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Outline
• Background: tensor networks and holographic duality

• Definition of space-time random tensor networks (RTN)

• Entanglement properties of space-time RTN
--HRT formula with quantum corrections
--Quantum error correction properties of the   

holographic mapping

• Gauge fixing and finite D correction

• Zhao Yang, XLQ, in preparation

• Closely related previous work on spatial RTN
Patrick Hayden, Sepehr Nezami, XLQ, Nathaniel Thomas, Michael 

Walter, Zhao Yang, arxiv: 1601.01694
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• Spatial tensor networks: many-body entangled states 
made from few-qubit states. (PEPS, F. Verstraete, J.I. Cirac, 

04’)

• Space-time tensor network: a discretization of path 
integral. 

Tensor networks

𝑇1𝜇𝜈𝜏 𝜇𝜈𝜏 = 𝑉1

𝑡

𝑒−𝑖𝑡𝐻
≃ 𝑒−𝑖𝜖𝐻



Tensor networks and holographic duality

A

𝛾𝐴

A

𝛾𝐴

Holographic duality
Ryu-Takayanagi formula

𝑆 =
1

4𝜋𝐺
𝛾𝐴

Tensor networks
𝑆 ≤ 𝛾𝐴 log𝐷

Ryu&Takayanagi ‘06, Swingle ’09



• The tensor network proposal: geometry emerges from the 
entanglement structure of quantum states

• Various tensor network proposals ( Nozaki et al ’12, XLQ ’13, 
Pastawski et al ’15, Yang et al ’15, Hayden et al ‘16)

• Entanglement properties can be studied for tensors with 
good properties (Pastawski et al ‘15, Yang et al ‘15)

Tensor networks and holographic duality

Energy 
spectrum

boundary bulk



• Tensor networks with a random tensor at each vertex

• In 𝐷 → ∞ limit, many interesting properties emerge
---RT formula and its quantum correction
---Error correction properties of bulk-boundary operator 
correspondence
---Scaling dimension gap

• Problem: Need to pick a time slice. Hard to talk about 
dynamics. Solution: going to space-time networks.

Random tensor networks

𝑛-th Renyi entropy
Free energy of 𝑆𝑛 spin model

𝑇−1 = log𝐷

random 
average

Hayden et al arxiv: 1601.01694



• Space-time tensor networks are
discretized version of path
integral.

• Or

Space-time tensor networks

𝑂1

𝑂2

𝑂3

𝑇𝑂1𝑂2𝑂3 …𝑂𝑛 =
1

𝑍
×

𝑍 = ∫ 𝐷𝜙𝑒−𝑆 𝜙

𝑍 = ∫ 𝐷𝜙𝑒𝑖𝑆 𝜙

𝑍 =



• Example: Ising model 𝑆 = −𝐽  𝑥𝑦 𝑠𝑥𝑠𝑦

Space-time tensor networks

𝑠1
𝑠2

𝑠3

𝑠4

= 𝛿𝑠1𝑠2𝑒
𝐽𝑠1𝑠4+𝐽𝑠2𝑠3

𝑍 =



• Wanted: 
---a tensor network representation of the 𝑑 + 1 -
dimensional bulk geometry
---The tensor network defines 𝑍𝑏𝑢𝑙𝑘 = 𝑍𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, a 𝑑-
dimensional QFT.

Space-time tensor network for holography

QFT

=



• Our proposal:

• 1. Introduce a space-time tenor 
network in the bulk

• This defines a bulk QFT, which we 
called the “parent theory”. (Can be 
defined for either Euclidean or 
Lorentzian time)

• 2. Introduce a random projection 
at each bulk link

• Key result: 𝒏-th Renyi entropy⇒
𝑺𝒏 discrete gauge theory

• Subtlety: gauge fixing (will discuss 
later)

Space-time tensor network for holography

𝜏

𝜏

Random projection

𝑒−𝑆𝑃

𝑒−𝑆𝑏𝑑𝑟𝑦 ≡ 𝑒−𝑆𝑔𝑟𝑎𝑣



• Random projection at each link

• Correlation function

Holographic duality from space-time 
tensor networks

𝑂1

𝑂2

𝑂3

…

𝑂𝑛

𝜏

𝑇𝑂1𝑂2𝑂3 …𝑂𝑛 =

𝜏

= 𝜙𝑖
∗𝜙𝑗

𝑖

𝑗

𝑖

𝑗



• Second Renyi entropy definition. 𝑡𝑟 𝜌𝐴
2 = 𝑡𝑟 𝜌 ⊗ 𝜌 ⋅

Second Renyi entropy of random 
tensor networks

= +1

𝐷2 + 𝐷



𝑋𝐴 = 𝑋𝐴

= or

• The random average leads to the 
partition function of a 𝑍2 gauge theory.

• 𝑡𝑟 𝜌𝐴
2 =  𝑔𝑥𝑦=𝐼 𝑜𝑟 𝑋 𝑒−𝒜 𝑔𝑥𝑦

• The choice of boundary region 𝐴 determines the 
boundary condition of gauge field 𝑔𝑥𝑦.

• Gauge invariance = permutation symmertry between two 
replica

Second Renyi entropy



• The 𝑍2 gauge field is minimally coupled to two copies of 
the parent theory

= == ,

Second Renyi entropy



• For example, if the parent theory is an Ising model

• 𝑆𝑃 = − 𝑥𝑦 𝑠𝑥𝑠𝑦

• The random average gives (𝛼 = 1,2)

• 𝑆𝑏𝑢𝑙𝑘 𝑠𝑥
𝛼 , 𝑔𝑥𝑦 = − 𝑥𝑦 𝑠𝑥

𝛼𝑔𝑥𝑦
𝛼𝛽

𝑠𝑦
𝛽

• [𝑔𝑥𝑦
𝛼𝛽

] = 𝐼 or 𝜎𝑥 is the 𝑍2 connection

• Schematically, if we could take continuum limit,

• 𝑒−𝒜𝑒𝑓𝑓 𝑔 ≡ ∫𝐷𝜙𝑒−𝒜𝑃 𝜙1,𝜙2,𝑔

(or corresponding form in real time)

Second Renyi entropy



• The dynamics of the gauge field is induced by 
integrating out the bulk “parent theory”. 

• Consider a particular example: the valence bond solid 
(VBS) state

• Gauge field action: 

𝑆 = −
1

2
log 𝐷  𝑝∈□𝐹𝑝

• 𝐹𝑝 =  𝑥𝑦 ∈𝑝 𝑔𝑥𝑦 is the flux in 
plaquette 𝑝.

HRT formula

=



• For the VBS state, 𝑍 =  𝛾=𝑓𝑙𝑢𝑥 𝑐𝑜𝑛𝑓𝑖𝑔. 𝑒
− log 𝐷 𝛾

• In large 𝐷 limit, 𝑍 ≃ 𝑒− log 𝐷 𝛾𝐴 , 
and 𝑆2 ≃ log𝐷 𝛾𝐴

• 𝛾𝐴 = min |𝛾| is the area of 
minimal co-dimension-2
surface bounding 𝐴.

• In general, when the bulk 
parent theory is a massive 
theory, the effective action 
of gauge theory has a similar 
Maxwell form, leading to 
HRT formula 
(Hubeny Rangamani Takayanagi ’07).

HRT formula

𝐴

𝐵



• The bulk parent theory can be defined with either 
Euclidean or Lorentzian signature. 

• For Lorentzian bulk theory, the effective action of gauge 
field is also Lorentzian. 

• Lorentzian Maxwell action of a 𝑍2 gauge theory 
(continuum limit)

• 𝑆 = −
1

4𝑔2 𝐹𝜇𝜈𝐹
𝜇𝜈 + 𝜌𝑠 𝜕𝜇𝜃 − 2𝐴𝜇 𝜕𝜇𝜃 − 2𝐴𝜇

• In the classical limit (
1

𝑔2 , 𝜌𝑠 → ∞), 𝑍 ≃ 𝑒𝑖𝛼 𝛾𝐴

• The area of saddle point surface |𝛾𝐴| is imaginary (real) 
for surface with Euclidean (Lorentzian) signature. 𝛼 ∝
log𝐷

HRT formula for Lorentzian time



• In our approach, HRT surface can be defined even for 
time-like regions. 

• Renyi entropies are generalized to multipoint 
functions of twist operators.

• 𝑒−𝑆𝑛 𝑛−1) = 𝑇𝑋𝑛 𝑥2, 𝑡2 𝑋𝑛 𝑥1, 𝑡1 =  𝛾 𝑒𝑖𝒜 𝛾

• HRT formula can be generalized
if 𝒜 𝛾 ∝ 𝑛 − 1 |𝛾| and if 
the saddle point approximation
applies.

HRT formula for Lorentzian time

𝐴

𝐵

𝐶



• Consider a bulk parent theory with 
VBS⊗low energy field theory

• Int. out VBS leads to 𝑆 = −
1

2
log𝐷  𝑝 𝐹𝑝 for gauge field. 

• Gauge field is coupled to the low 
energy theory with dimension 𝐷𝑏 ≪ 𝐷

• 𝑆2 𝐴 ≃ 𝒜𝑐𝑙 = log𝐷 |𝛾𝐴| + 𝑆2𝑏𝑢𝑙𝑘 𝐸𝐴)

• Both terms are entanglement entropy in
the bulk

Quantum corrections to HRT

=
𝐷

𝐷𝑏

Consistent with Faulkner et al ‘13



Generalization to higher Renyi
entropies

• The random average can be generalized to higher 
Renyi entropies 𝑡𝑟 𝜌𝐴

𝑛 = 𝑡𝑟 𝜌⊗𝑛𝑋𝐴𝑛

• 𝜙𝑖1
∗ 𝜙𝑗1𝜙𝑖2

∗ 𝜙𝑗2 …𝜙𝑖𝑛
∗ 𝜙𝑗𝑛 =

1

𝐶𝑛
 𝑔∈𝑆𝑛 𝑔𝑖1𝑖2…𝑖𝑛

𝑗1𝑗2…𝑗𝑛

• Summation over all permutation group elements

= +
1

𝐶3
+⋯



• Random average of 𝑛 copies of the network𝑆𝑛

gauge theory minimal coupled to 𝑛 replica of the 
parent theory

• 𝑒−𝒜 𝑔 𝑛
≡ ∫𝐷𝜙 𝑖 𝑒−𝒜𝑃 𝜙 1 ,𝜙 2 ,…,𝜙 𝑛 ,𝑔 𝑛

• For short-range entangled states such as VBS, in large 
𝐷 limit one obtains 

𝑆𝑛 ≃
1

𝑛 − 1
𝒜𝑐𝑙 = log𝐷 𝛾𝐴 + 𝑆𝑛 𝑏𝑢𝑙𝑘 𝐸𝐴

with 𝑆𝑛 𝑏𝑢𝑙𝑘 𝐸𝐴 the bulk low energy field 
contribution

• Leading order Renyi entropies are 𝑛 independent, 
different from CFT results. Reason: absence of back 
reaction. (c.f. Xi Dong 1601.06788)

Generalization to higher Renyi
entropies

𝐷

𝐷𝑏



𝑂1

𝑂2

…

…

𝑂𝑛

Operator correspondence
• Definition of Bulk local operators:

• Bulk operators 𝜙𝑥 acting
on low energy subspace have 
nontrivial effect to the 
boundary after random
projection.

• Does each bulk low energy operator correspond to a 
boundary operator? If yes, can the bulk operator be 
represented in a region of the boundary?

𝐷

𝐷𝑏

𝜙𝑥



Operator correspondence

|𝜓1𝑃⟩ |𝜓2𝑃⟩

Random 
projection

|𝜓1⟩ |𝜓2⟩

• Different operators create different states in the parent 
theory 𝜓1𝑃 =  𝜙𝑖 𝑥𝑖 , 𝑡𝑖)|𝐺⟩

• Correspondingly there are different boundary states after 
the random projection.

• Generically each state gives different gauge field action.



• A “code subspace” can be defined as the subspace of 
bulk states with the same gauge field action (i.e. 
quantum corrections to HRT can be ignored)

• For such states in 𝐷 → ∞, 𝑡𝑟𝑃 𝜌1𝑃 𝐸𝐴 𝜌2𝑃 𝐸𝐴
𝑛 =

𝑡𝑟 𝜌1 𝐴 𝜌2 𝐴 𝑛 ∀𝑛. ⇒ S 𝜌1𝑃 𝐸𝐴 𝜌2𝑃 𝐸𝐴 =
𝑆 𝜌1 𝐸𝐴 𝜌2 𝐸𝐴

⇒ (Jaffer et al ’15, 
Harlow et al ‘16)

• For each bulk
operator 𝜙 acting in 
𝐸𝐴, ∃ boundary 
operator 𝑂𝐴, s.t.
𝜓1 𝑂𝐴 𝜓2 = 𝜓1𝑏𝑢𝑙𝑘 𝜙 𝜓2𝑏𝑢𝑙𝑘 for any two states in 

the code subspace. 

Error correction properties

Random 
projection



Gauge redundancy and gauge fixing

• The random average leads to a gauge field partition 
function with gauge redundancy Zn A =
 

𝑔𝑥𝑦∈𝑆𝑛 𝑒−𝒜 𝑔𝑥𝑦 = 𝑍𝑆𝑛 𝐴) ⋅ Ω

• Ω is the volume of gauge orbit. 

• Not a problem if we calculate ratios such as 
𝑍𝑛 𝐴

𝑍𝑛 ∅

• However, problem happens when we consider 
fluctuations: 

• 𝛿𝑍2
2 = 𝑡𝑟 𝜌2 2 − 𝑡𝑟 𝜌2

2
= 𝑍4 ∅ − 𝑍2 ∅ 2 =

Ω4𝑍𝑆4 ∅ − Ω2
2𝑍𝑆2 ∅ 2

• The fluctuation is large because Ω4 ≫ Ω2
2. We need to 

remove the gauge redundancy.



𝜏 𝜏

• For discrete gauge theories, gauge fixing can be done 
by directly fixing 𝑔𝑥𝑦 on some links, without 
constraining any gauge flux.

• This corresponds to picking a spanning tree in the bulk, 
and only impose random projection on links off the 
tree. 

• Fluctuations are suppressed in large 𝐷 limit after gauge 
fixing. (Similar to spatial RTN Hayden et al ‘16) 

Gauge redundancy and gauge fixing



Summary

• “Low energy states” actually means states that share 
a common entanglement structure in large 𝐷 limit.

Bulk “parent 
theory” 

(𝑄𝐹𝑇𝑑+1)

Bulk gravity 
(𝑄𝐺𝑑+1)

Boundary 
theory 
(𝑄𝐹𝑇𝑑)

Random 
projections duality

Low energy 
states

⊂

Low energy 
QFT on a fixed 

background

⊂

Low energy 
states of 

boundary

⊂

Bulk locality
HRT formula
Error correction code



• How to start from the boundary and construct the 
bulk theory?

• How to take into account of the back reaction and 
describe correct entanglement properties of CFTs?

• How to obtain the bulk geometry equation (Einstein 
equation)?

• A formalism in the continuum limit?

• Does the space-time RTN helps us to understand of 
the Black hole information paradox?

• Does this approach allow us to define holography in 
flat and positively curved space?

Open questions



More details about finite D 
fluctuations

• 𝑓 𝐷 =
𝑒𝜆Ω

𝐷
gives a very loose bound that can be prooved.

• 𝑓 𝐷 =
Ω

𝐷
Δ2𝑛
2

gives a better bound that’s less rigorous.

• Ω is spacetime volume.  


