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Swampland Question

Given an effective theory of gravity, how can

one judge whether it is realized as a low energy
appropximation to a consistent quantum theory
with ultra-violet completion, such as string theory?



Constraints on Symmetry



Conjectures:

w There are no global symmetry.
w All continuous gauge symmetries are compact.

w The spectrum of electric and magnetic charges
forms a complete set consistent with the Dirac
guantization condition.
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Conjectures:

w There are no global symmetry.
w All continuous gauge symmetries are compact.

w The spectrum of electric and magnetic charges
forms a complete set consistent with the Dirac
guantization condition.

Holographic understanding:

Harlow, arXiv: 1510.07911
Harlow + H.O., to appear
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More Conjectures:

Gravity is the weakest force in Nature.

Arkani-Hamed, Motl, Nicolis + Vafa, hep-th/0601001

Every symmetry is gauged.

With a gauge field, there is always a particle
whose mass is smaller than its charge in the Planck unit.

w Black holes at the Reissner-Nordstrom bound
are unstable unless protected by supersymmetry.
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Constraints
on Moduli Space



Conjectures:

w The moduli space is non-compact, complete, and
has finite volume.

w If we move a large distance T from a reference point,
a tower of light particles emerges with mass of the order
exp(-a T) for some a. The number of such light particles
becomes infinite at T tends to the infinity.

w There is no non-trivial one-cycle with minimal length
within a given homotopy class in the moduli space.

as formulated by Vafa + H.O., arXiv:0605264
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as formulated by Vafa + H.O., arXiv:0605264

These moduli space constraints have been proven
for theories with N=3 or higher supersymmetry.

Cecotti, "Supersymmetric Field Theories," section 4.9.1 -



Constraints on
Calabi-Yau Topology



Modular invariance constraints _
Keller + H.O., arXiv: 1209.4649
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Recent experimental data on Calabi-Yau 3 and 4 folds
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Holographic Constraints



Suppose there is a low energy effective field theory
whose gravity solutions asymptote to the anti-de
Sitter space at the infinity.
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Suppose there is a low energy effective field theory
whose gravity solutions asymptote to the anti-de
Sitter space at the infinity.

( > Holography of Quantum Gravity:
Consistent quantum gravity in AdS

is equivalent to a conformal field
theory on the boundary.

AdS/CFT Correspondence




Question: What does consistency of the conformal
field theory mean for the gravity theory?
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< > Gravity theory in (d+1)-dim AdS
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< > Gravity theory in (d+1)-dim AdS
Is equivalent to d-dim CFT.




Gravity theory in (d+1)-dim AdS
Is equivalent to d-dim CFT.

a
\/

Entanglement Density Matrix O

For any state |1)) in CFT,
choose a spacelike region A.

/\
\/

w The trace is on the Hilbert space
p o tTA h/))(lp ‘ over the complement of A.
w It is an operator acting on the
Hilbert space over A.
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a
\/

Entanglement Density Matrix 0

p =trz [YXY|

Entanglement Entropy S

a
\/

S= —trplogp

S measures the amount of entanglement
between the region A and its complement.



< > Entanglement Entropy S

S= —trplogp

When the bulk gravity theory is
described with smooth geometry,

the entanglement entropy S is
proportional to the area of the minimum
surface ending of the boundary of A.

1
—A )
S = G rea(X)

Ryu-Takayanagi (2006)
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Entanglement Entropy

satisfies inequalities: 5= —trplogp

w Some inequalities are satisfied
both by any CFT and by AdS gravity.

w Some inequalities are satisfied
by any CFT but not always by AdS gravity.

w Some inequalities are satisfied
by any AdS gravity but not always by CFT.



AdS CFT

Monogamy
of mutual
information:

S(AB) + S(BC) + S(AC)
> S(A) + S(B) + S(C) + S(ABC)

Positivity/monotonicity
of relative entropy

Strong subadditivity:
S(AB) + S(BC) = S(B) + S(ABC)
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AdS CFT

Holographic
Entropy Inequalities

CFT states with gravitational duals have
interesting entanglement properties.



Entropy Inequalities

(Classical) Shannon Entropy:

There are infinite number of independent entropy inequalities
for more than 3 regions.

— Asymptotic performance for information processing tasks

Matus (2007)

(Quantum) von Neumann Entropy:
For more than 3 regions, the complete set of independent inequalities

is not known.

= Numerical evidences that the number is infinite.
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For holographic states:

w Finite algorithm to classify all inequalities.

w There are finitely many independent
inequalities for a fixed number of regions.

w Complete classification for 2, 3, 4 regions.

w A new family of inequalities for 5 and more
regions.

Bao, Nezami, Stoica, Sully, Walter + H.O., arXiv:1505.07839



Holographic Entropy Cone

S(AB)

'S Entanglement entropies for n regions

Entropy vectors of holographic states populate
inside of a convex rational polyhedral cone.

The number of independent inequalities is finite for each n.

Are these implied by the gap conditions on CFT?

/A make a vector in (2™ — 1) dimensions.
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AdS CFT

Hologrpahic
entropy inequalities

Positivity/monotonicity
of relative entropy

Strong subadditivity:
S(AB) + S(BC) = S(B) + S(ABC)
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AdS CFT

Hologrpahic
entropy inequalities

Positivity of
quasi-local energy

Strong subadditivity:
S(AB) + S(BC) = S(B) + S(ABC)

29/47



AdS CFT

Positivity of
quasi-local energy

Delineate the Swampland by
positive energy conditions.



Positivity of Quasi-Local Energy



Energy and Entropy

based on formalism
developed by Wald & collaborators
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Relative Entropy
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Relative ur{yapy
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A low energy effective theory of a consistent
ultraviolet complete quantum theory of gravity

must satisfy the positive energy conditions implied by
the positivity and monotonicity of the relative entropy.

How strong are these conditions?

Which low energy theories are ruled out by them?

Do they follow from the bulk reconstruction argument?



Swampland Question:

How to characterize an effective gravity theory that can emerge
in a low energy approximation to a consistent quantum theory,
such as string theory.

Constraints on Symmetry
Constraints on Moduli Space
Constraints on Calabi-Yau Topology
Positive Energy Theorems

47/47





