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Have been working on…

• Nonequilibrium statistical physics

• Quantum information theory

In particular, thermodynamics of information

Maxwell’s demon



Thermodynamics of Information
Information processing at the level of thermal fluctuations

Review:  J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

A related fundamental issue:

How does thermodynamics (and its connection to information) 

emerge in purely quantum systems?
Today’s topic!

Experimental realization

of Maxwell’s demon:

Toyabe, Sagawa, Ueda, 

Muneyuki, Sano, 

Nature Physics (2010)

Ito & Sagawa, 

Nature Communications (2015)

E. Coli chemotaxis
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Origin of macroscopic irreversibility

micro (Quantum mechanics)

reversible (unitary)

MACRO (Thermodynamics)

irreversible DS > 0

“How does the macroscopic irreversibility 

emerge from microscopic dynamics?”

→ Fundamental question since Boltzmann



Microscopically reversible unitary dynamics

→ Relaxes towards a macroscopic steady state
（Recurrence time is very long: almost irreversible!）

S. Trotzky et al.,  Nature physics 8, 325 (2012)

Experiment：Ultracold atoms

ex. 1d Bose-Hubbard, 87Rb

Relaxation in isolated quantum systems

Y(0)

Y(t)

Û = exp(-iĤt)

Non-steady pure state

Macroscopically steady
pure state

：Unitary

Von Neumann, 1929 (arXiv:1003.2133)

Rigorous proof for

arbitrary initial states



Information entropy Thermodynamic entropy

Sthermo = kB lnW

DS = 0 DSthermo > 0

S(t) = tr -r̂(t)ln r̂(t)[ ]

: determined by 
Hamiltonian

von Neumann entropy

: invariant under 

unitary time evolution

Increases under 

irreversible processes

Fundamental GAP between 

information/thermodynamics entropy

Macroscopically irreversible relaxation emerges from 
microscopically reversible unitary dynamics

？

W

Info. entropy vs thermo. entropy



For pure states under reversible unitary dynamics, within small errors

 2nd Law

relates von Neumann entropy 

to thermodynamic heat

→ Information-thermodynamics link

 The fluctuation theorem

characterizes fundamental symmetry of entropy production

→ Thermal fluctuation emerges from quantum fluctuation

DSS ³ b Q

PF (s )

PR (-s )
= es

s : entropy production

Our results

Mathematically rigorous proof + Numerical check

Key idea: Lieb-Robinson bound, based on locality of interactions

Iyoda, Kaneko, Sagawa, 
arXiv:1603.07857

system S

bath B
(pure state)
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s ³ 0

PF (s )

PR (-s )
= es

2nd law Entropy production is non-negative on average

Fluctuation theorem Universal relation far from equilibrium

Probabilities of Positive/negative entropy productions

Second law as an equality!

Classical Quantum (Ion-trap)

J. Liphardt et al., 

Science 296, 1832 (2002) 

A. An et al., 

Nat. phys. 11, 193 (2015) 

RNA
Theory（1990’s-）
Dissipative dynamical systems,
Classical Hamiltonian systems, 
Classical Markov (ex. Langevin),
Quantum Unitary, Quantum Markov, …

Experiment（2000’s-）
Colloidal particle, Biopolymer,
Single electron, Ion trap, NMR, …

Second law and fluctuation theorem



Total system: system S and bath B

S+B obeys unitary dynamics

 Initial state of S: arbitrary

 Initial state of B: Canonical
→ This assumption effectively breaks time reversal symmetry.

 No initial correlation between S and B.

r̂(0) = r̂S(0)Ä r̂B(0),    r̂B(0) = e-bĤB / ZB

system S

bath B
(Inv. Temp.      )b

r̂(t) =Ûr̂(0)Û†,    Û = exp(-iĤt)

Setup for previous studies
By J. Kurchan, H. Tasaki, C. Jarzynski, …



Information entropy and Heat are linked!
（if the initial state of bath B is canonical）

SS(t) = trS -r̂S(t)ln r̂S(t)[ ],    r̂S(t) = trB r̂(t)[ ]

：heat absorbed by system SQ = -trB (r̂(t)- r̂(0))ĤB
é
ë

ù
û

DSS ³ b Q

Change in the von Neumann entropy 
of system S (Information entropy)

heat absorbed by system S

Second law (Clausius inequality)

system S

bath B
(Inv. Temp.      )b



Fluctuation theorem universally characterizes the ratio between 
the probabilities of positive/negative entropy productions

PF (s )

PR (-s )
= es

TimeReverse process

Forward process

0S  QS  : entropy production on average
(non-negative)

Projection measurements of          at initial and final time
Difference of outcomes:

：stochastic entropy production (fluctuates)

BHtt ˆ)(ln)(ˆ S  



)(ˆ t



Fluctuation theorem

Let







 )()( F/RF/R   PeduG iu

GF(u) =GR(-u+ i)

Another representation with characteristic function 
(moment generating function)

: Fourier transf. of 
probability distribution

PF (s )

PR (-s )
= es

Fourier transf.

Cf. Fluctuation theorem leads to several important relations

PF(s ) = PR(-s )es exp(-s ) =1 s ³ 0
Jensen inequality (convexity)Integrate

Jarzynski identity Second lawFluctuation theorem

Also reproduces the Green-Kubo formula in the linear response regime,
and its higher order generalization

Fluctuation theorem



H. Tasaki, arXiv:0011321 (2000)

S. Goldstein, T. Hara, and H. Tasaki, arXiv:1303.6393 (2013)

T. N. Ikeda, N. Sakumichi, A. Polkovnikov, and M. Ueda,  Ann. Phys. 354, 338 (2015)

A few previous works (on the second law):

→ Assumption of “random waiting time”

：similar effect to dephasing
t t

exp -iĤt( )
V̂

t : random time

unitary

In the conventional argument, the initial canonical distribution of the bath is 
assumed, which effectively breaks the time-reversal symmetry.

Second law with pure state bath?

The origin of irreversibility was not fully understood, 

and thus we should consider pure state baths.

Information-thermodynamics link and the fluctuation theorem 

for pure state baths were open problems.
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system S

bath B
(pure state)

・ Bath B: quantum many body system on a lattice

B̂・ Initial state of B: a typical pure state

・ No initial correlation between system and bath

・ Interaction: local and translational invariant

・ Correlation in B is exponential decaying

・ System S contacts with a part of bath B

・ Temperature of bath B
is define by the temperature of the canonical distribution 
whose energy density is equal to the pure state

  ˆ)0(ˆ)0(ˆ BS  

Setup: system and bath



・ Unitary time evolution:

r̂(t) =Ûr̂(0)Û†,    Û = exp -iĤt( )

・ Relaxation after quench:

Hamiltonian of S changes quickly at 

and is time-independent for 0t

t = 0

Setup: time evolution

system S

bath B
(pure state)
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 )(ˆln)(ˆtr)( SSSS tttS 

：heat absorbed by system S BB
ˆ))0(ˆ)(ˆ(tr HtQ  

2ndS   QS

e2nd

Even though the state of B is pure, 

information and thermodynamics are linked!

：von Neumann entropy of system S

：Error term, vanishing in the large bath limit

For any , for any t, there exists a sufficiently large bath, such that 2nd law holds.

→ Mathematically rigorous 

02nd 

Second law (Clausius inequality)



S. Popescu et al., Nature physics (2006)

A. Sugita, RIMS Kokyuroku (2006)

S. Lloyd, Ph.D. Thesis

 
00 B'B tr

（When B’0 is large, the error is small）

is nearly equal to canonical distribution

→ Origin of thermodynamic entropy of B0 is the entanglement entropy

Key of the proof: typicality

Reduced density operator of
a typical pure state
(with respect to the uniform measure in the 
Hilbert space of the microcanonical energy shell)



B0 B’0

S

H. Tasaki, arXiv:1507.06479,(2015)

Almost all pure states are 

locally thermal!



    1)exp()B,dist(SexpBˆˆ ˆ),(ˆ 00
00 BSBS   tvSOOCOtO 

Lieb-Robinson bound

S is not affected by B’0 in the short time regime

→ smallt <<t º mdist(S,¶B0) / v

t Lieb-Robinson time
E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251 (1972)

M. Hastings and T. Koma, Commun. Math. Phys. 265, 781 (2006)

v / m：Lieb-Robinson velocity

The velocity of “information propagation” 
in B is finite, due to locality of interaction

Key of the proof: Lieb-Robinson bound

B0 B’0

S
Effective “light-cone” like structure

boundary

∂B0
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GF/R (u) = dseiusPF/R(s )
-¥

+¥

ò

Moment generating function 
for entropy production
（F: Forward, R: Reverse）

Initial state of the reverse process: r̂S(t)Ä r̂B

Same as the initial state 
of forward process

Time
Reverse

Forward

0S  QS  : entropy production on average
(non-negative)

Projection measurements of          at initial and final time
Difference of outcomes:

：stochastic entropy production (fluctuates）

BHtt ˆ)(ln)(ˆ S  



)(ˆ t


Let

Fluctuation theorem: setup



GF(u)-GR(-u+ i) £eFT

Universal property of thermal fluctuation far from equilibrium
emerges from quantum fluctuation of pure states!

For any , for any time t, there exists a sufficiently large bath, such that…

→ Mathematically rigorous 

0FT 






e

P

P


 )(

)(

R

F

Fourier

Transf.

In addition, is assumed.
If this commutator is not zero but small, 
a small correction term is needed.

0],[ IBS  HHH

Result: Fluctuation theorem
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2nd 

FTRF )()(  iuGuG

Error estimation is mathematically rigorous 

（For any error and time, 2nd law and FT hold for sufficiently large bath.）

→ However, it is not trivial whether the errors are small in realistic situations.

Second law

Fluctuation theorem

→ We confirm that the second law and FT hold

even with a very small bath (16 sites)

Numerical check



Ĥ = eiĉi
†

i
å ĉi + -g ij( ) ĉ†i  ĉ j + ĉ

†

j  ĉi( )
i, j

å + gijĉ
†

i  ĉiĉ
†

j  ĉ j
i, j

å

Hard core bosons with n.n. repulsion on 2-dim square lattice

Hopping RepulsionPotential

Bath:               sites,  #particles=NYX 

system S

Bath B
(Pure state)

X

Y

System: 1 site

gij = g,  g ij =g      (i, j Î B)

gij = 0,  g ij = ¢g      (otherwise)

ei =e

r̂S(0) = 1 1Initial state: 

Method: Exact diagonalization (full)

← unit of energy

System and Hamiltonian



et

s

parameters: e=1, g=1, ¢g =1,  g = 0.1,  (X,Y,N) = (4, 4,5)

Average entropy production is always non-negative

→ Second law holds (even beyond the Lieb-Robinson time!)

t ~1

Second law (1)

1~

Lieb-

Robinson

time



et

s

et

¢g = 0.1 ¢g =10

parameters: e=1, g=1,  g = 0.1,  (X,Y,N) = (4, 4,5)

Bath

System

Rabi oscillation between
system S and Bath

Second law (2)

1~

Lieb-

Robinson

time



parameters: e=1, g=2, ¢g = 0.01,  g= 0.1,  (X,Y,N) = (3,5, 4)
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t = 0.01 t = 0.1

t =1

u

u

Forward

Reverse

t ~
1

2

GF(u),  GR(-u+ i)
are almost the same in the short time 
regime  (imaginary part is also the same)

Lieb-

Robinson

Time

→  Deviation comes from 
“bare” quantum fluctuation 

（Dynamical crossover between 

thermal fluctuation and bare
quantum fluctuation）

Fluctuation theorem (1)



parameters: e=1, g=2, ¢g = 0.01,  g= 0.1,  (X,Y,N) = (3,5, 4)
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th momentn

Lower order 
moments

Higher order 
moments

→ Higher order moments deviate faster.

Fluctuation theorem (2)



parameters: e=1, g=2, g= 0.1,  (X,Y,N) = (3,5, 4)

dG º du
0

2p

ò GF u( ) -GR -u+ i( )
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1

2

Agrees with t2 dependence predicted by our theory

Fluctuation theorem: error estimation

Integrated error:

t ~
1

2

Lieb-

Robinson

Time
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For pure states under reversible unitary dynamics,

 Second law

relates thermodynamic heat and the von Neumann entropy
→ Information-thermodynamics link

 Fluctuation theorem

Fundamental symmetry of entropy production far from equilibrium
→ Emergence of thermal fluctuation from quantum fluctuation

Mathematically rigorous proof＋ Numerical check (Exact disgonalization)

2ndS   QS

GF(u)-GR(-u+ i) £eFT

S
B0

B’0
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Key idea: Lieb-Robinson bound

Summary Iyoda, Kaneko, Sagawa, 
arXiv:1603.07857



Possible experiments

→ Ultracold atoms?

Possible connection to quantum gravity

→ Unruh & Hawking radiation?

→ “Fast scrambling” conjecture?

M. Cheneau et al., Nature (2012)

Perspectives

Thank you for your attention!


