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INntroduction

-2 The holographic entanglement entropy prescription of Ryu-Takayanagi

relates geometric data in the bulk with quantum features on the boundary
Ryu, Takayanagi ‘06

+ Motivated by analogy between entanglement entropy and Bekenstein-
Hawking formula.

+ Derived by invoking the basic entry in the AdS/CFT dictionary: mapping of
boundary and bulk path integrals and evaluate the latter in the semiclassical
saddle point approximation. Lewkowycz, Maldacena ‘13

+ Derivation makes clear how the bulk gravity dynamics picks out the minimal
surface prescription.

+ Gives us insight into stringy/quantum corrections.

+ Relates nicely bulk and boundary relative entropies.

Faulkner, Lewkowycz, Maldacena ‘ 13; Jafferis, Lewkowycz, Maldacena, Suh ‘16



Covariant Holographic Entanglement Entropy

+ Given the boundary region A the prescription to compute entanglement
holographically involves finding a bulk extremal surface €4 which is anchored
on JA and is homologous to A.

~ Area(&y)
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+ The extremal surface £ 4 is a codimension-2 surface in the bulk
asymptotically AdS spacetime M (nb: oM = B) Hubeny, MR, Takayanagi ‘07

+ Motivated by using bulk covariance as a guiding principle.

+ Covariance does not pick out a unique prescription, but supplemented
with intuition arising from covariant entropy bounds we land on the
extremal surface prescription.

+ Various consistency checks; an attempt at a derivation using Lorentzian
AdS/CFT.




—ntanglement in QFT

+ Consider a QFT in a density matrix, living on a background B which is
globally hyperbolic spacetime with a nice time foliation (Cauchy slices ).

+ Ais a subregion of the Cauchy slice, with an entangling surface dA.

reduced density

D PA

matrix

AC

0A Sa=—Tr(palogpa)




Causality and Entanglement

+ Entanglement entropy in QFT is a wedge observable.

D[A] = D*[A]U DA /

+ The entanglement entropy can only be influenced by changing conditions
in the past domain J~[0A].




Implementing causality in the path integral

+ The real time path integral which is cognizant of the causality constraints
invokes the Schwinger-Keldysh formalism.
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+ The real time path integral which is cognizant of the causality constraints
invokes the Schwinger-Keldysh formalism.

+ We compute the matrix elements of the
total density matrix at a given time by

evolving forward from the initial state, to
the instant of interest and thence retrace
t
/ our footsteps to the far past.

+ This ensures that sources inserted in the
future do not affect the operator of interest.

p =) (| — e ) (3| et + The forward and backward evolutions are
glued together on some Cauchy slice 3.



The reduced density matrix elements

+ This general prescription can be minimally modified to obtain the reduced
density matrix elements.

+ We cut open the path integral along the
A° A 5, region A on the Cauchy slice %;.

DA . . e
+ Imposing suitable boundary conditions in

% the future/past segments leads to the
matrix elements of the reduced density

matrix (pA4)+ .

+ Knowing the reduced density matrix elements we can then attempt to
compute the von Neumann entropy by the replica trick.



| ocal Rindler structure

+ In what follows, it will be useful to pay attention to the local geometry near
the entangling surface.

A° 0A A

+ We can adapt local Rindler like coordinates in the neighbourhood, which
also allows for a suitable complexification.



Out-of-time-ordered Schwinger-Keldysh

+ To compute powers of the reduced density matrix we need a slight
generalization of the Schwinger-Keldysh contour.

+ Consider computing not time-ordered, but out-of-time ordered correlators.

+ These can be generated by suitably stringing together Schwinger-Keldysh
contours, with multiple switchbacks or timefolds.



Out-of-time-ordered Schwinger-Keldysh

+ To compute powers of the reduced density matrix we need a slight
generalization of the Schwinger-Keldysh contour.

+ Consider computing not time-ordered, but out-of-time ordered correlators.

+ These can be generated by suitably stringing together Schwinger-Keldysh
contours, with multiple switchbacks or timefolds.

AN N

+ For instance computing a three-fold out-of-
time ordered correlation function will A Y A Yy A %
involve some contour of the form:




Replicated reduced density matrix

+ In this timefold picture we can straightforwardly compute powers of the
reduced density matrix.

+ We string together copies of the path integral with the pieces identified
cyclically as required for multiplying out the matrix elements

/\

Z, symmetric gluing conditions



From replicas to entanglement

+ Our aim is to compute the Renyi entropies and then analytically continue to
obtain the von Neumann entropy

Sa=—Try(palogpa) = lim Sff)
q—1

1
SW = - log Tr4(pa)?.

+ It is useful to consider a particular auxiliary quantity related to the Renyi
entropies, which will turn out to have a clean geometric avatar.

N 1
8 = —¢?9, [ log TrA(pA)q]
q Dong ‘16



Time reflection symmetric case

+ If the quantum state is at a moment of time symmetry, then we can eschew
various complications of the Schwinger-Keldysh construction.

+ Essentially we unwrap the switchbacks and work with regular path integral
contours; cutting them open to obtain (p4)+ which may then be glued
together cyclically.

+ Useful to view this Euclidean path integral in terms of QFT on a new
background: g-fold branched cover of the original background, branched at
the entangling surface.




Review: Lewkowycz-Maldacena

+ AdS/CFT relates holographic field theories on some background B to a
gravitational theory on a bulk spacetime M subject to boundary conditions
which demand that OM = B.

+ The bulk spacetime can be obtained in the semiclassical limit using a saddle
point solution of the quantum gravity path integral.

+ The branched cover construction gives us a boundary manifold B, which
we use as boundary conditions to determine Mg .

+ This sets up the gravitational problem. Our job is to find the appropriate
solution, determine the boundary partition function, which is related to the
on-shell action, and thence analytically continue.

+ LM argue that the analytic continuation is simpler in gravity and employ it to
directly derive the RT prescription.



L M: Kinematics

+ Assume bulk saddles are replica M, = M,/7Z,
symmetric and construct the orbifold an = B,/Z, =B

locus of orbifold singularities

opening angle 2777

cosmic brane of tension
1 qg—1
T —
B TEI AR

A

+ On-shell action we want is simply related  I|M | = q 1| M,]

+ Subtleties arising from global topology...
Hartman, Haehl, Marolf, Maxfield, MR ‘14



LM: Dynamics

+ Gravitational analytic continuation: dial the tension of cosmic brane!

+ Local analysis of eom in the vicinity of singular locus gives RT prescription.

ds® = (¢ dr* + r*dr?) + (i + 2K rcosT + 2 K, rsin T)dy' dy’ + - -

lim e, = &4, ExeEMwith t=0, K* =0 K' = 0 bysymmetry

qg—1

B

A

O I M| = / “ O((94) a8, 94(94) aB)

A Areale,)
aq[['/\/lq} — 4q2G]\Cj




Lorentzian AdS/CFT

+ To compute entanglement entropy from the bulk we need to figure out
how to set up the bulk quantum gravity path integral.

+ Gravity dual of the Schwinger-Keldysh path integral contour?



Lorentzian AdS/CFT

+ To compute entanglement entropy from the bulk we need to figure out
how to set up the bulk quantum gravity path integral.

+ Gravity dual of the Schwinger-Keldysh path integral contour?

+ Assumption: The boundary Schwinger-Keldysh contour is piecewise
extended into the bulk gravity theory.

+ If the global state admits a semiclassical dual, then each segment of the
bulk path integral is dominated by the the corresponding geometry.

+ We have to respect the time ordering constraint in the bulk, which now has
some extra redundancy...

Skenderis, van Rees ‘08



A bulk redundancy

+ A boundary time slice does not
uniquely extend into the bulk.

+ The redundancy is captured by
bulk Cauchy surfaces that are
anchored on and spacelike to our
boundary slice.

+ This ambiguity maps out a causal
domain in the bulk, the FRW
wedge.



The bulk ansatz

+ Prescription: Pick some bulk
Cauchy slice 3; within the FRW
wedge.

+ We will glue copies of the
geometry past of 3, to obtain
the dual of the SK contour.

+ The choice of %, is irrelevant for
computing time-ordered
correlation functions.

+ For entanglement entropy we will
find that ¢ is forced to contain
the extremal surface.



Bulk density matrix elements
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Replicating the bulk
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Replicating the bulk




Kinematics for covariant construction

+ Construct the boundary Schwinger-Keldysh contour which gives a suitably
doubled spacetime B.

+ Filling in this contour with appropriate bulk pieces we have the bulk
geometry which serves as the seed ansatz M for computing the reduced
density matrix elements.

+ We string together copies of M sewing together successive segments
cyclically to obtain the covering space M,.

+ Gravitational dynamics is supposed to pin down M,,.

+ We again exploit the relative simplicity of the gravitational analytic
continuation, by working in the quotient spacetime M, = M,/Z, which
now features a spacelike cosmic brane e,



Local boundary conditions

+ The g=1 geometry locally
looks like Rindler spacetime
with the entangling surface
extended out into the bulk as
a Rindler horizon.

+ The replica boundary
o g - conditions for M, can

| | equivalently be stated in
T ~ T4 271 , ,
terms of modulating this local
structure; the Rindler
2T

temperature is lowered to ZZ.
q



Gravitational dynamics

+ Once we have the ansatz and the replica boundary conditions, all that
remains is to solve the bulk equations of motion. Work in local coordinates
adapted to the normal bundle of the singular locus:

ds® = (qzdrz — 7’ dTQ) + (i + 2 K59 cosht + 2 Kfj r? sinh 7) dy’ dy’
n {qu (¢—1) _ 1} 8g, dzt dz” + - -

+ Bulk equations of motion then fix the geometry of the singular locus. To
leading order in g-1 we fix the geometry. In Einstein-Hilbert theory this gives
the extremal surface condition

qg—1
,

EOM? K% 4 regular®

K'=0 = Hi:%(KoiKl):O,

— h_>H;ll e, =E&4, Eq € M is extremal.
q



The on-shell gravitational action

+ Since the singular locus is a spacelike source, it influences the geometry
along the past light cones. This complicates the analysis of the on-shell
action, which requires a suitable regulating procedure.

+ The non-trivial partis to argue that the Renyi entropies work out correctly;
the limit ¢ — 1 turns out to be simpler. In any event we can show that

5 ~r 0 ~ Area(ey)
5, = —i01WMty] = —g=e—0, | K=

Farhi, Guth, Guven 90, Neiman ’12, ‘13



comments...

+ The construction builds in the homology constraint.
+The bulk Cauchy surface we pick is forced to admit the extremal surface.

+ The construction explicitly ensures that the proposal satisfies boundary
causality; the extremal surface lies in the causal shadow of the boundary

region’s domain of dependence . Wall’ 12; Headrick, Hubeny, Lawrence, MR ‘14

+In spirit the construction has elements of the maximin reformulation of the
HRT prescription. Wall” 12
* Pick a bulk slice and find a minimal surface on the slice.

* Maximize the area of the surface across all bulk slices in the FRW wedge.



Open Questions

+ Can we rule out the occurrence of complex saddle points?

Fischetti, Marolf + Wall *14; Maxfield ‘14

+Should they be relevant, how does one reconcile their presence with
causality restrictions?

+ A cleaner derivation of the bulk dual to the Schwinger-Keldysh
prescription?

+Can we put the topological symmetries inherent in Schwinger-Keldysh to
use efficiently for this purpose? Haehl, Loganayagam. MR *15



