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Conserved	quantities	
Consider	a	long wavelength	disturbance	
of	a	system	in	thermal	equilibrium

conserved quantities:	cannot relax	locally,	only	via	transports	

Conserved quantities
Gapless	and	
long-lived
modes

(only ones	in	
a	medium)

There	should	exist	a	universal low	energy	effective	theory.

non-conserved quantities:	relax	locally,	



Hydrodynamics	

Thermal	equilibrium:	

Promote	these	quantities	to	dynamical	variables:	(local	equilibrium)

slowly	varying	functions	
of	spacetime

Express	expectation	values	of	the	stress	tensor	and	conserved	
current in	terms	of	derivative	expansion	of	these	variables:	
constitutive	relations.	

Equations	of	motion:	

d+1	variables,	d+1	equations	







Despite	the	long	and	glorious	
history	of	hydrodynamics

It	does	not capture	fluctuations.	



Fluctuations

There	are	always	statistical fluctuations	…..

transports,	

Important	in	many	contexts:		

At	low	temperatures,	quantum fluctuations	can	also	be	important.		

Long	time	tail	

dynamical	aspects	of	phase	transitions,	

non-equilibrium	states,	
turbulence,	

finite		size	systems	….



Phenomenological	level:	stochastic hydro	(Landau,	Lifshitz)

:	noises		with	local	Gaussian	distribution

3.	fluctuations	of	dynamical	variables	themselves		

Expect:

1.	interactions	among	noises	

2.		interactions	between	dynamical	variables	and	noises	

Until	now	not	known	how	to	treat	such	nonlinear	
effects	systematically.	Not	even	clear	it	is	a	good	question.

particularly	important	for	non-equilibrium	situations.	



Constraints	

Constitutive	relations	:	not	enough to	just	write	down	the	most	
general	derivative	expansion	consistent	with	symmetries.	

1.	Entropy	condition	

2.	Onsager	relations:	linear	response	matrix	must	be	symmetric

Phenomenological	constraints:	solutionsshould	satisfy:	

Are	these	complete?	

Current	formulation	of	hydrodynamics	is awkward.

awkward:	use	solutions	to	constrain	equations	of	motion

Microscopic	derivation?



Effective	theory	approach	may	also	make	it	easier	to	generalize	
hydrodynamics	EOM	to	less	familiar	situations,	say	with	
momentum	dissipations,	anomalies.....

develop	hydrodynamics	as	a	bona	fide	low		energy	effective	field	
theory	of	a	general	many-body	system	at	finite	temperature

1.	gives	a	full	interacting	theory	 of	noises.

2.	Microscopic	origin	and	completeness	of	
phenomenological	constraints

3.	New	constraints	(nonlinear	Onsager	relations)

Action	principle	which	incorporates	
both	dissipations	and	noises

Should	be	distinguished from	an	action	which	just	reproduces	standard		
eoms (which	may	not	capture	fluctuations	correctly)



Searching	for	an	action	principle	for	hydrodynamics	
has	been	a	long	standing	open	problem,	dating	back	
at	least	to	G.	Herglotz in	1911	….....

All	results	at	non-dissipative	level	….

Many	activities	since	70’s	to	understand	
hydrodynamic	fluctuations	….....



Results

1.	Hydrodynamics	with	classical	statistical	fluctuations

is	described	by	a	supersymmetric quantum field	theory		

2.	Hydrodynamics	with	quantum	fluctuations	also	incorporated		

is	described	by	a	“quantum-deformed”	(supersymmetric)	
quantum	field	theory.

See	also	Haehl,	Loganayagam,	Rangamani

Approach:	put	a	relativistic	quantum	many-body	ssystem in	a	
curved	spacetime



Part	II:	formulation



Transition	amplitudes	v.s.	expectation	values

We	are	interested	in	an	effective	theory	describing	nonlinear	
dynamics	around	a	state.	

Should	be	contrasted	with	EFT	describing	transition	amplitudes,

Closed	time	path	(CTP)	or	Schwinger-Keldysh contour

Should	double all	degrees	of	freedom	



Hydro	effective	field	theory	

hydrodynamic	
modes	

EFT	approach:

1.	What	are						? do	not	work

2.	What	are	the	symmetries	of																?

3.	Integration	measure?

At	long	distances	and	large	times:		

All	correlation	functions	of		
the	stress	tensor	and	
conserved		currents	in	
thermal	equilibrium	



Dynamical	variables:	integrating	in	
Toy	example:	a	single	conserved	current

1.		Current	conservation:

2.	W	must	be	nonlocal	:	Non-locality	solely due	to	integrating	
out		hydro	modes	

Integrate	in hydro	modes:	

(a):																																		local	 (b):	Ensure	1	is	satisfied

(c):							EOMs	must	be	equivalent	to	current	conservations		



Proposal:	(use	the	usual	Stueckelberger trick	)

is	a	local action.	 :	hydro	modes

Satisfy	the	following	consistency	requirements:	

1.

2.					Eoms of											are	equivalent	to	current	conservations.



Dynamical	variables	(II)
For	stress	tensor,	we	put	the	system	in	a	curved	spacetime

Conservation	of	stress	tensor:	

Integrate	in	hydro	modes:	 Promote	spacetime coordinates	to	
dynamical	fields

1.
2.	X	eoms are	equivalent	to	
conservation	of	stress	tensor

an	emergent spacetime with	coordinates	



Interpretation	of							:		 label	individual	fluid	elements,	 internal	time

:	motion	of	a	fluid	element	in	physical	spacetime

So	we	just	recovered	the	Lagrange	description	of	a	fluid!

As	a	starting	point,	we	could	simply	double	the	degrees	of		freedom
in	the	Lagrange	description.	



A	bit	history:

Nickel	and	Son	showed	the	covariant	version	arises	naturally	
from	holography	(arXiv:1103.2137).

Doubled	copies	appeared	in	Haehl,	Loganayagam,	Rangamani
arXiv:1502.00636,	 and	Crossley,	Glorioso,	HL,	Wang		
arXiv:1504.07611.

Using	a	single	copy	of																	as	dynamical	variable	for	an	
ideal	fluid	action	dated	back	to	G.	Herglotz in	1911.

Covariant																	was	used	by	Taub in	1954.		

Rediscovered	in	2005	by	Dubovsky,	Gregoire,	Nicolis and	Rattazzi
in	hep-th/0512260	and	further	developed	by	Dubovsky,	Hui,	
Nicolis and	 Son	 in	arXiv:1107.0731	 ,	......



Standard	hydro	variables	(which	are	now	derived	quantities)

A	significant	challenge:	 ensure	the	eoms from	the	action
of	X	and					can	be	solely	expressed	in	terms	of	these	velocity	
type	of	variables.	(e.g.	solids v.s.	fluids)



Symmetries	(I)
Now	need	to	specify	the	symmetries	of

Note	that	it	is	defined	in	fluid	spacetime

Require	the	action		to	be	invariant	under:

Interpretation	of							:		 label	individual	fluid	elements,	 internal	time

define	what	is	a	fluid!



It	turns	out	these	symmetries	indeed	do	magic	for	you:

at	the	level	of	equations	of	motion,	they	ensure	all	dependence	
on	dynamical	variables	can	be	expressed	in

Recover	standard	formulation	of	hydrodynamics
(modulo	 phenomenological	 constraints)

This	would	be	the	full	the	story	in	a	usual	situation.

Full	non-linear	fluid	fluctuating	dynamics	encoded	
in	non-trivial	differential	geometry:



Symmetries	(II)
We	are	considering	EFT	for	a	
system	defined	with	CTP:

The	generating	functional	has	the	following	properties:		

• KMS	condition	plus	PT	imply	a	Z2 symmetry	on	W:

• Reflectivity	condition:

• Unitarity	condition:



Full	bosonic theory
Reflectivity	condition	can	be	easily	imposed,	leading		to	a	
complex action.			

Imposing	KMS	condition	is	very	tricky.	

All	the	constraints	from	entropy	current	
condition	and	linear	Onsager	relations	

New	constraints	on	equations	of	motion	from	nonlinear
Onsager	relations.

proposal:	local	KMS	condition,	a	Z2	symmetry	on	the	action

Imaginary	part	of	the	action	non-negative	



Fermions	and	Supersymmetry

is	a	“topological”	condition	on	the	measure	of	path	integrals

Introduce	fermionic partners		(“ghost”	fieds)	for	dynamical	
variables	and	require	the	action	to	have	a	BRST	type	symmetry.

See	also	Haehl et	al
arXiv:	1510.02494
1511.07809Unitarity condition:

At	a	quadratic level	in	dynamical	fields,	one	finds	that		local	KMS	
condition	leads	to	an	emergent	fermionic symmetry.

But	not	clear	how	to	write	down	a	nonlinear	action	with	such	an	algebra.

Requires	a	“quantum-deformed”		SUSY	



Classical	limit:	

become	standard	supersymmetry in	time	direction.	

In	this	limit	one	can	write	down	a	supersymmetric completion	
of	the	full	bosonic hydrodynamic	action.			

Note	that	in	the	classical	limit,	path	integral	remains,	
capturing	statistical	fluctuations.



Example:	nonlinear	stochastic	diffusion

Consider	the	theory	for	a	single	conserved	current,	where
the	relevant	physics	is	diffusion.

Dynamical	variables:	 (or															)

Roughly,								:	standard	diffusion	mode,							:	the	noise.

If	ignoring	interactions	of	noise

A	variation	of	Kardar-Parisi-Zhang	 equation



Summary

Fermionic excitations	and	Emergent	supersymmetry.

An	EFT	for	general	dissipative	fluids.

Recovers	the	standard	hydrodynamics	as	equations	
of	motion,	constitutive	relations,	constraints.

Encodes	quantum	and	thermal	fluctuations	
systematically	in	a	path	integral	expansion.

Full	non-linear	fluid	fluctuating	dynamics	encoded	
in	non-trivial	differential	geometry.	



Future	directions	
Formalism:

Non-relativistic	limit	,	
superfluids,
Anisotropic,	inhomogeneous,
“quantum-deformed”	Supersymmetry

…....
Applications:	

Longtime	tails,	running	of	viscosities,	

Dynamical	aspects	of	classical	and	
quantum	phase	transitions	

Scaling	behavior	in	hydro	behavior	via	fixed	points	
of	QFTs,	such	as	KPZ	scaling,	turbulence	….

….........

Non-equilibrium	steady	states,	dynamical	flows	of	QGP



Thank	You


