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Outline

* Background: tensor networks and holographic duality
 Definition of space-time random tensor networks (RTN)

* Entanglement properties of space-time RTN
--HRT formula with quantum corrections
--Quantum error correction properties of the

holographic mapping

e Gauge fixing and finite D correction

Reference

)
* Zhao Yang, XLQ, in preparation ‘ _

* Closely related previous work on spatial RTN
Patrick Hayden, Sepehr Nezami, XLQ, Nathaniel Thomas, Michael
Walter, Zhao Yang, arxiv: 1601.01694




Tensor networks

* Spatial tensor networks: many-body entangled states
made from few-qubit states. (PEPS, F. verstraete, J.I. Cirac,
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e Space-time tensor network: a discretization of path
integral. -

—itH




Tensor networks and holographic duality

A
Tensor networks Holographic duality
S < |y4llogD =) Ryu-Takayanagiformula
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Ryu&Takayanagi ‘06, Swingle 09



Tensor networks and holographic duality

boundary bulk
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* The tensor network proposal: geometry emerges from the
entanglement structure of quantum states

* Various tensor network proposals ( Nozaki et al 712, XLQ "13,
Pastawski et al ’15, Yang et al 15, Hayden et al “16)

* Entanglement properties can be studied for tensors with
good properties (Pastawski et al 15, Yang et al ‘15)



Random tensor networks Hayden et ai arxiv: 160101694

* Tensor networks with a random tensor at each vertex
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* In D = oo limit, many interesting properties emerge
---RT formula and its quantum correction
---Error correction properties of bulk-boundary operator
correspondence
---Scaling dimension gap

* Problem: Need to pick a time slice. Hard to talk about
dynamics. Solution: going to space-time networks.

n-th Renyi entropy




Space-time tensor networks

e Space-time tensor networks are
discretized version of path
integral.
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Space-time tensor networks

* Example: Ising model S = —] X,y SxSy
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Space-time tensor network for holography

 Wanted:
---a tensor network representation of the (d + 1)-
dimensional bulk geometry
---The tensor network defines Zp,1x = Zpoundary, @ d-
dimensional QFT.
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Space-time tensor network for holography

e Our proposal: | [ | 4°
—0—0—0@
* 1. Introduce a space-time tenor ) S S §
network in the bulk
—0—0—0 e—Sp
* This defines a bulk QFT, which we ) N W
called the “parent theory”. (Can be

defined for either Euclidean or .
. . Random projection
Lorentzian time) JL

* 2. Introduce a random projection r

at each bulk link

* Key result: n-th Renyi entropy=
S™ discrete gauge theory

e Subtlety: gauge fixing (will discuss
Iater) e_dery — e_Sgrav



Holographic duality from space-time
tensor networks i

l

 Random projection at each link # = *befbj

* Correlation function j j
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Second Renyi entropy of random
tensor networks

* Second Renyi entropy definition. tr(pj) =tr(pQp -




Second Renyi entropy

or |
/

* The random average leads to the
partition function of a Z, gauge theory.

* tr(pi) — ngy:I or X e_ﬂ[gxy]

* The choice of boundary region A determines the
boundary condition of gauge field g,,,.

* Gauge invariance = permutation symmertry between two
replica



Second Renyi entropy

* The Z, gauge field is minimally coupled to two copies of
the parent theory

Y




Second Renyi entropy

* For example, if the parent theory is an Ising model

* Sp = = Lixy) SxSy
 The random average gives (o« = 1,2)
* Shuik Sx gxy] Z(xy) Sx gx'B ;

. [gf:f_ = [ or g, is the Z, connection

. Schematically, if we could take continuum limit,

o o~ Aesrlg fque—a‘lp[CP $2.9]
(or correspondmg form in real time)



HRT formula

* The dynamics of the gauge field is induced by
integrating out the bulk “parent theory”.

* Consider a particular example: the valence bond solid
(VBS) state

* Gauge field action:
1
S = —ElogD dpen By

* B, = Ilixyyep 9xy is the fluxin
plaquette p.




HRT formula

* For the VBS state, Z = X, — rux config. € log Dly|

* In large D limit, Z ~ e~ 108 Dlval
and S, = log D |y,|

* ¥4l = min |y| is the area of
minimal co-dimension-2
surface bounding A.

* In general, when the bulk
parent theory is a massive
theory, the effective action
of gauge theory has a similar
Maxwell form, leading to
HRT formula

(Hubeny Rangamani Takayanagi '07).




HRT formula for Lorentzian time

* The bulk parent theory can be defined with either
Euclidean or Lorentzian signature.

* For Lorentzian bulk theory, the effective action of gauge
field is also Lorentzian.

* Lorentzian Maxwell action of a Z, gauge theory
(continuum limit)

1
*S == S EaFM 4 0s(9,6 — 24,,)(0%6 — 24%)
* In the classical limit (9—12,,05 — ), Z =~ elalval

* The area of saddle point surface |y,| is imaginary (real)

for surface with Euclidean (Lorentzian) signature. a «
log D



HRT formula for Lorentzian time

* In our approach, HRT surface can be defined even for
time-like regions.

* Renyi entropies are generalized to multipoint
functions of twist operators.

» oS = (TX, (%, £) X (x4, t1)) = X, €4

* HRT formula can be generalized

if A(y) «< (n — Dly| and if
the saddle point approximation
applies.




Quantum corrections to HRT
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* Consider a bulk parent theory with
VBSQ)low energy field theory

A
A
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S || S | S [ |
> = ﬂrin- SiE
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* Int. out VBS leads to S = —%logD >.p F, for gauge field.
* Gauge field is coupled to the low @
energy theory with dimension D, K D —

* 5,(A) = A¢ = log D |yal + Sapwik (Ea) %J
* Both terms are entanglement entropy in
the bulk T - A

Consistent with Faulkner et al 13
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ralization to higher Renyi
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* The random average can be generalized to higher
Renyi entropies tr(p}) = tr(p®"XAn)

, - " 1 jiiz -
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 Summation over all permutation group elements
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Generalization to higher Renyi
entropies

 Random average of n copies of the network=>»S"
gauge theory minimal coupled to n replica of the
parent theory ——

. e_“q[g(n)] — fqu(i)e—cﬂp[d)(l),d)(z),---,qb(n),g(n)] b

* For short-range entangled states such as VBS, in large
D limit one obtains

Sp=——A g =logD [Val + Sn bulk(EA)

= — A
with S, bu’}k (E:l4) the bulk low energy field
contribution

* Leading order Renyi entropies are n independent,
different from CFT results. Reason: absence of back
reaction. (c.f xi bong 1601.06788)




Operator correspondence

 Definition of Bulk local operators:

* Bulk operators ¢, acting
on low energy subspace have
nontrivial effect to the
boundary after random

rojection.
PSR M.

‘ D

Dy,

* Does each bulk low energy operator correspond to a
boundary operator? If yes, can the bulk operator be
represented in a region of the boundary?



Operator correspondence
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* Different operators create different states in the parent
theory [1p) = [1¢pi (x;, £:)1G)

* Correspondingly there are different boundary states after
the random projection.

* Generically each state gives different gauge field action.



Error correction properties

* A “code subspace” can be defined as the subspace of
bulk states with the same gauge field action (i.e.
guantum corrections to HRT can be ignored)

* For such statesin D — oo, trp(p1p(Eg)p2p(EQ)™) =

tr(p1(A4)p (A)n) vn. = S(p1p(Eg)|p2p(En)) =
S(p1(Ex)|p2(Ey))

= (Jaffer et al "15, @ Ran.dor.n @
Harlow et al ‘16) prOJeCt|On . ,-./'.\, -

* For each bulk _ ////1\ — "\A/‘(
operator ¢ acting in |77 ATY| D, =]
E,, 3 boundary S
operator 0y,

<¢1|0A |l/12) <l/)1bulk |@|Y2puik ) for any two states in
the code subspace.



Gauge redundancy and gauge fixing

* The random average leads to a gauge field partition
function with e redundancy Z,(A) =

—A[Gxy :
Bl esmy 1991 = ()0
* () is the volume of gauge orbit.
* Not a problem if we calculate ratios such as ?’E;l;

* However, problem happens when we consider
fluctuations:

— 2
* 8Z7 = tr(p?)2 —tr(p?) =Z4(0) — Z,(9)* =
0y Zga (9) — 'Q%ZSZ (0)*
* The fluctuation is large because Q, > Q5. We need to
remove the gauge redundancy.




Gauge redundancy and gauge fixing

* For discrete gauge theories, gauge fixing can be done
by directly fixing g,, on some links, without
constraining any gauge flux.

* This corresponds to picking a spanning tree in the bulk,
and only impose random projection on links off the
tree.

* Fluctuations are suppressed in large D limit after gauge
fixing. (Similar to spatial RTN Hayden et al “16)
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summary

Random

Bulk “parent projections duality Boundary
theory” theory
(QFTg+1)
U
Low energy Low energy
states states of
background boundary
Bulk locality
HRT formula

Error correction code

* “Low energy states” actually means states that share
a common entanglement structure in large D limit.



Open guestions

* How to start from the boundary and construct the
bulk theory?

* How to take into account of the back reaction and
describe correct entanglement properties of CFTs?

* How to obtain the bulk geometry equation (Einstein
equation)?

e A formalism in the continuum limit?

* Does the space-time RTN helps us to understand of
the Black hole information paradox?

* Does this approach allow us to define holography in
flat and positively curved space?

the Dav1d .,
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More details about finite D
fluctuations

e [f we find an upper bound for

2
Sl —1 < (D)
e A

and f(D) < 1 in the large D limit. then in the limit f(D) < 1.

Prob ( S,

(A) = ST (4) <5) > 1- —f( )

10
e f(D) = e— gives a very loose bound that can be prooved.

* f(D) ==
Dz

* () is spacetime volume.

— gives a better bound that’s less rigorous.



