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Quantum Matter and Information?
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Quantum Condensed Matter Physics 

(Quantum) Information

Realization of
quantum computation/
quantum information
 processing

New understanding/ 
formulation in foundation

Efficient numerical
             algorithm



How to distinguish phases?
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Different orders (or their absence) characterize 
each phase 
   — what is “order”?

Ferromagnet: magnetic order 
     spontaneously breaks 
                 Z2 symmetry (Ising model), 
                 SU(2) symmetry (Heisenberg model)….. 
Superfluid: off-diagonal long-range order 
     spontaneously breaks U(1) symmetry

“order”  ⊇  Spontaneous Symmetry Breaking

Landau



Beyond Landau Paradigm
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Many quantum phases, which are distinct but cannot
   be characterized by a (conventional) SSB have been found 
 
       “topological phases” 
 
- quantum Hall states 
- Haldane gap phase 
- topological insulators/topological superconductors 
 ……

How to characterize them?  new tools will be useful!  
      →  “information theoretic” measures 
              e.g. entanglement entropy
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In this talk, I will discuss an
  “information theoretic” measure of a quantum state 
which is different from (but also related to)
    entanglement entropy.

Based on a collaboration with
  Grégoire Misguich and Vincent Pasquier,
  also on several earlier works



Rényi-Shannon Entropy
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Define Rényi/von Neumann entropy from the prob. dist.

This DOES depend on the choice of the basis

Anyway, Rény-Shannon Entropy can be defined for
  a given quantum state (and choice of basis)
                          can be used as a new characterization??
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XXZ chain in 1+1D
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The ground state is critical (gapless) for
                          -1 ≦ Δ < 1 

Effective theory: Tomonaga-Luttinger liquid
    (free boson field theory in 1+1D)
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Rényi-Shannon Entropy
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of the S=1/2 XXZ chain in the Sz basis:

Sz basis   ⇔  Φ-basisSz
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RSE of XXZ chain
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non-universal
“area (=system length) law”

universal

Rényi-Shannon entropy does contain the universal 
characteristics of the quantum state (TL liquid)

Stephan-Furukawa-Misguich-Pasquier 2009, MO 2010



Relation to EE
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Entanglement Entropy of “Quantum Lifschitz” state in
                                   2 spatial dimensions 

RSE of free boson field theory in 1+1 dimensions 
(=Tomonaga-Luttinger Liquid / S=1/2 XXZ chain)



Quantum Lifshitz Field Theory
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Groundstate
wavefunction

Ardonne-Fendley-Fradkin 2004

EE of this state in replica formalism 
    = same formula as RSE of XXZ chain (TL liquid)

e.g. critical point of
quantum dimer model
on a square lattice

Fradkin-Moore 2006, Hsu-Mulligan-Fradkin-Kim 2009



Phase Transition in RSE
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theory
(discussed earlier)

Stephan-Misguich-Pasquier 2011

discrepancy
for n>nc ?

numerical



Boundary Perturbations
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The effective field theory, in general, contains
   all the possible perturbations which are not forbidden
   by the symmetries

Bulk: all the perturbations are irrelevant in the gapless
            regime, irrespective of the Renyi parameter n  
Boundary: n replica fields are coupled, and we need to
        consider possible perturbations w.r.t. 
                   “center of mass” field

�0 =
1p
n

nX

j=1

�j



Boundary Perturbations
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�j ⇠ �j + 2⇡Rcompactification of individual fields:
replica condition at the boundary: �1 = �2 = . . . = �n

effective compactification of the c.o.m. field

�0 =
1p
n

X

j
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Possible boundary perturbations:
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m = 1, 2, 3, . . .

scaling dim. x =
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ngR
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relevant if < 1



Boundary Phase Transition
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m=1 : forbidden by the translation symmetry

Sz

j
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m=2: most relevant perturbation in generic case

relevant if

SU(2) AF Heisenberg (Δ=1):  

n > nc =
2

gR2

gR2 = 1 nc = 2

XY (Δ=0):  gR2 =
1

2
nc = 4



RSE above nc
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relevant⇒ boundary condition is

                    Φ=const.  i.e.  “Néel state”
cos
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Phase Transition in RSE
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theory
n<nc

Stephan-Misguich-Pasquier 2011

theory
n>nc



RSE of XXZ model in 2+1D
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On a bipartite lattice (square etc.) there is no
geometric frustration; the ground state has a
 long-range (Néel) order

|Δ|>1:  Z2 symmetry is spontaneously broken
Δ=1 : SU(2) symmetry is spontaneously broken
|Δ|<1 : U(1) symmetry is spontaneously broken

These states have conventional order, but let us
 first study RSE in these well understood states



Numerical Approach
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Luitz-Alet-Laflorencie 2013

Efficient Quantum Monte Carlo evaluation of the RSE:
              dominant  “area law” contribution

n ! 1

Plot: RSE in
Sz- or Sx-basis



Subleading term in RSE?
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subleading log(N) contribution to RSE
   only exist when a continuous (SU(2) or U(1))
     symmetry is broken spontaneously;
              universal?



Effective Field Theory
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order parameter

Nambu-Goldstone mode

For the antiferromagnet, NG mode
is described by free boson in 2+1D



Simplest case: S∞
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Q: Which state (in the Sz-basis) has the maximum
  amplitude (probability)? 
A: Néel state!



Boundary Formulation
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τ
Boundary condition at τ=0:
   no fluctuation of NG mode

Dirichlet boundary condition



What is pmax?
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cf.)  single harmonic oscillator H =
1

2m
p2 +

m!2

2
x2

NG modes: ∞ collection of harmonic oscillators
   labelled by the wave number k !k = c|k|



Determinant of Laplacian
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�
X

k 6=0

logk2
= log det

0
�

Determinant of
Laplacian

M. Kac 1966 etc.

χ: Euler characteristics of the spatial manifold

� log (posc
max

) =

1

4

logL2 for torus (χ=0)



“GS degeneracy” factor
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Finite-size ground state:  generally symmetric
                                   (even in the SSB phase!)

|symmetry-broken ground statei ⇠
X

|nearly-degenerate
finite-size ground states

i

SSB ⇔ existence of nearly degenerate ground states

               in finite size (“Anderson tower of states”)

Finite-size GS (almost) linearly independent  
symmetry-broken GSs



How many ground states?
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U(1) SSB phase:

Q ⇠ O(
Np
N

) ⇠ O(
p
N)

N = L2



How many ground states?
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SU(2) SSB phase

Q ⇠ O(
N2

p
N

2 ) ⇠ O(N)

N = L2



Universal term in S∞
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NNG :number of Nambu-Goldstone mode
  (= number of broken symmetry generators)
  1 for XY / XXZ ( |Δ| < 1 )
  2 for Heisenberg AF (XXX)  (Δ=1)

※ here we consider “relativistic” case (type-A NG modes) only
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Comparison with Numerics
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Our theory:
   Δ=1:  NNG = 2     l∞ = 2/4 = 0.5
   Δ=0:  NNG = 1     l∞ = 1/4 = 0.25
   Δ>1:  NNG = 0     l∞ = 0



RSE for general n
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Boundary phase transition?
   recall in 1+1D, boundary phase transition at n=nc

     what about 2+1D?

Leading boundary perturbation: �0
2

“boundary mass”: always relevant!!

Nambu-Goldstone mode in a SSB phase:
  “small fluctuation” around the ordered state

“fixed phase” at least for n>1
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Conclusions
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- Basis-dependent Rényi-Shannon Entropy (RSE) exhibits 
universal behaviors (shown analytically & numerically)

- could be useful in characterizing ground states of 
quantum many-body systems

- some similarity (and relation) to entanglement entropy,  
  in some respects “simpler” than EE (good for practical 
applications??)

- So far elucidated only for “conventional” phases 
 (Tomonaga-Luttinger liquid in 1+1D, SSB phase in 2+1D)  
— can we apply to more exotic phases?

- Numerical approach: Exact Diagonalization / 
  Quantum Monte Carlo… tensor networks??


