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Quantum Many body physics: the 21st century point of view

Entanglement



Outline

• Entanglement as a resource theory
• Entanglement in the presence of superselection rules
• Entanglement in gauge theories



Entanglement as a resource theory

• The beauty of quantum information theory stems from the subtle 
interplay between

– the Massive Hilbert space (“a convenient illusion”) 

– The limitations of the allowed quantum operations

– Resources that allow to overcome those limitations

• The theory of entanglement is the resource theory when faced with the 
limitation of local operations and classical communication (LOCC)

Classical 
Communication



• Basic premise: entanglement is a resource (just as e.g. energy in 
thermodynamics) which allows to perform certain information tasks much 
more efficient than classically

– Mother of all tasks is quantum teleporation: entanglement + LOCC 
allows to do any global operation locally 
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• Basic premise: entanglement is a resource (just as e.g. energy in 
thermodynamics) which allows to perform certain information tasks much 
more efficient than classically

– Mother of all tasks is quantum teleporation: entanglement + LOCC 
allows to do any global operation locally 

– Similarly: quantum cryptography using Bell states, dense coding, 
measurement based quantum computation

• Basis unit of currency: Bell state
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Entanglement Entropy
• Theory of quantum information is to a large extent                                           

concerned with constructing a resource theory of                                                   
entanglement: how (efficient) can I convert states                                                         
to Bell states? What about mixed states? What about                                                
the entangling power of a Hamiltonian?

• Fundamental theorem in the theory of entanglement:
• Given a pure bipartite quantum state              with marginal         , then I can convert N 

copies of              into S.N copies of Bell states and vice versa using only local operations 
and classical communication, with S the entanglement entropy of the state             

• Hence the amount of bipartite quantum correlations can be completely 
quantified by the entanglement entropy 

– Open question: neccessary and sufficient conditions for interconvertibility 
of pure multipartite entangled states

● e.g. interconvertibility of W-states into GHZ-states is related to 
border rank problem for multiplication of matrices) 



Entanglement for mixed states

• Consider a mixed bipartite state 

• There are 2 natural entanglement measures with an operational meaning :

● The entanglement cost 

● The enanglement of distillation 

• A state is seperable (unentangled) iff it can be written as a mixture of 
product states:



• In general, we have 

● Otherwise, we could build an “entanglement perpetuum mobile”
● There exist cases where                                    ; this phenomenon is 

called bound entanglement

•  For pure states, we obviously have

● But equality can also happen for mixed states iff there exists a 
local basis in which it holds that

● In that case, 



Entanglement and superselection rules

• What happens with the operational definitions of entanglement if there are 
extra restrictions on the operations that one can implement?

– e.g. in atomic physics: all physical operations commute with particle 
number operator

– In spirit of QIT: what is the resource which allows me to overcome the 
new limitations?  



Entanglement and superselection rules

• Let us give a consider the simplest example: a system of 2 qubits, but with a 
SSR of particle number

– All physical states are of the form

– Let us consider the state

● This state is seperable (non-entangled) in the usual sense

but cannot be created using LOCC and local SSR, as its seperable 
decomposition involves terms of the form 

FV, Cirac PRL '03



Entanglement and superselection rules

• General framework: given a SSR rule which decomposes the Hilbert space 
into a direct sum of projectors

then under LOCC +local SSR operations, any bipartite state                                 
is indistinguishable from

• Conversely, a state can be prepared using LOCC and local SSR iff  

FV, Cirac PRL '03



Entanglement and superselection rules

• Central mantra in QIT: constraints lead to new resources (e.g. LOCC, SSR) and 
hence must have quantum information theoretic uses

– Indeed, let us consider the 2 bipartite states

– If  the operations at A and B have to commute with                              then 
it is impossible to detect the phase       with LOCC

● Off-diagonal elements are invisible for observables commuting with 
● QIT task: data hiding.

– The bit can only revealed when the two parties come together
● Which resource do we need to overcome this limitation?

–

– Indeed: a local entangled measurement can then reveal info 
about the bit:



Entanglement and superselection rules

• In the case of 1 global superselection rule (e.g. U(1)):

– Quantification of resource is terms of  superselection induced variance:

– Using standard QIT tools, we can then prove:  

Schuch, FV, Cirac '04



Entanglement in symmetry protected phases of matter

• The same discussion can of course be done for other global symmetries (e.g. 
SU(2), CPT, ...) 

• When dividing the system into 2 regions, we assume that all local 
observables and Hamiltonian terms commute with the global symmetry in 
the respective regions

A



Entanglement in symmetry protected phases of matter

• Let r label the irreps of                      and hence denote the charge in region A, 
and r* the dual irrep denoting the charge in region B, then the group action 
on the Hilbert space in A can be represented as

• The physical Hilbert space is given by

and therfore the reduced density matrix on A is given by     

A



Entanglement in symmetry protected phases of matter

• The entanglement entropy of this state consists of 2 parts:

• Any local observable/operation has to leave the irrep label invariant, and 
hence the entropy associated to r is purely “classical”(can only be used for 
creating classical correlations); the useful entanglement (entanglement of 
distillation) is given by the second part:

– Note however that this is not longer true when we have several copies 
available: cfr. Superselection induced variance 



Gauging SPT phases: zero coupling gauge theories

• Given an SPT state on a lattice, it is possible to lift the global symmetry to a 
local one by introducing gauge degrees of freedom on the links               
(Levin & Gu '12, Haegeman et al. '15)

– Wavefunction analogue of minimal coupling procedure

– Lifts SPT phases to so-called quantum doubles
● Example:  paramagnet                          toric code (Z2 gauge theory)

• This gauging procedure obviously leads to an extensive number of 
superselection rules; how should we quantify “useful” entanglement in 
those gauge theories?

– Spoiler: gauging leaves entanglement of distillation invariant (e.g. zero 
for the case of toric code) 



Entanglement in lattice gauge theories 

• Setting: system with extensive number of superselection rules

– Operational definition of entanglement can be obtained along the lines 
explained before



Entanglement in lattice gauge theories 

• Question has been adressed (and solved) many times, although a precise 
operational meaning of entanglement seems to have only been obtained 
very recently:

– Buividovich and Polikarpov '08

– Donnely '12

– Casini, Huerta, Rosabal '14

– Radividic '14

– Gromov and Santos '14

– Aoki, Iritani, Nozaki, Numassawa, Shiba, Tasaki '15

– Ghosh, Soni, Trivedi  '15

– ...



Entanglement in lattice gauge theories 

• We proceed as before (and as done in all references given before):

– Let us consider the gauge constraints crossing the border between 
regions A and B 

– For region A, let's define the basis                 with      labeling the 
equivalence classes of irreps of G on the different links,      enumerating 
a basis in the associated representation space, and      the multiplicity 
space. The local Hilbert space therefore has the following direct sum 
structure:

Note that the representation space is trivial in the Abelian case.  

– Following the Peter-Weyl theorem, any physical state (exhibiting the 
gauge symmetry) is now defined in the physical space

where                     denotes the dimension of the direct product irrep   



Entanglement in lattice gauge theories 

• All local observables have to commute with the projection

and hence the algebra of local observable has a nontrivial center spanned by        
   (see e.g. papers of Casini et al.)    

• Due to the direct sum structure and the structure in representation space, the 
entropy of the reduced density matrix of any quantum state in               can be 
decomposed in three terms: (see also Donnely and other references)

• As in the case of SSR, the first two terms are useless from the entanglement 
point of view, as we cannot touch them. By depolarizing, we get a mixed state      
                                                              and hence 



• Examples:

– Z2 lattice gauge theory (toric code):

– Double semion string net:

– Pure Abelian lattice gauge theory at zero coupling:  

– Pure non-Abelian gauge theory at zero coupling:

with           the number of inequivalent ways the representations          
can fuse to the scalar one 

– Perturbed toric code (Z2 gauge) with a magnetic field: 
● Careful: entropy is not an observable (unstable under 

perturbations: Fannes inequality) and therefore we have to use 
formalism of quasi-adiabatic evolution of Hastings

Notice the topological quantum entropy correction!   



Entanglement of distillation violates subadditivity
• Let's consider a Z2 gauge theory and a quantum state which is a 

superposition of the product state                                         and the state 
obtained by applying two Wilson loops to it:

• We have                             
and hence  



Conclusion

• Theory of entanglement is a theory of resources

• In the presence of global superselection rules, the rules of the game change, 
and we get new restrictions (but also new resources to overcome them)

– Distillable entanglement quantifies the “useful” entanglement (i.e. 
number of Bell states which can be extracted), and is generically strictly 
smaller than entanglement entropy in the presence of superselection rules

• Lattice gauge theories exhibit an extensive number of superselection rules, and 
the distillable entanglement can be obtained by looking at the average entropy 
in the different superselection blocks

– For Abelian lattice gauge theories at zero coupling,                        , while for 
non-Abelian ones, we get non-zero distillable entanglement

– Distillable entanglement exhibits topological quantum entropy correction

– Distillable entanglement violates (strong) subadditivity

– To get universal quantity: look at regions A,B seperated by a region C
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