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Summary

This talk is about three statements:

1 A satisfactory field theoretic understanding of mixed state evolution
(in particular EFT with dissipation) is missing and desirable.

2 Unitarity implies a universal supergeometry underlying any such field
theory, which keeps track of the basic entanglement structure
(‘backbone’) of the mixed initial state.

3 (Near-)thermal EFTs have an emergent U(1)T symmetry of gauged
thermal translations. This explains dissipation as a symmetry
breaking, local entropy current, the second law etc.
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Field theory and dissipation

Many interesting and/or realistic systems are in mixed states due to
tracing out part of Htot (‘environment’)

Example: low-energy EFT of thermal systems (fluids, black holes, ...)

I UV/IR coupling (‘entanglement’)

I apparent non-unitarity: dissipation, information loss, local entropy
current, second law, ...

I horizon, complementarity, entanglement, ...

CFTRCFTL
|ψR〉〈ΨL|
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current, second law, ...

I horizon, complementarity, entanglement, ...

Task 1: How to formulate QFT evolution of density matrices?

I Well known aspect: Schwinger-Keldysh formalism
F Doubling of fields and symmetries to evolve 〈 · | and | · 〉
F SSK = S[ΦR]− S[ΦL]

Task 2: How to do RG on such systems?
I Are the two copies going to interact? How?
I Understand macroscopic irreversibility as a symmetry breaking?

Schwinger, Keldysh,

Feynman-Vernon, ’60s
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Schwinger-Keldysh and unitarity
SK generating functional:

ZSK [JR, JL] = Tr
{
U [JR] ρinitial U

†[JL]
}

bt
iε

i(ε− β)

→ time ordered (R) →

← anti-time ordered (L) ←

An interesting consequence of unitarity:

source alignment ⇒ localization: ZSK [JR = JL ≡ J ] = Tr ρ
initial

I Only sensitive to initial state correlations (entanglement structure)

change basis: ORJR − OLJL = Oav Jdiff︸ ︷︷ ︸
→0

+ Odiff Jav︸︷︷︸
→J

(
av ≡

R + L

2
, diff ≡ R− L

)

⇒ The sector of difference operators Odiff ≡ OR − OL

decouples for any SK theory: 〈TSK O(1)
diff · · ·O

(n)
diff〉 = 0

I Correlations of Odiff protected by (topological) symmetry
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Schwinger-Keldysh and unitarity

Can we cook up formalism where this localization is manifest?

c.f. gauge theory:

I characterize pure gauge modes using nilpotent, Grassmann-odd BRST
charges: [pure gauge] = QBRST(...) = QBRST(...)

I correlators of BRST-exact fields vanish

Efficient way to formulate SK localization: SK BRST cohomology
I every operator Ô represented by a quadruplet {OR,OL,OG,OḠ}
I BRST charges Q

SK
, Q

SK
define topological sector:

OR,OL

O
G

O
G

OR − OL

Q
SK Q

SK

Q
SK

−Q
SK

I unitarity ⇒ correlators of SK BRST-exact operators vanish
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SK supergeometry

Convenient way to ascertain topological structure:
superspace (xµ, θ, θ̄), where QSK = ∂θ̄ and QSK = ∂θ

Quadrupling of fields ⇔ lift fields to superfields:

O(S) = OR+OL
2

+ θO
G

+ θ̄OG
+ θ̄θ (OR − OL)

QSK
QSK

QSK
QSK

This structure is robust under RG and universal for any unitary SK
theory

• Note: for simple dissipative systems (e.g. Langevin theory of Brownian motion) the

quadrupling is textbook material. BRST charges and superspace merely reformulation.
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Supergeometry of low-energy SK theories

Low-energy SK EFT: what are the symmetries, symmetry breakings,
effective degrees of freedom Φ? (see also Hong Liu’s talk)

Many things as usual. New features:

(1) Superspace, with quadrupling of näıve IR fields Φ→ Φ(S)

(2) Write topological field theory of initial correlations:

S
(top)
SK =

ˆ
ddx

{
Q , [Q ,L(Φ)]

}
=

ˆ
ddx dθ dθ̄ L(Φ(S))

(3) Then de-align sources JR 6= JL to deform away from topological limit
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Low energy, near-equilibrium: emergent U(1)T

We are particularly interested in SK evolution amongst the class of
mixed states whose low-energy dynamics is locally thermal

I I.e., UV modes are in thermal equilibrium

I EFT of IR modes reflects this! (fluctuation-dissipation, second law, ...)

Proposal for implementing thermality in EFT

Invariance under emergent gauge symmetry
of thermal translations: U(1)T

? C.f. Euclidean theory: translation invariance in thermal circle

? Microscopic origin of U(1)T : KMS condition

? Two more BRST charges associated with U(1)T

? U(1)T current = entropy current + ghost terms

? Apparent non-unitarity (dissipation) ↔ ghost non-decoupling?!

[1510.02494]
[1502.00636]
[1412.1090]
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Toy model: Langevin particle

Consider Brownian motion of Langevin particle at x(t):

−Eom ≡ m d2x

dt2
+
∂U

∂x
+ ν

dx

dt
= N

Martin-Siggia-Rose (MSR) construction:

[dx]

ˆ
[dN] δ(Eom + N) det

(
δEom

δx

)
ei SGaussian noise[N]

= [dx]

ˆ
[df ][dψ][dψ] exp i

ˆ
dt

(
f Eom + i ν f2 + ψ

(
δEom

δx

)
ψ

)

Can write this in superspace:

= [dx]

ˆ
[df ][dψ][dψ] exp i

ˆ
dt dθ dθ̄

(
m

2

(
dx(S)

dt

)2

− U(x(S))− i νDθx(S) Dθ̄x(S)

)
WZ

where x(S) = x+ θ ψ̄ + θ̄ ψ + θ̄θ f

and Dθ refers to A = At dt+ Aθ dθ + Aθ̄ dθ̄

Martin-Siggia-Rose ’73

De Dominicis-Peliti ’78
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Status and prospects

Step 1: In simple examples (Langevin theory) this works beautifully
(SUSY structure well-known; U(1)T symmetry completes the picture nicely)

I Viscosity proportional to CPT breaking order parameter 〈Fθθ̄〉 6= 0

[1511.07809]

Step 2: We are trying to derive hydrodynamics with this

I Advantage of hydro: we gave complete solution and classification of
transport ⇒ very sharp goal for what the SK EFT has to achieve

[1412.1090], [1502.00636]

I Have already written a SUSY EFT with thermal gauge symmetry,
which describes all of dissipative transport

[1511.07809], see also Crossley-Glorioso-Liu [1511.03646]

I W.i.p.: various other classes of transport also seem to work nicely

Step 3: If hydro works, move on to dual black holes

I SK doubling and ghosts: what will they teach us about dissipation,
complementarity, unitarity etc. in gravity?
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Summary

1 A satisfactory field theoretic understanding of mixed state evolution
(in particular EFT with dissipation) is missing and desirable.

2 Unitarity implies a universal supergeometry underlying any such
field theory, which keeps track of the basic entanglement structure
(‘backbone’) of the mixed initial state.

3 (Near-)thermal EFTs have an emergent U(1)T symmetry of
gauged thermal translations. This explains dissipation as a
symmetry breaking, local entropy current, the second law etc.

Or, for the mathematically inclined:

I Near-thermal EFTs are deformations of TQFTs associated with the
universal balanced equivariant cohomology of thermal translations.

I Hydrodynamics is a deformation of a gauged topological σ-model.

Vafa-Witten ’94, Dijkgraaf-Moore ’96
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Further Details



U(1)T thermal gauge invariance

Microscopic KMS condition:

e−iδβO(t) ≡ O(t− iβ)
KMS
↓
= O(t)

Macroscopically, ensure KMS by introducing gauge (super-)field for
’thermal translations’

A = Aa dσ
a + Aθ dθ + Aθ̄ dθ̄

DθXµ
(S) ≡ ∂θX

µ
(S) + Aθ £βX

µ
(S) (and so on)

U(1)T transformations act as thermal translations, e.g.:

Φ(S) 7→ Φ(S) + Λ(S) £βΦ(S)
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Effective action for dissipation in fluids

Fluids get their dynamics from σ-model maps:

Xµ(σ): d-worldvolume → phys. spacetime

Effective action for dissipative sector (at any order in ∇µ):

S
(dissipation)
eff ∼

ˆ
world

volume

ddσ dθ dθ̄

√
−g(S)

1 + βaAa

(
i η((ab)(cd))Dθ g(S)

ab Dθ̄ g(S)
cd

)
⇒ T ab ∼ iFθθ̄ η((ab)(cd)) £β gab + noise terms

I Ghost bilinears responsible for dissipation
I 〈Fθθ̄〉: order parameter for dissipation
I Can derive Jarzynski as SUSY Ward identity (⇒ Second Law)
I Variation w.r.t. Aa gives entropy current
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