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Preliminary comments

Deep aspects of quantum gravity (Bekenstein-Hawking,
Ryu-Takayanagi, ...) have been gleaned from the semi-
classical path integral.

Nonetheless, ultimately, understanding the emergence of
spacetime, ‘It from Qbit’, will involve a characterization of
an underlying microscopic entanglement structure that
supports emergent local dynamics.

Emergent locality is somewhat different from MPS,
MERA, PEPS, etc, whose role is to put manifest locality
to a powerful use.



“It from Qbit”, explicit version

- This talk is about an explicit realization of emergent local
dynamics from a quantum spin system.

Logic: map the spin system onto a matrix guantum
mechanics that is known to lead to emergent local
dynamics at a guantum critical point.
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“It from Qbit”, explicit version

- The emergent local dynamics will be rather simple for the
model we solve: a scalar field in 1+1 dimensions.

However, start to get a feel for various nontrivial steps
that arise In obtaining a matrix quantum mechanics
structure from ‘atoms of entanglement’ (Qbits/spins).

Previously shown how the accumulation of entanglement
necessary for emergent locality arises in this case: it is
contained in the Fermi Sea structure of the eigenvalue
dynamics [1504.07985, SAH + Mazenc; Das '95].



Transverse field Ising models

+ The usual transverse field Ising model is
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Continuous quantum phase transition
= Gapless excitations = Continuum limit described by CFT.




Transverse field Ising models

- A symmetric matrix of N2 spins,§ AR, Interacting nonlocally:

H = —hz SAB + Z SABOBCSCDODA
N 5o

- Symmetries:
(1) flipping the spin of rows and columns: Zy'
(2) permuting rows and columns: Sy

- Classical model (h=0) studied by
[Cugliandolo-Kurchan-Parisi-Ritort, cond-mat/9407080]
has ‘crystalline’ order at low T, preempted by glassiness.




Transverse field Ising models

Our results for this model at large N:
First order symmetry breaking transition at critical va/h.

Disordered large N state is described by a matrix
guantum mechanics for all couplings.

Disordered large N state undergoes a continuous
guantum phase transition as a function of va/h.

- At the quantum critical point, the low energy excitations
are described by massless scalar field in 1+1 dimensions.



Transverse field Ising models
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Step 1: Suzuki-Trotter decomposition

Path integral for spins:

7 = Tre PH

_ Z Z H (o le” M |omat) €

ore{£1IN* oy e{F£1}N? m=1

Z Z H —etrViom) H (Om|l+€ehSiglomit)

ore{+1IN? oy e{£1}N? m=1

oy oy eXp{ ef(trvffmfz((’fﬁ;fﬁl)z)}.

cre{+1}IN? gy e{£1}N? m=1 AB

B
— <1
M

2




Step 2: Constrained bosons

Introduce continuous boson field:
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Step 3: Continuum limit (in time)

Send time step to zero, but remember time step was
iIntroduced by hand, not a microscopic parameter:
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Microscopic energy /
scale to flip a spin

Derivative expansion can be truncated when excitations with
energy AE « h are present: quantum critical point.

Crucially, can also truncate at weak coupling (free spins)
and strong coupling (classical spins).




Step 4: Matrix Quantum Mechanics Saddle!

So far:
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Import a trick from [Cugliandolo-Kurc
- At large N, a consistent saddle

- |In classical spin model, this sac
describe the high T disordered

han-Parisi-Ritort, '94]:
point has pas = .

dle was shown to
ohase.

- Perhaps captures the quantum

disordered wavefunction?



Step 4: Matrix Quantum Mechanics Saddle!

Thus:
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Expectation: If there is continuous QPT In the disordered state,
its critical dynamics is described by the above MQM.

Remainder:

-iInd the ground state of the above.
- Show that it correctly describes the disordered state.

- Show that there is a continuous QPT.
- Show that low energy excitations: 1+1 scalar field.




Step 5: Hamiltonian and ground state

- Hamiltonian: Exercise In constrained quantization.
Dirac brackets, secondary constraints etc.]

-+ (30 1o eigenvalue basis (non-singlet modes decouple at
the quantum critical point [Gross-Klebanov '91]):

b = OTAO, Az'j — )‘25@]
-+ Change variables to collective field [Jevicki-Sakita *80]:

p(A,t) = Z(S (A= Ai(?))



Step 5: Hamiltonian and ground state

- The collective field Hamiltonian and constraints are:
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Ensures dQo/dt = 0O /

Ground state eigenvalue distribution has 11=0.
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Step 6: Existence of continuous QPT

- As v4 = 0 (quantum disordered spins), Emam matches the
spin system ground state energy to 3rd order In
perturbation theory [Expect disagreement at 4th order]:
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- Confirms MQM describes the disordered state.

- As v4 = o, Emam matches the energy of (subdominant)
classical disordered state of Cugliandolo et al.:
Eq
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Step 6: Existence of continuous QPT

MQM eigenvalue distribution is connected at small va and
disconnected at large va.
= “Topological’ QPT at intermediate coupling.
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Step 7: Emergent local dynamics

- Critical dynamics of topological phase transitions in MQM
are well understood [eg. Das-Jevicki '90], ripples of the
eigenvalue distribution:

p=p(A) +0p(A, 1)
- Key step: canonical transformation on the fluctuations

op ~ 6q¢a
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- Quadratic Hamiltonian becomes:

1O = [ g (Pry + 0,67

- EXxcitations described by free 1+1 scalar field!



Step 7: Emergent local dynamics

At weak coupling, fluctuations of the collective field can
be related to particular spin excitations.

Given by Sk singlet states with n << N spins flipped along
diagonal:




Conclusions

-+ Shown that Matrix Quantum Mechanics can arise at
guantum critical points in transverse field Ising models.

- Analogous to how Ising CFTs arise, but dynamics is not
IN space but In the large N matrix interactions.

- Critical dynamics of these systems: free scalar field in
emergent 1+1 dimensional spacetime.

In the disordered phase, N? constraints can be relaxed to
a single constraint:
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