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Introduction

Recently, (Renyi) entanglement entropy 
((R)EE) has a center of wide interest in a broad 
array of theoretical physics.

• It is useful to study the distinctive features of 
various quantum state in condensed matter 
physics. 

• (Renyi) entanglement entropy is expected to 
be an important quantity which may shed 
light on the mechanism behind the AdS/CFT 
correspondence .(Gravity ↔ Entanglement)
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Recently, (Renyi) entanglement entropy 
((R)EE) has a center of wide interest in a broad 
array of theoretical physics.

• In the lattice gauge theory, it is expected that 
entanglement entropy is a new order 
parameter which helps us study QCD more. 

• (R)EE is expected to be entropy in non-
equilibrium system.

It is important to study the properties 
of (Renyi) entanglement entropy. 
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Measuring
(Renyi) Entanglement Entropy



We study the property of (R)EE for

1. The size of subsystem is infinite.

A half of the total system:

Setup
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We study the property of (R)EE for

2. A state is defined by acting with

a local operator on the ground state:    

Setup

x1

t

x  = - l1

t=-t

AB



We would like to focus on the time evolution of the (R)EE.

We define             the excess of the (R)EE: 

: (R)EE for        ( Reduced Density Matrix for                              )

: (R)EE for the ground state      

Quantity
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This formula holds for any local operators

in general QFT in any dimensions.

Replica Method

Quantity



Field Theory 
1.    Free massless scalar field theory

2.    U(N) or SU(N) free massless scalar field theory 

in Large N limit

3.   Free massless fermionic field theory 

4. Charged Renyi Entanglement Entropy (CREE) 

5. Maxwell Theory in 4d

6.   Holographic field theory 
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How about Gauge Theory ?



Quasi-Particle

Example:              for 

・Late time value: 

Result by Replica Trick

We assume that late time value comes from entanglement
between quasi-particles 
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For

Decomposition:

=Left mover which corresponds to the 
particles included in B

=Right mover which corresponds to the 
particles included in A
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For

Quantization:

Consistent 
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Field Theory 
1.    Free massless scalar field theory

2.    U(N) or SU(N) free massless scalar field theory 

in Large N limit

3.   Free massless fermionic field theory 

4. Charged Renyi Entanglement Entropy (CREE) 

5. Maxwell Theory in 4d

6.   Holographic field theory 



Our Claim 

Subtleties : How to divide Hilbert space

Related to the D.O.F around the entangling surface 

on a certain time slice

A

B

∂A

In terms of REE, the terms 
which depends on UV cutoff
are related to the D.O.F 
around entangling surface

For           , these terms are subtracted . 

This work will appear on arXiv soon!
Collaborate with Naoki Watamura.



Our Claim 

Subtleties : How to divide Hilbert space

Related to the D.O.F around the entangling surface 

on a certain time slice

A

B

∂A

In terms of REE, the terms 
which depends on UV cutoff
are related to the D.O.F 
around entangling surface

For           , these terms are subtracted . 

Subtleties are negligible !!

This work will appear on arXiv soon!
Collaborate with Naoki Watamura.
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under the transformation:
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same number (log 2). 



Results.1 
Time evolution of              shows that it is invariant 

under the transformation:
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for for

This can be interpreted in terms 
of scalar quasi-particles 
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The late time values of             for operators such 
as                                 , which are constructed of both 

and                can not be interpreted in terms 
of scalar quasi-particles. 

We need electromagnetic quasi-particles
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Results. 2 Quasi-particle Interpretation

=Left mover which corresponds to the 
quasi-particles included in B

=Right mover which corresponds to the 
quasi-particles included in A
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C is real number.

same as scalar quasi-particles.
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Quantization

C is real number.

Unique for gauge theory

Electromagnetic fields can have the effect on the
late-time structure of entanglement differently  
from scalar fields.
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Summary
• We check that             respects electric-magnetic 

duality.

• for the operators constructed of both 
electric and magnetic fields can have the effect 
on the late-time structure of quantum 
entanglement differently from scalar operator.

Future directions
・Weak Interacting F.T.

・Non-relativistic case

・Maxwell Theory in general d

・Non-local Operator



Propagator-Probability 
Correspondence

Density matrix: 

In the path-integral formalism:

Smearing Parameter



Only three diagrams contribute at the leading 
order :

We take ε → 0 .
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Quasi-particles

• Decomposition:

• Quantization:

• Reduced Density matrix:
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Late time algebra:

In the same manner, 
we derive the late-time algebra for gauge theory .




