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Outline

Kondo models from holography

– Model J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

– Entanglement entropy J.E., Flory, Newrzella 1410.7811, JHEP 1501 (2015) 058
J.E., Flory, Hoyos, Newrzella, O’Bannon, Wu 1511.03666, Fortsch.Phys. 64 (2016)

– Two-point functions J.E., Hoyos, O’Bannon, Papadimitriou, Probst, Wu in progress

– Quantum quenches J.E., Flory, Newrzella, Wu in progress

2



Kondo models from gauge/gravity duality



Kondo models from gauge/gravity duality

Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures



Kondo models from gauge/gravity duality

Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Motivation for study within gauge/gravity duality:



Kondo models from gauge/gravity duality

Kondo effect:

Screening of a magnetic impurity by conduction electrons at low temperatures

Motivation for study within gauge/gravity duality:

1. Simple model for a RG flow with dynamical scale generation (as in QCD)

2. Example for holographic g-theorem

3. Relation to Sachdev-Ye-Kitaev model

4. New applications of gauge/gravity duality to condensed matter physics:

Magnetic impurity coupled to strongly correlated electron system
Entanglement entropy, quantum quench
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Kondo effect
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Kondo model

Original Kondo model (Kondo 1964):
Magnetic impurity interacting with free electron gas



Kondo model

Original Kondo model (Kondo 1964):
Magnetic impurity interacting with free electron gas

Hamiltonian:

H =
vF
2π
ψ†i∂xψ + λKvFδ(x)~S · ~J , ~J = ψ†

1

2
~Tψ

Decisive in development of renormalization group
IR fixed point, CFT approach Affleck, Ludwig ’90’s
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Kondo models from gauge/gravity duality

Gauge/gravity requires large N : Spin group SU(N)

In this case, interaction term simplifies introducing slave fermions:

Sa = χ†T aχ

Totally antisymmetric representation: Young tableau with Q boxes

Constraint: χ†χ = Q

Interaction: JaSa = (ψ†T aψ)(χ†T aχ) = OO†, where O = ψ†χ

Screened phase has condensate 〈O〉

Parcollet, Georges, Kotliar, Sengupta cond-mat/9711192, PRB 58 (1998) 3794
Senthil, Sachdev, Vojta cond-mat/0209144, PRL 90 (2003) 216403
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Kondo models from gauge/gravity duality

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Coupling of a magnetic impurity to a strongly interacting non-Fermi liquid

Results:

RG flow from perturbation by ‘double-trace’ operator

Dynamical scale generation, screening

Holographic superconductor: Condensate forms in AdS2

Power-law scaling of conductivity in IR with real exponent

Holographic entanglement entropy from including backreaction

Quantum quench: Late-time behaviour dominated by quasinormal modes
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Kondo models from gauge/gravity duality

J.E., Hoyos, O’Bannon, Wu 1310.3271, JHEP 1312 (2013) 086

Top-down brane realization

0 1 2 3 4 5 6 7 8 9
N D3 X X X X
N7 D7 X X X X X X X X
N5 D5 X X X X X X

3-7 strings: Chiral fermions ψ in 1+1 dimensions

3-5 strings: Slave fermions χ in 0+1 dimensions

5-7 strings: Scalar (tachyon)
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Near-horizon limit and field-operator map

D3: AdS5 × S5

D7: AdS3 × S5→ Chern-Simons Aµ dual to Jµ = ψ†σµψ

D5: AdS2 × S4→
{

YM at dual toχ
†χ = q

Scalar dual toψ†χ

Operator Gravity field
Electron current J ⇔ Chern-Simons gauge field A in AdS3

Charge Q = χ†χ ⇔ 2d gauge field a in AdS2

Operator O = ψ†χ ⇔ 2d complex scalar Φ
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Bottom-up gravity dual for Kondo model

Action:
S = SEinstein−Hilbert + SCS + SAdS2,

SCS = −N
4π

∫
AdS3

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
,

SAdS2 = −N
∫
d3x δ(x)

√
−g
[

1

4
Trfmnfmn + gmn (DmΦ)

†
DnΦ + V (Φ†Φ)

]
V (Φ) = M2Φ†Φ

Metric:

ds2 = gµνdx
µdxν =

1

z2

(
dz2

h(z)
− h(z) dt2 + dx2

)
,

h(z) = 1− z2/z2
H , T = 1/(2πzH)
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‘Double-trace’ deformation by OO†

Boundary expansion

Φ = z1/2(α ln z + β)

α = κβ

κ dual to double-trace deformation Witten hep-th/0112258
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‘Double-trace’ deformation by OO†

Boundary expansion

Φ = z1/2(α ln z + β)

α = κβ

κ dual to double-trace deformation Witten hep-th/0112258

Φ invariant under renormalization⇒ Running coupling

κT =
κ0

1 + κ0 ln
(

Λ
2πT

)
Dynamical scale generation
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Kondo models from gauge/gravity duality

Scale generation

Divergence of Kondo coupling determines Kondo temperature TK

Transition temperature to phase with condensed scalar: Tc

Tc < TK
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Kondo models from gauge/gravity duality

RG flow

UV

IR

Strongly interacting

electrons

Deformation by

Kondo operator

Non-trivial condensate

Strongly interacting

electrons
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Kondo models from gauge/gravity duality

Normalized condensate 〈O〉 ≡ κβ as function of the temperature

(a) (b)

Mean field transition

〈O〉 approaches constant for T → 0
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Entanglement entropy for magnetic impurity

(see poster by Mario Flory)

Including the backreaction using a thin brane and Israel junction conditions

Israel junction conditions Kµν − γµνK = −κ2 Tµν ⇔ Energy conditions

identify points

boundary boundary

hypersurface

bulkbulk

J.E., Flory, Newrzella 1410.7811

Cf. previous work on holographic BCFT
Takayanagi; Fujita, Takayanagi, Tonni 2011; Nozaki, Takayanagi, Ugajin 2012
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Entanglement entropy for magnetic impurity

AB

AdS

Impurity entropy:

Simp = Scondensed phase − Snormal phase

Subtraction also guarantees UV regularity
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Entanglement entropy for magnetic impurity J.E., Flory, Newrzella 1410.7811

Depending on the brane tension λ, the total space is enhanced or reduced
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Entanglement entropy for magnetic impurity J.E., Flory, Newrzella 1410.7811
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Impurity entropy from gauge/gravity duality
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Entanglement entropy for magnetic impurity: Comparison to field theory

Field-theory result Sorensen, Chang, Laflorencie, Affleck 2007
(Eriksson, Johannesson 2011)

Simp(`) =
π2ξKT

6
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Entanglement entropy for magnetic impurity: Comparison to field theory

Field-theory result Sorensen, Chang, Laflorencie, Affleck 2007
(Eriksson, Johannesson 2011)

Simp(`) =
π2ξKT

6
coth(2π`T )

In our gravity approach: J.E., Flory, Hoyos, Newrzella, O’Bannon, Wu 1511.03666
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Entanglement entropy for magnetic impurity: Comparison to field theory

On gravity side:

Impurity entropy from difference of entanglement entropies for constant tension
branes

Simp(`) = SBH(`+D)− SBH(`)

SBH(`) =
c

3
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Entanglement entropy for magnetic impurity: Comparison to field theory

On gravity side:

Impurity entropy from difference of entanglement entropies for constant tension
branes

Simp(`) = SBH(`+D)− SBH(`)

SBH(`) =
c

3
ln

(
1

πεT
sinh(2π`T )

)

For D � `:

Simp(`) ∼ D · ∂`SBH(`) =
2πDT

3
coth(2π`T )

Agrees with field theory result subject to identification D ∼ ξK
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Kondo model: Example for holographic g-theorem

Formation of Kondo cloud corresponds to
decrease in impurity degrees of freedom

Simp(`→∞) = −c
3
x̃+(zH)

x̃+(z): Defect embedding scalar

g-theorem:

T · ∂Simp(`→∞)

∂T
≥ 0

Due to null energy condition
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Relation to Sachdev-Ye-Kitaev model

Sachdev-Ye-Kitaev model: Gaussian random couplings Jαβ,γδ Sachdev+Ye 1993, Kitaev 2015

H =
1

(2N)3/2

N∑
α,β,γ,δ=1

Jαβ,γδ χ
†
αχβχ

†
γχδ − µ

∑
α

χ
†
αχα

May be obtained from two-dimensional model as follows:
(Bray, Moore J. Phys. C 1980; Georges, Parcollet, Sachdev PRB 63 92001)

Reduction to single site by averaging over disorder

HS = −
∑
(ij)

Jij~Si · ~Sj

Seff = −
J2

2N

∫ β

0

dτdτ
′
Q(τ − τ ′)~S(τ) · ~S(τ

′
) , Q(τ − τ ′) =

1

N2
〈~S(τ)~S(τ

′
)〉

Use Abrikosov fermions χ as before, Sa = χ†T aχ, and take large N limit

(see also Maldacena, Stanford arXiv:1604.07818)
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Relation to Sachdev-Ye-Kitaev model

Similarly in Parcollet, Georges, Kotliar, Sengupta cond-mat/9711192:

Reduction of large N -Kondo model to single-site model
by integrating out conduction electrons

⇒ Spectral asymmetry of Green’s functions

Sachdev 1506.05111, Phys. Rev. X 5, 041025 (2015):

Spectral asymmetry also observed in SYK model

related to entropy of AdS2 black hole

ωs =
qT

~
∂S

∂Q
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Kondo model: Two-point functions

Parcollet, Georges, Kotliar, Sengupta cond-mat/9711192: Large N Kondo model

Spectral asymmetry ωs: Particle-hole symmetry broken

−ImGR for bosonic 〈OO†〉

ωs = qT
~
∂S
∂Q see also Sachdev 1506.05111, AdS2 black hole (fermions)
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Two-point function in holographic Kondo model

J.E., Hoyos, O’Bannon, Papadimitriou, Probst, Wu in progress

Reduction to single-site automatic since equation of motion for 3d Chern-Simons field decouples
from EOM’s for 2d fields
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ω

TK
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-2

-1

Im <O†O>

T/TK = 3.3978, zH = 0.8

T/TK = 2.7183, zH = 1.0

T/TK = 1.8122, zH = 1.5

T/TK = 1.3591, zH = 2.0
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Time dependence

Allow for time dependence of the Kondo coupling and study response of the condensate

Examples for time dependence of the Kondo coupling:

Gaussian pulse in IR
Quench from condensed to normal phase (IR to UV)
Quench from normal to condensed phase (UV to IR)

Observations:

Different timescales depending on whether the condensate is asymptotically small or large

Timescales governed by quasinormal modes
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Quantum quenches in
holographic Kondo model

To and from condensed phase

Timescales determined by
quasinormal modes

J.E., Flory, Newrzella, Strydom, Wu
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Timescales in quantum quench
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Timescales in quantum quench
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Timescales in quantum quench

Equilibration determined by quasinormal modes, which depend on T

Cf. Bayat, Bose, Johannesson, Sodano Phys. Rev. B 92, 155141 (2015) :

Quench in two-impurity Kondo model in spin-chain approach:

Late-time behaviour dominated by single-frequency oscillations,
independent of energy released
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Conclusions and outlook

Kondo model:

Magnetic impurity coupled to strongly coupled system

Entanglement entropy

– In agreement with g-theorem
– Reproduces large N field theory result for large `
– Geometrical realization of Kondo correlation length

Two-point functions

– Spectral asymmetry
– Relation to SYK model

Quantum quenches

– Dominated by quasinormal modes
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