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Preliminary comments

• Deep aspects of quantum gravity (Bekenstein-Hawking, 
Ryu-Takayanagi, …) have been gleaned from the semi-
classical path integral. 

• Nonetheless, ultimately, understanding the emergence of 
spacetime, ‘It from Qbit’, will involve a characterization of 
an underlying microscopic entanglement structure that 
supports emergent local dynamics. 

• Emergent locality is somewhat different from MPS, 
MERA, PEPS, etc, whose role is to put manifest locality 
to a powerful use.



“It from Qbit”, explicit version 

• This talk is about an explicit realization of emergent local 
dynamics from a quantum spin system. 

• Logic: map the spin system onto a matrix quantum 
mechanics that is known to lead to emergent local 
dynamics at a quantum critical point.

Ising spins Matrix quantum mechanics Spacetime



“It from Qbit”, explicit version 

• The emergent local dynamics will be rather simple for the 
model we solve: a scalar field in 1+1 dimensions. 

• However, start to get a feel for various nontrivial steps 
that arise in obtaining a matrix quantum mechanics 
structure from ‘atoms of entanglement’ (Qbits/spins). 

• Previously shown how the accumulation of entanglement 
necessary for emergent locality arises in this case: it is 
contained in the Fermi Sea structure of the eigenvalue 
dynamics [1504.07985, SAH + Mazenc; Das ’95].



Transverse field Ising models

• The usual transverse field Ising model is
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Continuous quantum phase transition  
 ⇒ Gapless excitations ⇒ Continuum limit described by CFT.



Transverse field Ising models

• A symmetric matrix of N2 spins,       , interacting nonlocally:
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• Symmetries: 
  (1) flipping the spin of rows and columns:  
  (2) permuting rows and columns: SN

• Classical model (h=0) studied by 
[Cugliandolo-Kurchan-Parisi-Ritort, cond-mat/9407086] 
has ‘crystalline’ order at low T, preempted by glassiness.



Transverse field Ising models

• First order symmetry breaking transition at critical v4/h. 

• Disordered large N state is described by a matrix 
quantum mechanics for all couplings. 

• Disordered large N state undergoes a continuous 
quantum phase transition as a function of v4/h. 

• At the quantum critical point, the low energy excitations 
are described by massless scalar field in 1+1 dimensions.

Our results for this model at large N:
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Step 1: Suzuki-Trotter decomposition
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Path integral for spins:



Step 2: Constrained bosons
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Introduce continuous boson field:



Step 3: Continuum limit (in time)
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Send time step to zero, but remember time step was  
introduced by hand, not a microscopic parameter:

Microscopic energy 
scale to flip a spin

Derivative expansion can be truncated when excitations with 
energy ΔE ≪ h are present: quantum critical point.

Crucially, can also truncate at weak coupling (free spins)  
and strong coupling (classical spins).



Step 4: Matrix Quantum Mechanics Saddle!
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So far:

Not SO(N) invariant

Import a trick from [Cugliandolo-Kurchan-Parisi-Ritort, ’94]:

• At large N, a consistent saddle point has μAB = μ.
• In classical spin model, this saddle was shown to 

describe the high T disordered phase.
• Perhaps captures the quantum disordered wavefunction?



Step 4: Matrix Quantum Mechanics Saddle!

Thus:
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Expectation: If there is continuous QPT in the disordered state, 
its critical dynamics is described by the above MQM.

Remainder:
• Find the ground state of the above.

• Show that there is a continuous QPT.
• Show that low energy excitations: 1+1 scalar field.

• Show that it correctly describes the disordered state.



Step 5: Hamiltonian and ground state

• Hamiltonian: Exercise in constrained quantization. 
  [Dirac brackets, secondary constraints etc.] 

• Go to eigenvalue basis (non-singlet modes decouple at 
the quantum critical point [Gross-Klebanov ’91]): 
 

• Change variables to collective field [Jevicki-Sakita ’80]:
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Step 5: Hamiltonian and ground state

• The collective field Hamiltonian and constraints are:
H =

Z
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• Ground state eigenvalue distribution has π=0.
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Step 6: Existence of continuous QPT

• As v4 → 0 (quantum disordered spins), EMQM matches the 
spin system ground state energy to 3rd order in 
perturbation theory [Expect disagreement at 4th order]: 
 

• Confirms MQM describes the disordered state. 

• As v4 → ∞, EMQM matches the energy of (subdominant) 
classical disordered state of Cugliandolo et al.:
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Step 6: Existence of continuous QPT

• MQM eigenvalue distribution is connected at small v4 and 
disconnected at large v4.  
 ⇒ ‘Topological’ QPT at intermediate coupling.
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Step 7: Emergent local dynamics

• Critical dynamics of topological phase transitions in MQM 
are well understood [eg. Das-Jevicki ’90], ripples of the 
eigenvalue distribution: 

• Key step: canonical transformation on the fluctuations
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• Excitations described by free 1+1 scalar field!
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Step 7: Emergent local dynamics

• At weak coupling, fluctuations of the collective field can 
be related to particular spin excitations. 

• Given by SN singlet states with n << N spins flipped along 
diagonal:
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Conclusions

• Shown that Matrix Quantum Mechanics can arise at 
quantum critical points in transverse field Ising models. 

• Analogous to how Ising CFTs arise, but dynamics is not 
in space but in the large N matrix interactions. 

• Critical dynamics of these systems: free scalar field in 
emergent 1+1 dimensional spacetime. 

• In the disordered phase, N2 constraints can be relaxed to 
a single constraint:
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