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Subregion Duality?

Subregion Duality?

In recent years people have considered the possibility of “subregion
duality” in AdS/CFT. Bousso/Liechenauer/Freivogel/Rosenhaus/Zukowski,

Czech/Karczmarek/Nogueira/van Raamsdonk

Given complete information about a boundary subregion A, is there a
subregion of the bulk about which we have complete information?

In this talk, I will present a theorem that answers this question in the
affirmative: given a boundary subregion A, we have full access to all
bulk information in the entanglement wedge of A. Dong/Harlow/Wall

I will make use of a recent result relating bulk and boundary relative
entropies, which I will review. Jafferis/Lewkowycz/Maldacena/Suh
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Subregion Duality?

The first reason people suspected such a duality might exist was the
AdS/Rindler Reconstruction: Hamilton/Kabat/Lifschytz/Lowe,Morrison

A
x

D[A]

φ(x)
∣∣∣
CA

=

∫
D[A]

dX K̂ (x ;X )O(X ) + O(1/N).

Here the region CA is the causal wedge of A: Hubeny/Rangamani

CA ≡ j+[D(A)] ∩ j−[D(A)].
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Subregion Duality?

The construction proceeds by perturbatively solving the bulk
equations of motion as operator equations in the CFT, allowing the
CFT to “simulate” bulk effective field theory in CA.

In fact the construction has so far only been worked out in detail for
ball-shaped regions, there are some delicate PDE questions involved
in deciding whether or not this method can work for arbitrary A.

I want to emphasize that it is understood how to compute the 1/N
corrections, and they depend on the details of the CFT (if we take A
to be the whole boundary then the subtlety just mentioned does not
arise).

Indeed the construction will fail to reproduce bulk effective field theory
unless the CFT has the appropriate properties: large N factorization
and a large gap in the spectrum of single-trace primary operators.

This isn’t just kinematics!
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Subregion Duality?

Is the causal wedge the whole story? The RT formula SA = Area(γA)
4G says

no!

A

A

A

A

Figure 6. A reconstruction phase transition? As we increase the region A, the extremal-

area codimension two surface of smallest area whose boundary is @A, shown as the solid lines,

changes discontinuously. Does this mean that we can now reconstruct the point in the center

as an operator on A?

operator algebra quantum error correction requires sub-AdS scale bulk locality. This

is a special property of those CFTs that have local holographic duals, which we have

here reformulated in the language of quantum information theory.

4.3 Disconnected regions and quantum secret sharing

So far we have only discussed the erasure of connected regions of the boundary. More

general erasures are also interesting. Consider for example the AdS3 situation depicted

in figure 6. Here we consider a region A which is the union of two disjoint intervals; in

other words we have erased two disjoint intervals. Can we choose a code subspace where

we can realize the bulk operator in the center as an operator acting on A or A? If the

AdS-Rindler reconstruction is the last word on bulk reconstruction [7], then the answer

is clearly no; this point lies neither in WC [A] nor in WC [A]. This is possible within

the context of quantum error correction, but only if both A and A can access partial

information about the code subspace. For example, say that A had no information

whatsoever about which state of the code subspace we are in. Then by definition

(3.12) would hold, so we could recover the information from A. We are not, however,

able to determine whether or not such partial information is really present.

In fact there have been recent conjectures in the literature that this operator can

still be reconstructed in A as long as A is bigger than A; more generally, the claim is that

one can do reconstruction throughout the entanglement wedge, which is defined as the

bulk domain of dependence of any bulk spacelike surface whose boundary is the union

of A and the codimension two extremal-area surface of minimal area whose boundary

is @A [8, 25, 26]. In the figure, the intersection of the entanglement wedge with a

– 20 –

At least in this case, ρA has access to information beyond the causal
wedge!
But how far can we go?
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Subregion Duality?

Definition: say that Ξ is an achronal surface such that ∂Ξ = A ∪ γA
(shaded blue in the figure). Then the entanglement wedge of A is
defined as

EA ≡ d(Ξ).

Basic theorem: Wall, Headrick/Hubeny/Lawrence/Rangamani

CA ⊆ EA

Strongest possible conjecture: we can in fact reconstruct bulk
operators throughout EA as CFT operators on A. This is the
Entanglement Wedge Reconstruction Conjecture. CKNvR,W,HHLR

Evidence for this conjecture was given in the context of tensor
network models by HArlow/Pastawski/Preskill/Yoshida, Hayden/Nezami/Qi/Thomas/Walter/Yang.

Today we will prove it!
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Quantum Error Correction

Quantum Error Correction

Recall that the HKLL procedure was perturbative in 1/N, and this
limits not just its precision but also its regime of validity.

Indeed there must be states where any particular bulk operator
reconstruction fails! Almheiri/Dong/Harlow

Roughly speaking, bulk operators can be swallowed behind black hole
horizons, and in such states they do not need to have effective field
theory interpretations. This is the hack that AdS/CFT employs to
allow a lower-dimensional theory to be equivalent to a
higher-dimensional one.
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Quantum Error Correction

With Almheiri and Dong, we formalized this restriction as the idea of
a code subspace, within which bulk effective field theory gives a good
approximation to what is going on.

One good example is obtained by taking the set of states in N = 4
SYM theory on S3 × R whose energies are at most N1/4, and then
taking the image of these states under conformal transformations: a
“no black hole subspace”.

More general subspaces are also possible, but we are then only able to
reconstruct bulk fields which are at best “not too far” behind black
hole horizons.

8



Quantum Error Correction

With Almheiri and Dong, we formalized this restriction as the idea of
a code subspace, within which bulk effective field theory gives a good
approximation to what is going on.

One good example is obtained by taking the set of states in N = 4
SYM theory on S3 × R whose energies are at most N1/4, and then
taking the image of these states under conformal transformations: a
“no black hole subspace”.

More general subspaces are also possible, but we are then only able to
reconstruct bulk fields which are at best “not too far” behind black
hole horizons.

8



Quantum Error Correction

With Almheiri and Dong, we formalized this restriction as the idea of
a code subspace, within which bulk effective field theory gives a good
approximation to what is going on.

One good example is obtained by taking the set of states in N = 4
SYM theory on S3 × R whose energies are at most N1/4, and then
taking the image of these states under conformal transformations: a
“no black hole subspace”.

More general subspaces are also possible, but we are then only able to
reconstruct bulk fields which are at best “not too far” behind black
hole horizons.

8



Quantum Error Correction

Using this language, we can formalize the entanglement wedge
reconstruction conjecture:

Say that HCFT = HA ⊗HA is the Hilbert space of a holographic
CFT, with a code subspace Hcode = Ha ⊗Ha.

Then for any operator Oa on Ha we have an operator OA on HA such
that for all |ψ̃〉 ∈ Hcode we have:

OA|ψ̃〉 = Oa|ψ̃〉
O†A|ψ̃〉 = O†a |ψ̃〉

9
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Quantum Error Correction

In proving this conjecture we can make use of a theorem from ADH,
which shows that such an OA can exist if and only if:

∀XA, ∀|ψ̃〉, 〈ψ̃|[XA,Oa]|ψ̃〉 = 0. (1)

The proof of this theorem is constructive, albeit somewhat uselessly
so! I’ll sketch it at the end if we have time.

Claim: (1) follows from the quantum corrected RT formula, which in
this language says that for all ρ on Hcode , we have:
Ryu/Takayanagi,Faulkner/Lewkowycz/Maldacena

S(ρA) = Tr(ρaAloc) + S(ρa).

Here Aloc is some operator integrated on γA, which to leading order
in G is Area(γA)

4G .
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Quantum Error Correction

You might worry about the assumption of bulk factorization, this is
indeed subtle, see Donnelly,Casini/Huerta/Rosabal, but it seems likely that
including enough UV degrees of freedom near γA we can justify it
Harlow. And actually we don’t need to assume it if we work algebraically.

For simplicity I will only make the argument to O(G 0): using a
conjectural extension of RT to higher orders by Engelhardt/Wall, we were
also able to give an argument for entanglement wedge reconstruction
at higher orders in G . There are some subtleties in this extension
which are not yet ironed out, although see Dong/Lewkowycz.

In fact this theorem also has a converse: any quantum error
correcting code obeys a version of the RT formula! Harlow In general it
involves the algebraic definition of entropy, and gives a “completely
boundary” picture of how the formula works, to be contrasted with
the “completely bulk” derivation of Lewkowycz/Maldacena,Faulkner/Lewkowycz/Maldacena.
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indeed subtle, see Donnelly,Casini/Huerta/Rosabal, but it seems likely that
including enough UV degrees of freedom near γA we can justify it
Harlow. And actually we don’t need to assume it if we work algebraically.

For simplicity I will only make the argument to O(G 0): using a
conjectural extension of RT to higher orders by Engelhardt/Wall, we were
also able to give an argument for entanglement wedge reconstruction
at higher orders in G . There are some subtleties in this extension
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JLMS

Relative entropy in the bulk and boundary

I’ll first need a result from JLMS, which I’ll derive for you here.

Definitions:

S(ρ) = −Tr(ρ log ρ)

Kρ = − log ρ

S(ρ|σ) = Tr(ρ log ρ)− Tr(ρ log σ) = −S(ρ) + TrρKσ.

These are related by the “first law of entanglement”:

S(ρ+ δρ)− S(ρ) = Tr(δρKσ) + O(δρ2).
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JLMS

We can apply this “first law” to both sides of the RT formula

S(σA + δρA) = Tr ((σa + δρa)Aloc) + S(σa + δρa),

to find
Tr (δρAKσA) = Tr (δρa(Aloc + Kσa)) .

Both sides are linear in δρ, so we can integrate to find

Tr (ρAKσA) = Tr (ρa(Aloc + Kσa)) ∀ρ, σ on Hcode .

This then implies that

S(ρA|σA) = −S(ρA) + Tr (ρAKσA)

= −S(ρa)− Tr(ρaAloc) + Tr(ρaAloc) + Tr(ρaKσa)

= S(ρa|σa).

So in particular, ρa = σa ⇔ ρA = σA.
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A Reconstruction Theorem

A Reconstruction Theorem

Now to finish the argument, we just need to show that indeed we have

∀XA, ∀|ψ̃〉, ∀Oa, 〈ψ̃|[XA,Oa]|ψ̃〉 = 0.

Without loss of generality we can take Oa to be hermitian. Then the states

|ψ̃(λ)〉 ≡ e iλOa |ψ̃〉

have identical ρa.
But by JLMS this means they must have identical ρA, so apparently

〈ψ̃|e−iλOaXAe
iλOa |ψ̃〉 = 〈ψ̃|XA|ψ̃〉.

Linearizing in λ, we indeed find

〈ψ̃|[XA,Oa]|ψ̃〉 = 0.

Woohoo!
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A Reconstruction Theorem

What else to do?

Understand the higher-order corrections better, specifically insofar as
they relate to backreaction.

Algebraic reformulation (done!)

This improves on HKLL both in scope (the whole entanglement
wedge), and in that it avoids the nasty PDE issues I mentioned. But
HKLL gives a bulk picture of what is going on, which is sorely lacking
here.
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A Reconstruction Theorem
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Appendix

Proof of the ADH theorem

Given an operator O on Hcode , how do we know that

∀XA, ∀|ψ̃〉, 〈ψ̃|[XA,O]|ψ̃〉 = 0

is sufficient (it is clearly necessary) for the existence of an OA?

The basic idea is to consider the state

|φ〉 ∝
∑
i

|i〉R |ĩ〉AA.

We can clearly mirror the operator O onto R, but can we then mirror it
back onto A?
What we need for this to work is that OR preserves the Schmidt basis of
|φ〉 if we decompose it as RA and A, or in other words for [OR , ρRA] = 0.
But this is precisely what the commutator condition ensures!
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