Emergent Fluctuation Theorem for Pure Quantum States

Takahiro Sagawa

Department of Applied Physics, The University of Tokyo

Eiki Iyoda

16 June 2016, YITP, Kyoto YKIS2016: Quantum Matter, Spacetime and Information

Kazuya Kaneko

arXiv:1603.07857

Have been working on...

- Nonequilibrium statistical physics
- Quantum information theory

In particular, thermodynamics of information

Maxwell's demon

Thermodynamics of Information

Information processing at the level of thermal fluctuations

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa, Nature Physics 11, 131-139 (2015).

A related fundamental issue:

How does thermodynamics (and its connection to information) emerge in purely quantum systems? Today's topic!

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

Origin of macroscopic irreversibility

"How does the macroscopic irreversibility emerge from microscopic dynamics?"
→ Fundamental question since Boltzmann

Relaxation in isolated quantum systems

Microscopically reversible unitary dynamics

→ Relaxes towards a macroscopic steady state (Recurrence time is very long: almost irreversible!)

```
\begin{vmatrix} Y(0) \rangle \text{ Non-steady pure state} \\ \int \hat{U} = \exp(-i\hat{H}t) : \text{Unitary} \\ \begin{vmatrix} Y(t) \rangle \text{ Macroscopically steady} \\ \text{pure state} \end{vmatrix}
```

Rigorous proof for arbitrary initial states

Von Neumann, 1929 (arXiv:1003.2133)

Experiment : Ultracold atoms

ex. 1d Bose-Hubbard, ⁸⁷Rb

S. Trotzky et al., Nature physics 8, 325 (2012)

Info. entropy vs thermo. entropy

Macroscopically irreversible relaxation emerges from microscopically reversible unitary dynamics

Fundamental **GAP** between information/thermodynamics entropy

Our results

Iyoda, Kaneko, Sagawa, arXiv:1603.07857

For pure states under reversible unitary dynamics, within small errors

✓ 2nd Law

$$\mathsf{D}S_{\mathrm{S}} \ge b \langle Q \rangle$$

relates von Neumann entropy to thermodynamic heat

→ Information-thermodynamics link

 \checkmark The fluctuation theorem

 $\ensuremath{\mathcal{S}}$: entropy production

characterizes fundamental symmetry of entropy production

→ Thermal fluctuation emerges from quantum fluctuation

Mathematically rigorous proof + Numerical check Key idea: Lieb-Robinson bound, based on locality of interactions

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

Second law and fluctuation theorem

2nd law Entropy production is non-negative on average , з О $\langle S \rangle$

Fluctuation theorem

$$\frac{P_{\rm F}(S)}{P_{\rm R}(-S)} = e^{S}$$

Universal relation far from equilibrium

Probabilities of Positive/negative entropy productions Second law as an **equality**!

RNA

A-rich bulge

Theory (1990's-) Dissipative dynamical systems, Classical Hamiltonian systems, Classical Markov (ex. Langevin), Quantum Unitary, Quantum Markov, ...

Experiment (2000's-) Colloidal particle, Biopolymer, Single electron, Ion trap, NMR, ...

J. Liphardt et al.,

Quantum (Ion-trap)

Setup for previous studies

By J. Kurchan, H. Tasaki, C. Jarzynski, ...

Total system: system S and bath B S+B obeys unitary dynamics

$$\hat{\Gamma}(t) = \hat{U}\hat{\Gamma}(0)\hat{U}^{\dagger}, \quad \hat{U} = \exp(-i\hat{H}t)$$

- Initial state of S: arbitrary
- Initial state of B: Canonical

→ This assumption effectively breaks time reversal symmetry.

No initial correlation between S and B.

$$\hat{\Gamma}(0) = \hat{\Gamma}_{\mathrm{S}}(0) \, \overset{\mathrm{\tiny{id}}}{\mathrm{A}} \, \hat{\Gamma}_{\mathrm{B}}(0), \quad \hat{\Gamma}_{\mathrm{B}}(0) = e^{-b\hat{H}_{B}} \, / \, Z_{B}$$

Second law (Clausius inequality)

$$\begin{split} S_{\rm S}(t) &= \mathrm{tr}_{\rm S} \left[-\hat{\Gamma}_{\rm S}(t) \ln \hat{\Gamma}_{\rm S}(t) \right], \quad \hat{\Gamma}_{\rm S}(t) = \mathrm{tr}_{\rm B} \left[\hat{\Gamma}(t) \right] \\ \left\langle Q \right\rangle &= -\mathrm{tr}_{\rm B} \stackrel{\acute{\rm e}}{\oplus} (\hat{\Gamma}(t) - \hat{\Gamma}(0)) \hat{H}_{\rm B} \stackrel{\acute{\rm U}}{\coprod} \quad \text{: heat absorbed by system S} \end{split}$$

Information entropy and **Heat** are linked! (if the initial state of bath B is **canonical**)

Fluctuation theorem

$$\langle \sigma
angle \equiv \Delta S_{\rm S} - \beta \langle Q
angle \ge 0$$
 : entropy production on average (non-negative)

 σ : stochastic entropy production (fluctuates)

Let $\hat{\sigma}(t) \equiv -\ln \rho_{\rm s}(t) + \beta \hat{H}_{\scriptscriptstyle B}$ Projection measurements of $\hat{\sigma}(t)$ at initial and final time Difference of outcomes: σ

Fluctuation theorem universally characterizes the ratio between the probabilities of positive/negative entropy productions

Fluctuation theorem

Another representation with characteristic function (moment generating function)

$$G_{\rm F}(u) = G_{\rm R}(-u+i)$$

Fourier transf.
$$\frac{P_{\rm F}(S)}{P_{\rm R}(-S)} = e^{S}$$

$$G_{\rm F/R}(u) = \int_{-\infty}^{+\infty} d\sigma e^{iu\sigma} P_{\rm F/R}(\sigma)$$

Cf. Fluctuation theorem leads to several important relations

Fluctuation theoremJarzynski identitySecond law $P_{\rm F}(S) = P_{\rm R}(-S)e^S \longrightarrow \langle \exp(-S) \rangle = 1 \longrightarrow \langle S \rangle^3 0$ IntegrateJensen inequality (convexity)

Also reproduces the Green-Kubo formula in the linear response regime, and its higher order generalization

Second law with pure state bath?

In the conventional argument, the initial **canonical** distribution of the bath is assumed, which effectively breaks the time-reversal symmetry.

The origin of irreversibility was not fully understood, and thus we should consider **pure state baths**.

A few previous works (on the second law):

- → Assumption of "random waiting time"
 - : similar effect to dephasing
 - H. Tasaki, arXiv:0011321 (2000)
 - S. Goldstein, T. Hara, and H. Tasaki, arXiv:1303.6393 (2013)
 - T. N. Ikeda, N. Sakumichi, A. Polkovnikov, and M. Ueda, Ann. Phys. 354, 338 (2015)

Information-thermodynamics link and the fluctuation theorem for pure state baths were open problems.

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

Setup: system and bath

- Bath B: quantum many body system on a lattice
- Interaction: local and translational invariant
- Correlation in B is exponential decaying
- System S contacts with a part of bath B
- Initial state of B: a typical pure state

$$\hat{\rho}_{\rm B} = |\Psi\rangle\langle\Psi|$$

- No initial correlation between system and bath $\hat{
 ho}(0) = \hat{
 ho}_{\rm S}(0) \otimes \hat{
 ho}_{\rm B}$
- Temperature of bath B is define by the temperature of the

is define by the temperature of the canonical distribution whose energy density is equal to the pure state

Setup: time evolution

Relaxation after quench:

Hamiltonian of S changes quickly at t = 0and is time-independent for t > 0

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

Second law (Clausius inequality)

$$\Delta S_{\rm S} - \beta \langle Q \rangle \ge -\varepsilon_{\rm 2nd}$$

 $S_{\rm S}(t) = \operatorname{tr}_{\rm S}\left[-\hat{\rho}_{\rm S}(t)\ln\hat{\rho}_{\rm S}(t)\right] \quad \text{: von Neumann entropy of system S}$ $\left\langle Q\right\rangle = -\operatorname{tr}_{\rm B}\left[(\hat{\rho}(t) - \hat{\rho}(0))\hat{H}_{\rm B}\right] \quad \text{: heat absorbed by system S}$

$\mathcal{C}_{\rm 2nd}\,$: Error term, vanishing in the large bath limit

For any $\mathcal{E}_{2nd} > 0$, for any *t*, there exists a sufficiently large bath, such that 2nd law holds. → Mathematically rigorous

Even though the state of B is pure, information and thermodynamics are linked!

Key of the proof: typicality

Reduced density operator of $|\Psi\rangle$

a typical pure state

(with respect to the **uniform measure** in the Hilbert space of the microcanonical energy shell)

 $\rho_{\rm B_0} \equiv {\rm tr}_{\rm B_0} \left[\Psi \right] \langle \Psi \right]$

is nearly equal to canonical distribution (When B'_0 is large, the error is small)

 \rightarrow Origin of thermodynamic entropy of B₀ is the entanglement entropy

Key of the proof: Lieb-Robinson bound

The velocity of "information propagation" in B is finite, due to locality of interaction

Effective "light-cone" like structure

 ${f S}$ is not affected by ${f B'}_0$ in the short time regime

Lieb-Robinson bound

$$\left\| \left[\hat{O}_{\mathrm{S}}(t), \hat{O}_{\partial \mathrm{B}_{0}} \right] \right\| \leq C \left\| \hat{O}_{\mathrm{S}} \right\| \cdot \left\| \hat{O}_{\partial \mathrm{B}_{0}} \right\| \cdot \left| S \right| \cdot \left| \partial \mathrm{B}_{0} \right| \cdot \exp\left[-\mu \mathrm{dist}(\mathrm{S}, \partial \mathrm{B}_{0}) \right] \left(\exp(\nu |t|) - 1 \right)$$

 $t \ll t^{\circ} \mathcal{M}dist(S, \PB_0) / v \rightarrow small$

- v/m: Lieb-Robinson velocity
 - t Lieb-Robinson time

E. Lieb and D. Robinson, Commun. Math. Phys. 28, 251 (1972) M. Hastings and T. Koma, Commun. Math. Phys. 265, 781 (2006)

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

Fluctuation theorem: setup

$$\langle \sigma \rangle \equiv \Delta S_{\rm s} - \beta \langle Q \rangle \ge 0$$

: entropy production on average (non-negative)

 σ : stochastic entropy production (fluctuates)

Let $\hat{\sigma}(t) \equiv -\ln \rho_{\rm S}(t) + \beta \hat{H}_{\rm B}$ Projection measurements of $\hat{\sigma}(t)$ at initial and final time Difference of outcomes: σ

Moment generating function for entropy production (F: Forward, R: Reverse)

$$G_{\mathrm{F/R}}(u) = \grave{0}_{-\downarrow}^{+\downarrow} d\mathcal{S}e^{iu\mathcal{S}}P_{\mathrm{F/R}}(\mathcal{S})$$

Forward Reverse

Initial state of the reverse process: $\hat{\Gamma}_{\rm S}(t) \ddot{\sf A} \hat{\Gamma}_{\rm B}$

Same as the initial state of forward process

Result: Fluctuation theorem

$$\left|G_{\rm F}(u) - G_{\rm R}(-u+i)\right| \stackrel{{}_{\rm E}}{\leftarrow} e_{\rm FT} \xrightarrow[Fourier]{Fourier} \frac{P_{\rm F}(\sigma)}{P_{\rm R}(-\sigma)} \cong e^{\sigma}$$

For any $\mathcal{E}_{FT} > 0$, for any time *t*, there exists a sufficiently large bath, such that...

→ Mathematically rigorous

In addition, $[H_{\rm S} + H_{\rm B}, H_{\rm I}] = 0$ is assumed. If this commutator is not zero but small, a small correction term is needed.

Universal property of thermal fluctuation far from equilibrium emerges from quantum fluctuation of pure states!

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

Numerical check

Second law
$$\langle \sigma
angle \ge -\varepsilon_{
m 2nd}$$

Fluctuation theorem
$$|G_{\rm F}(u) - G_{\rm R}(-u+i)| \le \varepsilon_{\rm FT}$$

Error estimation is mathematically rigorous

(For any error and time, 2nd law and FT hold for sufficiently large bath.)

 \rightarrow However, it is not trivial whether the errors are small in realistic situations.

 \rightarrow We confirm that the second law and FT hold

even with a very small bath (16 sites)

System and Hamiltonian

Hard core bosons with n.n. repulsion on 2-dim square lattice

Second law (1)

parameters: e=1, g=1, g=1, g=0.1, (X, Y, N) = (4, 4, 5)

Average entropy production is always non-negative

→ Second law holds (even beyond the Lieb-Robinson time!)

Second law (2)

Fluctuation theorem (1)

parameters: e=1, g=2, g = 0.01, g = 0.1, (X, Y, N) = (3, 5, 4)

$$G_{\rm F}(u), \ G_{\rm R}(-u+i)$$

are almost the same in the short time regime (imaginary part is also the same)

Deviation comes from "bare" quantum fluctuation (Dynamical crossover between thermal fluctuation and bare quantum fluctuation)

Fluctuation theorem (2)

→ Higher order moments deviate faster.

parameters: e=1, g=2, g = 0.01, g = 0.1, (X, Y, N) = (3, 5, 4)

Fluctuation theorem: error estimation

Agrees with t^2 dependence predicted by our theory

- Introduction
- Review of fluctuation theorem

Our results:

- Second law
- Fluctuation theorem
- Numerical check

Summary

Iyoda, Kaneko, Sagawa, arXiv:1603.07857

For pure states under reversible unitary dynamics,

✓ Second law

$$\Delta S_{\rm S} - \beta \langle Q \rangle \! \geq \! - \! \varepsilon_{\rm 2nd}$$

relates thermodynamic heat and the von Neumann entropy

→ Information-thermodynamics link

✓ Fluctuation theorem
$$|G_F(u) - G_R(-u+i)| f e_{FT}$$

Fundamental symmetry of entropy production far from equilibrium

→ Emergence of thermal fluctuation from quantum fluctuation

Mathematically rigorous proof + Numerical check (Exact disgonalization)

Key idea: Lieb-Robinson bound

Perspectives

Possible experiments

→ Ultracold atoms?

M. Cheneau et al., Nature (2012)

Possible connection to quantum gravity

→ Unruh & Hawking radiation?→ "Fast scrambling" conjecture?

Thank you for your attention!