in Fig.2. The re-
lation between 2d CFT and 3d TQFT is given as fol-
lows. First, the initial state of 3d TQFT is determined
by the sector of conformal block we choose. In this case
we choose the identity sector in CFT and in 3d TQFT
the pairs of anyons are created from the vacuum. Then,
because there is a monodromy in CFT side, there is a
link in 3d TQFT side. Finally, corresponding to taking
the identity sector at late time, anyons fuse to the vac-
uum, which means that the final state in the 3d TQFT
is given by the pair annihilation of anyons. As a result,
we obtain the Hopf link of two Wilson loops. From this
observation, we find that the monodromy matrix element
is given by the expectation value of the Hopf link divided
by the expectation value of two non-linked Wilson loops.
Based in results from [19], we find
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ij

S00
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This exactly matches with the r.h.s of (8) and naturally
explains why this combination appears in late time OTO.
If we apply this formula to the Ising model CFT, we
reproduce exactly the results from the explicit calculation
of monodromy in Appendix B of [3].

Let us finally mention that the above late time value,
known as monodromy scalar, is proposed as a measure of
non-abelian anyons in interferometry experiments [20].
It would be interesting to explore this connection as a
possible ”experimental” measure of quantum chaos.
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fzi; z̄ig. The interesting multivaluedness comes from
fðz; z̄Þ. By crossing symmetry, this function is single valued
on the Euclidean section z̄ ¼ z$, but it is multivalued as a
function of independent z and z̄, with branch cuts extending
from one to infinity. Different orderings of the W;V
operators correspond to different sheets of this function.
To determine the correct sheet, wemust assign iϵ’s as above,
and follow the path of the cross ratios, watching to see if they
pass around the branch loci at z ¼ 1 and z̄ ¼ 1.
To carry this out directly, we write

z1 ¼ eð2π=βÞðt
0þiϵ1Þ; z̄1 ¼ e−ð2π=βÞðt

0þiϵ1Þ; ð8Þ
z2 ¼ eð2π=βÞðt

0þiϵ2Þ; z̄2 ¼ e−ð2π=βÞðt
0þiϵ2Þ; ð9Þ

z3 ¼ eð2π=βÞðxþiϵ3Þ; z̄3 ¼ eð2π=βÞðx−iϵ3Þ; ð10Þ
z4 ¼ eð2π=βÞðxþiϵ4Þ; z̄4 ¼ eð2π=βÞðx−iϵ4Þ ð11Þ

as a function of the continuation parameter t0. When t0 ¼ 0,
we have a purely Euclidean correlator, on the principal
sheet of the function fðz; z̄Þ. When t0 ¼ t > x, we have an
arrangement of operators as shown in Fig. 1.
The cross ratios z; z̄ are determined by these coordinates

as in Eq. (6). Their paths, as a function of t0, depend on the
ordering of operators through the associated iϵ prescription.
Representative paths for the three cases of interest are
shown in Fig. 2. The variable z̄ never passes around the
branch point at one, and the z variable does so only in the
case corresponding to WVWV [25].
In the final configuration with t0 ¼ t, the cross ratios are

small. For t ≫ x, we have

z ≈ −eð2π=βÞðx−tÞϵ$12ϵ34; z̄ ≈ −e−ð2π=βÞðxþtÞϵ$12ϵ34; ð12Þ

where we introduced the abbreviation

ϵij ¼ iðeð2π=βÞiϵi − eð2π=βÞiϵjÞ: ð13Þ

For the orderings WWVV and WVVW, no branch cuts are
crossed, so the limit of small cross ratios can be taken on
the principal sheet of Eq. (7). The contribution from
the identity operator dominates, verifying our statement
in the Introduction that both hWðtÞVVWðtÞiβ and
hWðtÞWðtÞVViβ approach hWWihVViβ for large t.
ForWVWV, z passes around the branch point at one. The

hypergeometric functionFða; b; c; zÞ has knownmonodromy
around z ¼ 1, returning to a multiple of itself, plus a multiple
of the other linearly independent solution to the hypergeo-
metric equation, z1−cFð1þ a − c; 1þ b − c; 2 − c; zÞ. For
small z; z̄, we then have

fðz; z̄Þ ≈
X

h;h̄

~pðh; h̄Þz1−hz̄h̄; ð14Þ

where ~p has been defined to absorb the transformation
coefficient. On this sheet, as z; z̄ become small, global
primaries with large spin become important. As a function
of x; t, individual terms in this sum grow like
eðh−h̄−1Þte−ðhþh̄−1Þx. For sufficiently large t, this sumdiverges,
and it must be defined by analytic continuation. In other
words, we must do the sum over h; h̄ before we continue the
cross ratios. In a CFT dual to string theory inAdS3, we expect
this divergence even at a fixed order in the large c expansion,
because of the sum over higher spin bulk exchanges [19].
Virasoro identity block: The primary focus of this Letter

is reproducing the Einstein gravity calculation of the corre-
lation function. This calculation was done by studying free
propagation on a shock wave background, which implicitly
sums an infinite tower of ladder exchange diagrams. In the
CFT, these diagrams are related to terms involving powers
and derivatives of the stress tensor in the OPE representation
of the four-point function. In a two-dimensional CFT, all
such terms can be treated simultaneously using the Virasoro
conformal block of the identity operator, which itself is an
infinite sumofSLð2Þ conformal blocks. Including only these
terms in the OPE amounts to replacing

fðz; z̄Þ → F ðzÞF̄ ðz̄Þ; ð15Þ
where F is the Virasoro conformal block with dimension
zero in the intermediate channel. This substitution is appro-
priate for a large N CFT with a sparse spectrum of single-
trace higher spin operators [29].
The function F is not known explicitly, but there are

several methods for approximating it [14–16]. We will use a
formula from Ref. [15], which is valid at large c, with hw=c
fixed andsmall andhv fixed and large.Here, the formula reads

F ðzÞ ≈
!

zð1 − zÞ−6hw=c

1 − ð1 − zÞ1−12hw=c

"
2hv

: ð16Þ

This function has a branch point at z ¼ 1, as expected.
Following the contour around z ¼ 1 and taking z small, we
find

F ðzÞ ≈
!

1

1 − 24πihw
cz

"
2hv

: ð17Þ

The trajectory of z̄ does not circle the branch point at z̄ ¼ 1, so
for small z̄, we simply have F̄ ðz̄Þ ≈ 1, the contribution of the
identity operator itself. Substituting Eq. (17) in Eq. (15) and
then in Eq. (5), we find

hWðtþ iϵ1ÞVðiϵ3ÞWðtþ iϵ2ÞVðiϵ4Þiβ
hWðiϵ1ÞWðiϵ2ÞiβhVðiϵ3ÞVðiϵ4Þiβ

≈
!

1

1þ 24πihw
ϵ$12ϵ34

eð2π=βÞðt−t$−xÞ

"
2hv

; ð18Þ

where we define the fast scrambling time t$ [17,18] with the
convention

FIG. 2 (color online). The paths taken by the cross ratio z during
the continuations corresponding to (from left to right) hWVWVi,
hWWVVi, and hWVVWi. Only in the first case does the path pass
around the branch point at z ¼ 1.
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G(z, z̄) =
X

p

F ii
jj(p|z)F̄ ii

jj(p|z̄)

= G(z, z̄)

[Gu,Xi’16] 
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