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Introduction and Motivation

Introduction and Motivation

Non-equilibrium many-body systems are interesting, gauge-gravity
duality is one way to make general statements, in non-integrable
systems.

Entanglement entropy is an interesting quantity, quantifying the
distribution of information in a quantum state.

In holography, EE is easy to calculate using the RT, or more generally
the HRT prescription.

It is interesting to see the behaviour of the entanglement in
non-equilibrium situation, where it goes one step further beyond local
probes of the system. For example it is interesting to probe
thermalization using the EE.

Directly related (holographically and otherwise) to other measures of
”scrambling” of quantum information.
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Introduction and Motivation

Introduction and Motivation

Much attention was given to entanglement growth following a global
quench, resulting in a beautiful picture of ”entanglement tsunami”,
quantified in terms of tsunami velocity vT which expresses the rate of
growth of EE following the quench.

We are interested in entanglement spread, i.e the spatial propagation
of EE following a localized excitation of the system.

This is a spatially resolved version of the same experiment: start the
system in an atypical, locally excited state, see how the entanglement
on different scales returns to the equilibrium value.

Some previous attacks on this problem involved taking certain limits
(e.g. shock waves), or working in 1+1 dimensions. We will use an
exact numerical solution of the bulk equations to access the exact
results for a generic point in parameter space.
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Setup: Local Quenches Quenching

Quenching

We study a 2+1 dimensional strongly coupled CFT, dual to 3+1
dimensional asymptotically AdS4 spacetime. Starting with a thermal
states of temperature T , dual to a bulk black brane, we source the metric
by turning on a pulse of scalar field, dual to a relevant operator in the
boundary CFT.

We choose the source function to be φ0(t, x) = f (x)g(t) with

f (x) =
α

2

[
tanh

(
x + σ

4s

)
− tanh

(
x − σ

4s

)]
, g(t) = sech2

(
t − tq∆

tq

)
.

With it, we can ramp up the scalar field to reach its maximum value α at
time t = tq∆ before it drops and vanishes again. The parameters
{s, tq,∆} are chosen to facilitate the numerics, whereas σ determines the
spatial width of the perturbation and α is the amplitude.
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Setup: Local Quenches Hydrodynamical Evolution

Hydrodynamical Evolution

Soon after the injection of the localized pulse of energy the evolution of
the energy-momentum tensor is described by hydrodynamics, because of
fast (local) thermalization typical of holographic theories.

Since our perturbation excites the sound mode of the system, we have the
initial energy-momentum perturbation dispersing at the speed of sound.
Below we see a typical profile of the energy density as function of (x,t)

Curiously, the initial perturbation splits to two localized perturbations after
some time; those follow the expected hydrodynamic evolution.
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Entanglement Propagation

Evolution of the EE

In the situation described above, we look at the EE on different scales. We
choose to look at boundary strips

A = {(x , y) | x ∈ (−L, L), y ∈ R} , ∂A = {(x , y) | x = ±L, y ∈ R}

We track the entanglement (quantified as the difference from the
entanglement in the unquenched thermal state), for strips centred around
the location of the quench. This result in the function ∆SA(L, t),
depending on the size of the entangling surface and time.

We have 3 dimensionful parameters or equivalently 2 dimensionless ones.

Temperature, or equivalently energy density.

Quench amplitude α.

Quench width σ.

The temperature T determine the range of sizes L which we can probe
using our methods. Since we do not access the region behind the horizon,
it follows that L & T . This is sufficient to find some universal results.
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Entanglement Propagation Information Lightcone

Information Lightcone

Our main result: For (nearly) all choices of parameters we find linear
(ballistic) growth of ∆SA(L, t). We quantify that by looking at

Lpeak(t) = ArgMaxL ∆SA(L, t)

Note that unlike various limits taken previously, the maximum itself
MaxL∆SA(L, t) is not constant.

Note that for L > σ there is some time delay for which ∆SA(L, t) exactly
vanishes, by bulk causality. By linear dispersion we mean then that after
that time t0:

Lpeak(t) = vE ∗ t + constant
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Entanglement Propagation Information Velocity

Information Velocity

The information lightcone is analogous to the Lieb-Robinson velocity in
spin systems. Like the LR velocity we find that vE is state-dependent, i.e.
depends on parameters of the quench.

Note that vE is a priori different from other entanglement speeds (e.g. the
tsunami velocity of Liu and Suh which has to do with entanglement
growth rate).

We find lower and upper bounds for the information velocity, and some
universal results in certain limits.
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Entanglement Propagation Information Velocity

Information Velocity

There is an interesting interplay between the size of the entangling surface
L and the width of the pulse σ:

When L < σ the quench looks like a global one. When we further
take sufficiently high T , we find that vE = 1, regardless of the
amplitude of quench (including values well within the non-linear
regime). The speed of light is a bound for all cases, and the bound is
saturated in this regime.

When we increase L past σ, we enter a different linear regime with a
different velocity. The change in slope when L ∼ σ is abrupt.

When the quench is in the linear response regime, and for surfaces
such that L > σ, we find that our information velocity is numerically
very close to the tsunami velocity. However, increasing the amplitude
of the quench increases the information velocity as well. The tsunami
velocity is a lower bound for the parameter range we probe.
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Entanglement Propagation Entanglement Decay

Entanglement Decay

Since we inject finite energy in infinite volume, our final state is the same
as the initial state, and the EE returns to its original value.

We can study that decay process as function of time, a typical example is
shown: ∆SA(L, t) for fixed L (and quench parameters) and as function of
time.
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We see an initial time delay, rapid rise to the peak and
decay. The best fit for the numerical results is exponential decay, with
parameters depending on quench details.

The only other calculation we are aware of is in 1+1 dimensions, where
the return to equilibrium is much slower. The difference is reminiscent of
fast scrambling and thermalization which is typical of holographic theories.
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Future Directions

Future Directions

In order of ambition:

It would be nice to have a qualitative model reproducing some of the
numerical results, making connection to other non-integrable models.

Extension to other theories and states , e.g. massive theories and
finite density black holes, especially in the extremal limit (in
progress).

Quench and annealing past critical points. In particular mutual
information should be more sensitive to phase structure.

Relation to other manifestations of information and scrambling:
tsunami velocity, butterfly velocity and shock waves, Lieb-Robinson
velocity.

More generally: why does entanglement transport so simply. How is
that related to microscopic chaos, and to other forms of transport?

Moshe Rozali (UBC) Quantum Matter, Spacetime and Information YITP Kyoto, June 2016 12 / 12


	Introduction and Motivation
	Setup: Local Quenches
	Quenching
	Hydrodynamical Evolution

	Entanglement Propagation
	Information Lightcone
	Information Velocity
	Entanglement Decay

	Future Directions

