Measurement-based formulation of quantum heat engine and optimal performance of quantum heat engines arXiv:1405 .6457 (2014) arXiv:1504 .06150 (2015)

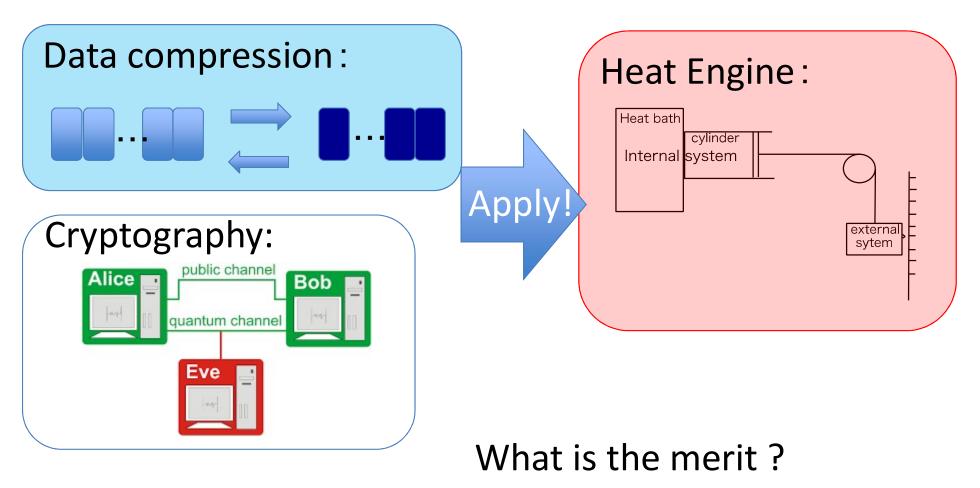
Riken CEMS Nakamura Laboratory Hiroyasu Tajima

Collaborated with Prof. Masahito Hayashi at Nagoya University.

YKIS2016, 2016/6/14

Research Theme:

Information theoretical analysis for heat engines;



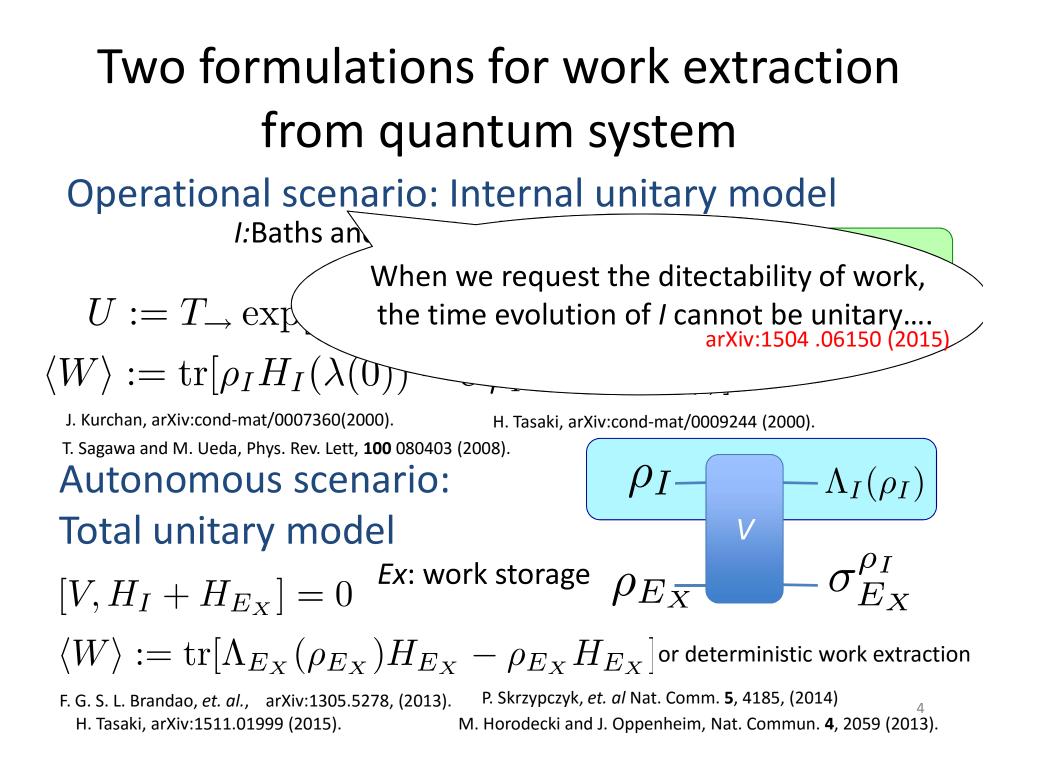
Merits of information theoretical approach

Merit 1: A new sight helps us to find hidden problems in previous formulations.

Result 1: Measurement based formulation for quantum heat engine

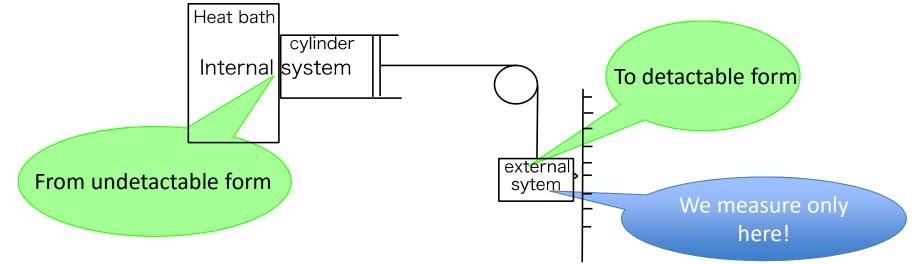
Merit 2: A new mathematical tool helps us to try unsolved problems.

Result 2: Asymptotic analysis for the optimal performance of quantum heat engine



"Detectability" of work

The work extraction translates the energy ...



As the minimal request for the "useful form," we demand the following;

We can detect the amount of the extracted energy only by measuring the external system.

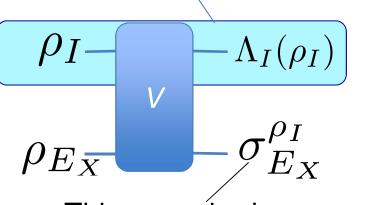
Can Internal-unitary model satisfy this request? 5/32

A hint from quantum communication

A well-known fact in quantum communication field;

"When a system evolutes approximately unitarily, it is difficult to obtain information from the system."

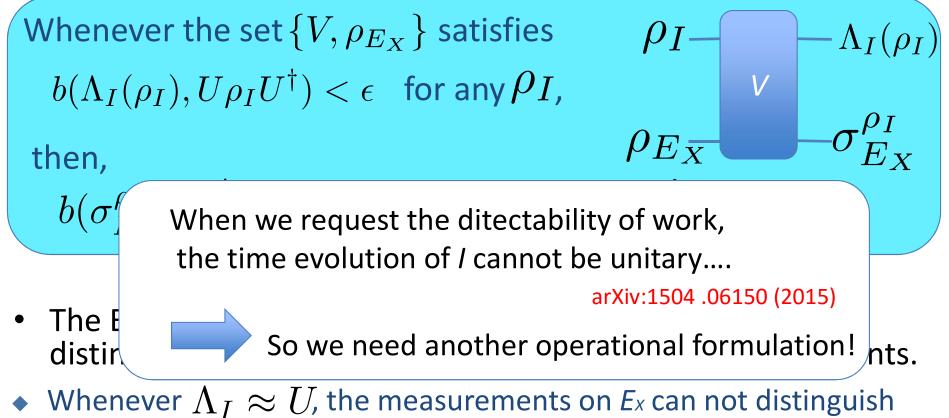
The time evolution is the more close to unitary,



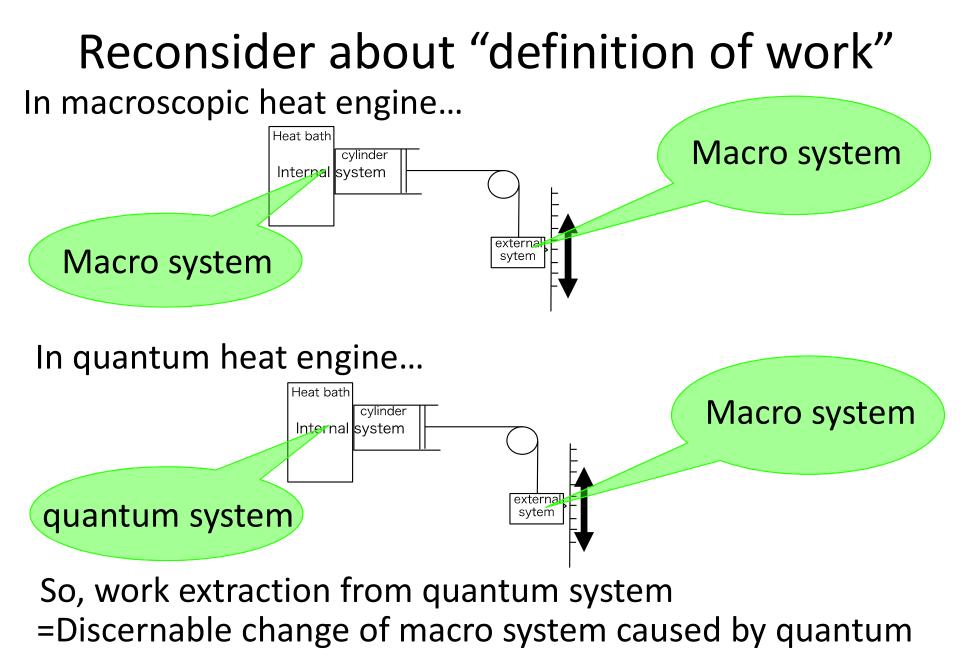
This state is the more independent of ho_I

In fact, we can derive a trade-off relation for the internal unitarymodel.

Trade-off relation



- Whenever $\Lambda_I \approx U$, the measurements on E_x can not distinguish the final states of E_x whose initial state of I are different.
- Because the energy gain changes from its minimum to its maximum during the initial state of *I* changes, we can not know the energy gain of *Ex* by the measurements on *Ex*, after all.



system =measurement process!

Measurement-based formulation

In general, an arbitrary measurement process is described as a set of completely positive (CP) maps;

is positive.

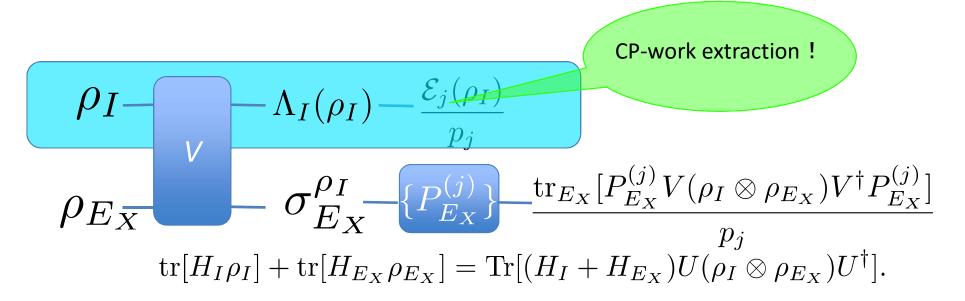
CP map on system A; For arbitrary positive ho_{AB} , $\mathcal{E}_A \otimes I_B(
ho_{AB})$

So, we formulate the work extraction as a set of CP maps;

$$\rho_I - \left\{ \mathcal{E}_j, w_j \right\} - \frac{\mathcal{E}_j(\rho_I)}{p_j} \text{ with } p_j := \operatorname{tr}[\mathcal{E}_j(\rho_I)]$$

 \mathcal{E}_{j} is completely positeve (CP) map, and \mathcal{W}_{j} is a function of j. $\sum_{j} p_{j}w_{j} = \operatorname{tr}[\rho_{I}H_{I} - \sum_{j} \mathcal{E}_{j}(\rho_{I})H_{I}] \iff \operatorname{energy \ conservation \ condition}_{arXiv:1504\ .06150\ (2015)}$

Relation to the total unitary models arXiv:1504 .06150 (2015) Our formulation is consistent with total unitary model, because of direct-indirect measurement relation.



So, now we have an operational scenario which is consistent with the autonomous scenario.

Merits of information theoretical approach

Merit 1: A new sight helps us to find hidden problems in previous formulations.

Result 1: Measurement based formulation for quantum heat engine

Merit 2: A new mathematical tool helps us to try unsolved problems.

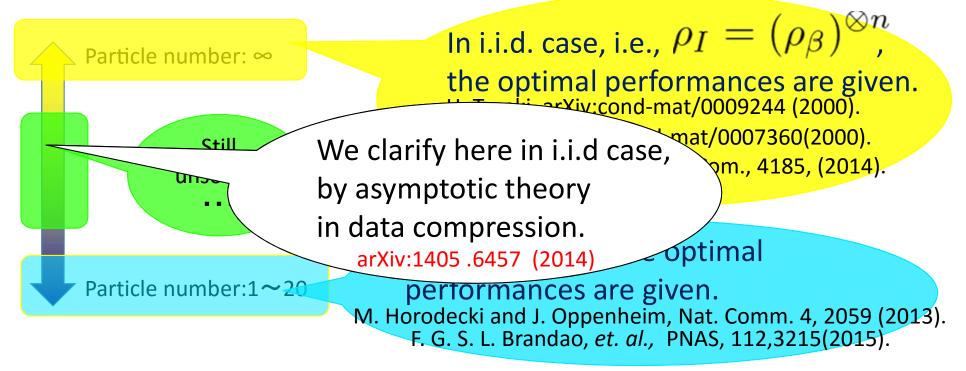
Result 2: Asymptotic analysis for the optimal performance of quantum heat engine

Researches for the optimal performance of heat engines

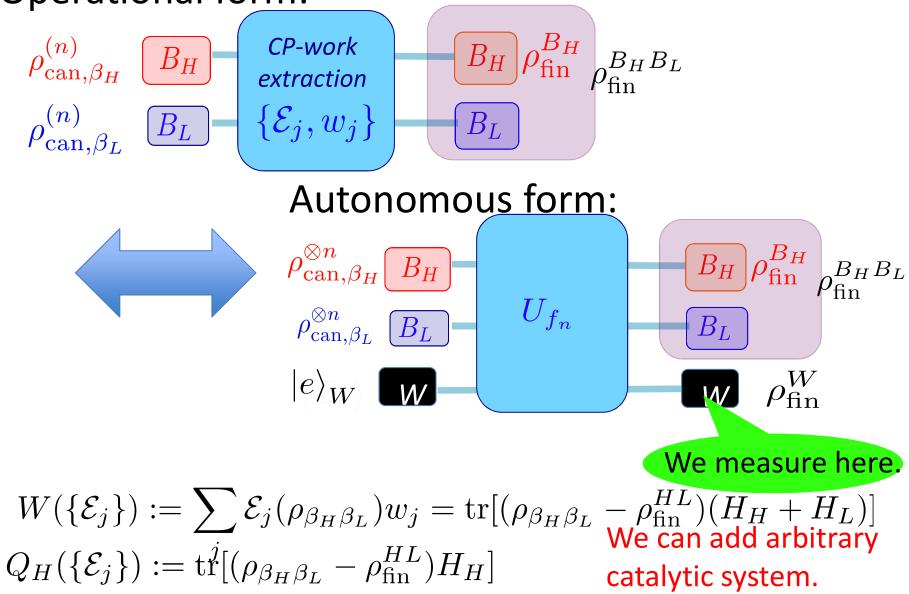
In Thermodynamics;

The optimal performances for macroscopic heat engines are given.

In Statistical mechanics(and quantum information);



Heat engine with finite-size heat baths Operational form:



Asymptotic evaluation of optimal efficiency arXiv:1405.6457 (2014) Let us define the optimal efficiency as follows; $\eta_{\text{opt}}[\beta_H, \beta_L, Q_n] := \sup_{\substack{\{\mathcal{E}_j, w_j\}: Q(\{\mathcal{E}_j, w_j\} = Q_n)}} \eta(\{\mathcal{E}_j, w_j\})$

When the particles of each heat bath do not interact each others, i.e., $\rho_{\beta_H\beta_L} = \left(\rho_{\beta_H|H_h} \otimes \rho_{\beta_L|H_l}\right)^{\otimes n}$ The optimal efficiency satisfies $\eta_{\text{opt}}[\beta_H, \beta_L, Q_n] = 1 - \frac{\beta_H}{\beta_L} - C_1 \frac{Q_n}{n} - C_2 \frac{Q_n^2}{n^2} + O\left(\frac{Q_n}{n^2}\right)$

We can easily compute the coefficients;

Our results give computable approximation of optimal efficiency even when $n=10^4, 10^8, 10^{12}\ldots$

Evaluation of the quality of energy gain We can give a concrete dynamics satisfying the asymptotic expansion of the efficiency, and the followings;

$$\begin{aligned} A_{B_H} &= \frac{\Delta E_{B_H}}{\Delta S_{B_H}} = O\left(1\right) \\ A_{B_L} &= \frac{\Delta E_{B_L}}{\Delta S_{B_L}} = O\left(1\right) \\ A_W &= \frac{\Delta E_W}{\Delta S_W} \le O\left(\frac{\log n}{Q_n}\right) \end{aligned}$$
 When $Q_n = an^b \quad 0 < b < 1$,

$$A_W
ightarrow 0 \ (n
ightarrow \infty)$$
 holds.

Optimal process is an example of translation from "heat" to "work".

Summary 1/2:

arXiv:1504 .06150 (2015)

As operational formulation of quantum heat engines, "internal unitary model" has been widely used.

$$\rho_{I-U-U\rho_{I}U^{\dagger}} U := T_{\rightarrow} \exp[-i \int H_{I}(\lambda(t))dt]$$

We find that this model is not consistent with the autonomous formulation by considering the detectability of work.

As another operational formulation, we propose a measurement-based formulation, which is consistent with the autonomous formulation. 16/32

Summary 2/2:

arXiv:1405.6457 (2014)

We give an asymptotic expansion of optimal efficiency.

$$\eta_{\text{opt}}[\beta_H, \beta_L, Q_n] = 1 - \frac{\beta_H}{\beta_L} - C_1 \frac{Q_n}{n} - C_2 \frac{Q_n^2}{n^2} + O\left(\frac{Q_n}{n^2}\right)$$

We give the optimal process as a concrete dynamics. It is a good example of translation from "heat" to "work."

$$A_{B_H} = O(1) \qquad A_{B_H} = O(1) \qquad A_W \le O\left(\frac{\log n}{Q_n}\right)$$