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 Entanglement Entropy 

• in QFT, typically introduce a (smooth) boundary or entangling 

  surface      which divides the space into two separate regions 

• integrate out degrees of freedom in “outside” region 

• remaining dof are described by a density matrix 

A 

B 

calculate von Neumann entropy: 

• general tool; divide quantum system into two parts and use 

  entropy as measure of correlations between subsystems 
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Entanglement Holography: 

• find the emergence of a new auxiliary geometry as natural framework 
   to describe any CFT – not relying on strong coupling or large # of dof 

• may yield new insights into the structure of correlation functions, . . . 

• for CFT’s with conventional holographic duals, provides new 
   observables based on extremal surfaces 

• may give insight in the nonlocal nature of quantum gravity, bulk 
   reconstruction, . . . 

• building on intuition and experience offered by EE in CFTs (and in 
   AdS/CFT correspondence), propose reorganization of CFT in terms of 
   new nonlocal observables 

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 



First Law of Entanglement 

• entanglement entropy: 

• make a small perturbation of state: 

S(½A) =¡tr(½A log½A)

~½ = ½A+ ±½

“1st law” of entanglement entropy 

½A = exp(¡HA)

(Blanco, Casini, Hung & RM) 

• modular (or entanglement) Hamiltonian: 

½A = exp(¡H=T)• this is the 1st law for thermal states: 



“1st law” of entanglement entropy: 

• generally         is “nonlocal mess” and flow is nonlocal/not  geometric 

HA =

Z
dd¡1x°¹º1 (x)T¹º +

Z
dd¡1x

Z
dd¡1y °¹º;½¾2 (x; y)T¹ºT½¾ + ¢ ¢ ¢

hence usefulness of first law is very limited, in general 



• by causality,       and        describe physics throughout 
   domain of dependence      ; eg, generate boost flows 

“1st law” of entanglement entropy: 

• generally         is “nonlocal mess” and flow is nonlocal/not  geometric 

HA =

Z
dd¡1x°¹º1 (x)T¹º +

Z
dd¡1x

Z
dd¡1y °¹º;½¾2 (x; y)T¹ºT½¾ + ¢ ¢ ¢

hence usefulness of first law is very limited, in general 

• famous exception: Rindler wedge 

HA = 2¼K

= 2¼

Z

A(x>0)

dd¡2y dx [x Ttt ] + c0

boost generator 

A B 
● 

HA

Σ 

Σ = (x = 0, t = 0) • any relativistic QFT in Minkowski vacuum; choose 

(Bisognano & Wichmann; Unruh) 



• another exception: CFT in vacuum of d-dim. flat space and entangling 
                                     surface which is Sd-2  with radius R 

HB = 2¼

Z

B

dd¡1y
R2 ¡ j~yj2

2R
Ttt(~y) + c0

(Casini, Huerta & RM;  
Hislop & Longo) 

“1st law” of entanglement entropy: 

B 

B 
K¹

• generates flow along 𝐾𝜇, 
   conformal Killing vector 



“1st law” of entanglement entropy: 

• small excitations of CFT vacuum in d-dim. flat space and entangling 
   surface which is Sd-2  with radius R: 

B 

B 

±S = ±hHBi = 2¼

Z

B

dd¡1y
R2 ¡ j~yj2

2R
hTtt(~y)i



±S(R;~x) = 2¼

Z

B

dd¡1y
R2 ¡ j~y¡ ~xj2

2R
hTtt(~y)i

“1st law” of entanglement entropy: 

• small excitations of CFT vacuum in d-dim. flat space and entangling 
   surface which is Sd-2  with radius R: 

B 

B 
R ● 

𝑥  



±S(R;~x) = 2¼

Z

B

dd¡1y
R2 ¡ j~y¡ ~xj2

2R
hTtt(~y)i

• boundary-to-bulk propagator in d-dim de Sitter space! 

(eg, see: Xiao 1402.7080) 

ds2 =
L2

R2

¡
¡dR2 + d~x2

¢
R
=
1

I+

I¡

R= 0

• small excitations of CFT vacuum in d-dim. flat space and entangling 
   surface which is Sd-2  with radius R: 

Entanglement Holography v1.0: 

radius plays role 
of time 



ds2 =
L2

R2

¡
¡dR2 + d~x2

¢

• straightforward to show 𝛿𝑆 satisfies wave equation in dSd 

¡
r2
dS ¡m2

¢
±S = 0 m2L2 =¡dwith 

Entanglement Holography v1.0: 

±S(R;~x) = 2¼

Z

B

dd¡1y
R2 ¡ j~y¡ ~xj2

2R
hTtt(~y)i

• boundary-to-bulk propagator in d-dim de Sitter space! 

(eg, see: Xiao 1402.7080) 

• small excitations of CFT vacuum in d-dim. flat space and entangling 
   surface which is Sd-2  with radius R: 



•                         : mass tachyonic!  → above precisely removes the  
                                                          “non-normalizable” or unstable modes  

•           sets 𝛿𝑆 at very small 𝑅 and EE perturbations at larger scales 
  determined by the local Lorentzian propagation into dS geometry 

• wave equation                                    is singular as 𝑅 → 0  

Entanglement Holography v1.0: 

ds2 =
L2

R2

¡
¡dR2 + d~x2

¢

¡
r2
dS ¡m2

¢
±S = 0

m2L2 =¡d

• de Sitter metric: 

±S
R!0
= F(~x)=R+ f(~x)Rd + ¢ ¢ ¢2 independent sol’s: 

• “1st law” solution: 

f(~x) =
¼
d+1
2

¡
¡
d+3
2

¢ hTtt(~x)i

¢= d¢=¡1

F(~x) = 0 ;

hTtti

±S(R;~x) = 2¼

Z

B

dd¡1y
R2 ¡ j~y¡ ~xj2

2R
hTtt(~y)i

with  m2L2 =¡d



• geometry naturally gives partial ordering of spheres 

time slice 
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• geometry naturally gives partial ordering of spheres 

time-like 
separated 

time slice 

space-like 
separated 

null 
separated 

reference sphere 

suggests auxiliary/holographic geometry should be Lorentzian 

(ordering of intervals for d=2 discussed by Czech, Lamprou, McCandlish & Sully) 

New “holographic” coordinate is time-like. Really? 
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Mapping deSitter ↔ Balls? 

• choose one of asymptotic boundaries of dS (eg,       )  ↔ time slice I+

• for any point 𝑥 in bulk and send out future light cone to  I+

• intersects      on a sphere and interior uniquely defines `dual’ ball 𝐵𝑥 I+

I+ = fR = 0; ~xg

dS bulk 
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@Bx Bx

By2

By3

y1

By1

• choose one of asymptotic boundaries of dS (eg,       )  ↔ time slice I+
Mapping deSitter ↔ Balls? 

I+ = fR = 0; ~xg

x

• proposed “ordering” of spheres = 
  Lorentzian ordering of bulk points 

• mapping/dS geometry does not imply 
   local dynamics respecting this structure  

• for any point 𝑥 in bulk and send out future light cone to  I+

• intersects      on a sphere and interior uniquely defines `dual’ ball 𝐵𝑥 I+



Comments: 

• same wave equation derived from AdS/CFT correspondence 

Nozaki, Numasawa, Prudenziati& Takayanagi: arXiv:1304.7100 
Bhattacharya, Takayanagi: arXiv:1308.3792 

• Eg, linearized Einstein eqs in AdS4 implied for holographic EE 
·
@2

@R2
¡ 1

R

@

@R
¡ 3

R2
¡ @2

@x2
¡ @2

@y2

¸
±S(t; x; y;R) = 0

• here, we see equation readily extends to any 𝑑 and follows purely 
   from underlying conformal symmetry 

·
¡R

3

L2

@

@R

µ
1

R

@

@R

¶
+
R2

L2

@2

@x2
+
R2

L2

@2

@y2
+

3

L2

¸
±S(t; x; y;R) = 0

• can be recast as d=3 deSitter wave equation: 

mass term d’Alembertian on dS3 



Comments: 

• deSitter geometry appears in recent discussions of integral geometry 
   and the interpretation of MERA in terms of AdS3/CFT2 

(Czech, Lamprou, McCandlish & Sully: arXiv:1505.05515; arXiv:1512.01548) 

• consider space of intervals u<x<v on time slice of 2d holographic CFT 
              space of geodesics on 2d slice of AdS3  pts in 2d de Sitter 
AdS/CFT 

ds2 = L2 dudv

(v ¡ u)2

dS scale? 

motivate the choice: L2 =
c

3

ds2 = @u@vS0 dudv

with S0 =
c

3
log

v ¡ u

±

volume in dS2 = length in AdS3 slice  

“hole-ography”: 



Entanglement Holography v1.0  ‒  Recap  

• 𝛿𝑆 satisfies wave equation in dSd where scale plays the role of time ¡
r2
dS ¡m2

¢
±S = 0 m2L2 =¡dwith 

•           sets 𝛿𝑆 at very small 𝑅 and EE perturbations at larger scales 
  determined by the local Lorentzian propagation into dS geometry 

hTtti

• EE of excitations of CFT vacuum arranged in novel holographic manner 

applies for any CFT in any d; relies only on the 1st law of 
entanglement; does not require strong coupling or large # dof 

 Is this only some “kinematic” constraint on entanglement in CFTs? 

or 

Is there a novel re-organization of CFT where nonlocal observables 
yield local field theory propagating in dS spacetime? 

Question: 



Question: Other dynamical fields in dS space? 



Extension to Higher Spin Charges: 

B@B B

t = 0

• 

• 

K¹

• CFT with conserved symmetric traceless currents 𝑇𝜇1⋯𝜇𝑠
 with 𝑠 ≥ 1 

• modular Hamiltonian is flux of                              through B where 𝐾𝜈 
  is conformal Killing vector that leaves 𝜕𝐵 invariant 

J(2)¹ = T¹ºK
º

HB =

Z
d§¹ J(2)

¹
• extends to higher spin charges: 

±Q(s) =

Z
d§¹ J(s)

¹ with J(s)¹ = T¹¹2¢¢¢¹sK
¹2 ¢ ¢ ¢K¹s

• appear in discussion of modified density matrices 

½B » exp
h
¡
X

¹s ±Q
(s)
i

(s≥3: Hijano & Kraus; 
 s=1: Belin, Hung etal) 



B@B B

t = 0

• 

• 

K¹

Extension to Higher Spin Charges: 

• extends to higher spin charges: 

±Q(s) =

Z
d§¹ J(s)

¹ with J(s)¹ = T¹¹2¢¢¢¹sK
¹2 ¢ ¢ ¢K¹s

±Q(s) = (2¼)s¡1
Z

B

dd¡1y

µ
R2 ¡ j~x¡ ~yj2

2R

¶s¡1
Ttt:::t(~y)

• on t=0 slice, yields: 

bdry-to-bulk propagator 
for deSitter 

•            satisfies wave equation in dSd 
¡
r2
dS ¡m2

¢
±Q(s) = 0

m2L2 =¡(s¡ 1)(d+ s¡ 2)

with 

±Q(s)



Question: What about time dependence in CFT? 

• so far focused on single time slice; natural to consider perturbations of 
   EE for all spheres throughout spacetime on any time slice & any frame 

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 
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• so far focused on single time slice; natural to consider perturbations of 
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• adopt group theoretic perspective of wave equation: 

  background for spheres on fixed time slice: 

SO(1; d)=SO(1; d¡ 1) ' d-dim. deSitter space 

  background for spheres throughout spacetime: 

SO(2; d)= [SO(1; d¡ 1)£SO(1;1)]

2𝑑-dimensional space 

symmetries leaving 
time slice invariant 

symmetries leaving 
sphere invariant 

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 

Entanglement Holography v2.0: 



• so far focused on single time slice; natural to consider perturbations of 
   EE for all spheres throughout spacetime on any time slice & any frame 

• adopt group theoretic perspective of wave equation: 

  background for spheres throughout spacetime: 

SO(2; d)= [SO(1; d¡ 1)£SO(1;1)]

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 

2𝑑-dimensional space y¹

x¹

c¹ =
y¹ + x¹

2

`¹ =
y¹ ¡ x¹

2
• moduli space of spheres  
      = m.s. of causal diamonds 
      = m.s. of pairs of time-like separated points 

(y¹; x¹)

Entanglement Holography v2.0: 



• so far focused on single time slice; natural to consider perturbations of 
   EE for all spheres throughout spacetime on any time slice & any frame 

• adopt group theoretic perspective of wave equation: 

  background for spheres throughout spacetime: 

SO(2; d)= [SO(1; d¡ 1)£SO(1;1)]

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 

2𝑑-dimensional space y¹

x¹
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• so far focused on single time slice; natural to consider perturbations of 
   EE for all spheres throughout spacetime on any time slice & any frame 

• adopt group theoretic perspective of wave equation: 

  background for spheres throughout spacetime: 

SO(2; d)= [SO(1; d¡ 1)£SO(1;1)]

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 

2𝑑-dimensional space y¹

x¹

c¹

`¹

signature: 𝑑, 𝑑   

• natural metric: 

ds2¦ =
4L2

(x¡ y)2

µ
¡´¹º +

2(x¹ ¡ y¹)(xº ¡ yº)

(x¡ y)2

¶
dx¹dyº

= ¡L
2

`2

µ
´¹º ¡

2

`2
`¹`º

¶
(dc¹ dcº ¡ d`¹ d`º)

too many times?!?! 
need more eoms!?!? 

Entanglement Holography v2.0: 



Question: What about time dependence in CFT? 

• so far focused on single time slice; natural to consider perturbations of 
   EE for all spheres throughout spacetime on any time slice & any frame 

• adopt group theoretic perspective of wave equation: 

  background for spheres throughout spacetime: 

SO(2; d)= [SO(1; d¡ 1)£SO(1;1)]

2𝑑-dimensional space 

signature: 𝑑, 𝑑          too many times?!?! 
need more eoms!?!? 

• special case: d=2 

SO(2;2)= [SO(1;1)£SO(1;1)]

= SO(2;1)=SO(1;1) £ SO(2;1)=SO(1;1)

= dS2 £ dS2

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 



• natural to split 𝛿𝑆 into 𝛿𝑆± = contributions of left/right-movers 

eg, in 1st law limit: 

• 𝛿𝑆± propagate on separate dS2 geometries, eg,  ds2 = L2 dx+R dx
+
L

(x+R ¡ x+L)
2

±S+ = 2¼

Z
d»+

(x+R ¡ »+)(»+ ¡ x+L)

x+R ¡ x+L
hT++i(»+)

• focus on d=2 CFT where found  dS2 £ dS2

x§ = (x§ t)=
p
2

Need more eoms!?!? 

(x+L ; x
¡
L)

(x+R; x
¡
R)

x+ = x+R

x+ = x+L

•  
•  



• natural to split 𝛿𝑆 into 𝛿𝑆± = contributions of left/right-movers 

eg, in 1st law limit: 

• 𝛿𝑆± propagate on separate dS2 geometries, eg,  ds2 = L2 dx+R dx
+
L

(x+R ¡ x+L)
2

¡
r2

+ ¡m2
+

¢
±S+ = 0 m2

+L
2 =¡2

±S+ = 2¼

Z
d»+

(x+R ¡ »+)(»+ ¡ x+L)

x+R ¡ x+L
hT++i(»+)

with 

¡
r2
¡ ¡m2

¡
¢
±S+ = 0 m2

¡L
2 = 0with implicitly: 

• 𝛿𝑆± propagate nontrivially on          and trivially on  dS¨dS§

two “standard” second-order wave equations 

• focus on d=2 CFT where found  dS2 £ dS2

x§ = (x§ t)=
p
2

Need more eoms!?!? 



Question: What about interacting fields? 



• specialize: d=2; “conformally” excited states 

Beyond 1st Law: 

w+ = f+(x
+) and w¡ = f¡(x

¡) x§ = (x§ t)=
p
2

hT++i(x+) =
c

12

½
f 000+
f 0+

¡
3(f 00+)

2

2(f 0+)
2

¾



• specialize: d=2; “conformally” excited states 

• evaluate change of entropy under local conformal transformations 
(Holzhey, Larsen & Wilczek; Calabrese & Cardy) 

• recall: 

Beyond 1st Law: 

w+ = f+(x
+) and w¡ = f¡(x

¡) x§ = (x§ t)=
p
2

hT++i(x+) =
c

12

½
f 000+
f 0+

¡
3(f 00+)

2

2(f 0+)
2

¾

S = lim
n!1

1

1¡ n
log tr½n = lim

n!1

1

1¡ n
logh¾n ¾¡ni

correlator of local primaries 

S(w+
L ;w

¡
L ;w

+
R;w

¡
R) = S+(f+;w

+
L ;w

+
R) +S¡(f¡;w

¡
L ;w

¡
R)

with S+(f+;w
+
L ; w

+
R) =

c

12
log

¡
f+(w

+
R)¡ f(w+

L )
¢2

±2 f 0+(w
+
R)f

0
+(w

+
L )



Beyond 1st Law: 

• for finite shift of state, find nonlinear wave equation: 

r2
+ ±S+ = V 0(±S+) with V 0(±S+) =

c

6L2

·
exp

µ
¡12 ±S+

c

¶
¡ 1

¸

= ¡ 2

L2
±S+ +

12

cL2
±S2

+ + ¢ ¢ ¢

r2
¡ ±S+ = 0(also implicitly:                         ) 

expected m2 for d=2 

• define: ±S+(w
+
L ;w

+
R) = S+(f+;w

+
L ;w

+
R) ¡ S+(f+(z) = z;w+

L ;w
+
R)



Beyond 1st Law: 

• for finite shift of state, find nonlinear wave equation: 

r2
+ ±S+ = V 0(±S+) with V 0(±S+) =

c

6L2

·
exp

µ
¡12 ±S+

c

¶
¡ 1

¸

= ¡ 2

L2
±S+ +

12

cL2
±S2

+ + ¢ ¢ ¢

interactions suppressed by central charge 

• local dynamics on auxiliary geometry!! 

c 

(see also: Beach, Lee, Rabideau & Van Raamsdonk: arXiv:1604.05308) 

r2
¡ ±S+ = 0(also implicitly:                         ) 

expected m2 for d=2 

• define: ±S+(w
+
L ;w

+
R) = S+(f+;w

+
L ;w

+
R) ¡ S+(f+(z) = z;w+

L ;w
+
R)



Beyond 1st Law: 

• for finite shift of state, find nonlinear wave equation: 

r2
+ ±S+ = V 0(±S+) with V 0(±S+) =

c

6L2

·
exp

µ
¡12 ±S+

c

¶
¡ 1

¸

= ¡ 2

L2
±S+ +

12

cL2
±S2

+ + ¢ ¢ ¢

interactions suppressed by central charge 

• local dynamics on auxiliary geometry!! 

c 

(see also: Beach, Lee, Rabideau & Van Raamsdonk: arXiv:1604.05308) 

r2
¡ ±S+ = 0(also implicitly:                         ) 

expected m2 for d=2 

• define: ±S+(w
+
L ;w

+
R) = S+(f+;w

+
L ;w

+
R) ¡ S+(f+(z) = z;w+

L ;w
+
R)

• choosing alternate reference state produces coordinate transformation 
   on dS2 geometry with                          and      

(see also: Asplund, Callebaut, Zukowski: arXiv:1604.02687;  

S+(f0;w
+
L ;w

+
R)

~w+
R = f0(w

+
R) ~w+

L = f0(w
+
L)



Beyond 1st Law: 

• d=2 higher spin CFT (use CS theory with 3d gauge fields & use Wilson 
                                                                                        line prescription for EE) 

(deBoer & Jottar; Ammon, Castro & Iqbal; Hijano & Kraus, …) 

r2 ±S +
c

6
¡ c

6
exp(¡12 ±S=c) cosh

³
72 ±Q(3)=c

´
= 0

r2 ±Q(3) +
c

12
exp(¡12 ±S=c) sinh

³
72 ±Q(3)=c

´
= 0

(+/– indices are suppressed) 

• appears to be related to Toda theory with same SL(3,R) symmetry 

• theory of two interacting scalar fields with local interactions 



Beyond conserved currents: 

integrate over entire 
causal diamond D(x,y) 

y¹

x¹

c¹

`¹

±Q(O;x; y) = CO

Z

D(x;y)

dd»

µ
(y ¡ »)2(» ¡ x)2

¡(y ¡ x)2

¶1
2
(¢O¡d)

hO(»)i

• motivated by first law, define observables: 

(see also Czech, Lamprou, McCandlish, Mosk & Sully: arXiv:1604.03110) 



±Q(O;x; y) = CO

Z

D(x;y)

dd»

µ
(y ¡ »)2(» ¡ x)2

¡(y ¡ x)2

¶1
2
(¢O¡d)

hO(»)i

Beyond conserved currents: 

• motivated by first law, define observables: 

• satisfies wave equation of moduli space: 

(r2
¦ ¡m2

O) ±Q(O) = 0 with m2
OL

2 =¢O(d¡¢O)

• reduces to known “charges” for conserved higher spin currents 

• resummation of OPE contributions of       and all descendants O
(Czech, Lamprou, McCandlish, Mosk & Sully)  conformal blocks 

±Qholo(O;x; y) =
CO

8¼GN

¡
¡
¢O+2¡d

2

¢
¡
¡
¢O
2

¢

¡
¡
¢O ¡ d

2

¢
Z

B(x;y)

dd¡1u
p
h Á(u)

• for holographic CFTs, bulk dual given by integral of extremal surface 



±Q(O;x; y) = CO

Z

D(x;y)

dd»

µ
(y ¡ »)2(» ¡ x)2

¡(y ¡ x)2

¶1
2
(¢O¡d)

hO(»)i

Beyond conserved currents: 

• motivated by first law, define observables: 

• satisfies wave equation of moduli space: 

(r2
¦ ¡m2

O) ±Q(O) = 0 with m2
OL

2 =¢O(d¡¢O)

• need more eoms!?!?  using                                                          , find: ¡abcd jO(x)i ´ J[abJcd] jO(x)i= 0

¡abcd(x; y) ±Q(O;x; y) = CO

Z

D(x;y)

dd»

µ
(y ¡ »)2(» ¡ x)2

¡(y ¡ x)2

¶ 1
2
(¢O¡d)

h[¡abcd(»);O(»)]i
0 

• these constraints are not all independent; left with 

where 𝐽𝑎𝑏 =  conformal generators with 𝑎, 𝑏 = −, 0,1,⋯ , 𝑑 − 1, 𝑑 



Conclusions: 

• 𝛿𝑆 satisfies wave equation on moduli space of causal diamonds ¡
r2
¦ ¡m2

¢
±S = 0 m2L2 =¡2dwith 

• EE of excitations of CFT vacuum arranged in novel “holographic” way 

applies for any CFT in any d; relies only on the 1st law of 
entanglement; does not require strong coupling or large # dof 

 Is this only some “kinematic” constraint on entanglement in CFTs? 

or 

Is there a novel re-organization of CFT where nonlocal observables 
yield local field theory propagating in auxiliary spacetime? 

Question: 

• extends to a variety of other nonlocal observables, as well as an  
   interacting theory on moduli space for two dimensions 



Conclusions: 

• 𝛿𝑆 satisfies wave equation on moduli space of causal diamonds ¡
r2
¦ ¡m2

¢
±S = 0 m2L2 =¡2dwith 

• EE of excitations of CFT vacuum arranged in novel “holographic” way 

applies for any CFT in any d; relies only on the 1st law of 
entanglement; does not require strong coupling or large # dof 

 Is this only some “kinematic” constraint on entanglement in CFTs? 

or 

Is there a novel re-organization of CFT where nonlocal observables 
yield local field theory propagating in auxiliary spacetime? 

Question: 

Still lots to explore!! 

• extends to a variety of other nonlocal observables, as well as an  
   interacting theory on moduli space for two dimensions 


