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An introductory remark

quantum effective actions:

systematic approaches to non-perturbative effects in quantum field theory 



A bit of a recap

• 𝑓 is strictly convex or concave on an interval 𝐼.

• 𝑓′′ has a fixed sign on 𝐼.

• 𝑓′ is monotonic, single-valued and invertible on 𝐼.

• 𝑓 can be expressed as the set of ordered pairs {(𝑥, 𝑓 𝑥 )} or 

the tangents to 𝑓.

• Legendre transform:

maps {(𝑥, 𝑓 𝑥 )} to {(𝑥∗, 𝑓∗(𝑥∗)}, specifying the gradients

and intercepts of the tangents to 𝑓.



An alternative take on the (2PI) effective action

Using a zero-dimensional QFT

• Take a zero-dimensional QFT with action [PM & Saffin ‘19]

𝑆 Φ =
𝑚2

2
Φ2 +

𝜆

4!
Φ4

• The partition function in the presence of external sources {𝐽} is

𝑍 𝐽 = 𝒩න
−∞

+∞

dΦexp −
1

ℏ
𝑆 Φ −෍

𝑛=1

∞ 1

𝑛!
𝐽𝑛Φ

𝑛

• This talk focuses on the 2PI effective action with

𝐽 = {𝐽1 ≡ 𝐽, 𝐽2 ≡ 𝐾}



An alternative take on the (2PI) effective action

Concavity of the Schwinger function

• The Schwinger function

𝑊 = −ℏ ln𝑍(𝐽, 𝐾)

is concave, even for a non-convex 

classical potential.

• Left: 𝑚2 = −1, 𝜆 = 6 [PM & Saffin ‘19].

• Gradient w.r.t. −𝐽 is Φ 𝐽,𝐾.

• Gradient w.r.t. −𝐾/2 is Φ2
𝐽,𝐾
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An alternative take on the (2PI) effective action

Convex conjugate variables

Γ𝐽,𝐾 𝜙, Δ ≡ 𝑊 𝐽, 𝐾 + 𝐽𝜙 +
1

2
𝐾 × 𝜙2 + ℏΔ

The maximum in the 𝐽, 𝐾 plane is determined by the variables 𝜙, Δ .
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[PM & Saffin ‘19]



An alternative take on the (2PI) effective action

The 2PI effective action

• The double Legendre transform

Γ 𝜙, Δ = max𝐽,𝐾 Γ𝐽,𝐾 𝜙, Δ

corresponds to the value of the maxima as a function of 𝜙, Δ .

• The locations of the maxima correspond to extremal sources 𝒥,𝒦 :

ቚ𝜕𝐽Γ𝐽,𝐾 𝜙, Δ
𝐽=𝒥,𝐾=𝒦

= 0 = ቚ𝜕𝐾Γ𝐽,𝐾 𝜙, Δ
𝐽=𝒥,𝐾=𝒦

• The extremization yields the 2PI effective action with

𝜙 = ቚ−ℏ𝜕𝐽𝑊 𝐽,𝐾
𝐽=𝒥,𝐾=𝒦

and ℏΔ = ቚ2ℏ𝜕𝐾𝑊 𝐽,𝐾
𝐽=𝒥,𝐾=𝒦

− 𝜙2



An alternative take on the (2PI) effective action

The 2PI effective action(s)

• 𝒥 ≡ 𝒥 𝜙, Δ and 𝒦 ≡ 𝒦 𝜙, Δ

• Fixing one of 𝒥 or 𝒦 determines Δ ≡ Δ 𝜙 or similarly 𝜙 ≡ 𝜙 Δ .

In the full field-theoretic case: [Garbrecht & PM ‘16]

• 𝒦𝑥,𝑦 = 0 gives the 1PI effective action (EA) [Jackiw ‘74].

• 𝒥𝑥 = 𝒦𝑥,𝑦 = 0 gives the CJT EA [Cornwall, Jackiw & Tomboulis ‘74].

• 𝒥𝑥 = 0 and 𝒦𝑥,𝑦 ∝ 𝛿𝑑 𝑥 − 𝑦 gives the 2PPI EA [Verschelde & Coppens ‘92].

• Fixing 𝒦𝑥,𝑦 by Ward identities ~ the symmetry-improved EA [Pilaftsis & Teresi ‘13].



An alternative take on the (2PI) effective action

A caveat on recovering the CJT EA

• 𝒥 and 𝒦 can be chosen so that the saddle point in the path integral of the partition 

function coincides with the quantum trajectory:

ቤ
𝛿𝑆 𝜙

𝛿𝜙
𝜙=𝜑

− 𝒥 𝜙, Δ −𝒦 𝜙, Δ 𝜑 = ቤ
𝛿Γ 𝜙, Δ

𝛿𝜙
𝜙=𝜑,Δ=𝒢

= 0

• Self-consistency then requires [Garbrecht & PM ’16; PM & Saffin ‘19]

𝒥 𝜑, 𝒢 +𝒦 𝜑, 𝒢 𝜑 = 0

• Key if the quantum trajectory is non-perturbatively far from the classical one, e.g., 

radiatively induced instabilities. [Garbrecht & PM ’15; Plascencia & Tamarit ‘16]



𝜕𝑘Γ 𝜙, Δ𝑘 𝜙 = −
ℏ

2
ℛ𝑘;𝑥,𝑦𝜕𝑘∆𝑘;𝑥,𝑦 𝜙

An alternative flow equation for the exact RG

The regulator-sourced 2PI effective action

What if 𝒦𝑥,𝑦 𝜙, Δ = −ℛ𝑘;𝑥,𝑦 is (minus) the inverse Fourier transform of the regulator and 

𝒥𝑥 𝜙, Δ is such that 𝜙 is independent of the scale 𝑘? [Alexander, PM, Nursey & Saffin ‘19]

𝜕𝑘Γ 𝜙, Δ =
𝛿Γ 𝜙, Δ

𝛿𝜙𝑥
𝜕𝑘𝜙𝑥 +

𝛿Γ 𝜙, Δ

𝛿∆𝑥,𝑦
𝜕𝑘∆𝑥,𝑦

𝜕𝑘𝜙𝑥 = −𝜕𝑘
𝛿𝑊 𝒥,𝒦

𝛿𝒥𝑥
= 0



versus

𝜕𝑘Γav
1PI 𝜙 = +

ℏ

2
∆𝑘;𝑥,𝑦 𝜙 𝜕𝑘ℛ𝑘;𝑥,𝑦

𝜕𝑘Γ 𝜙, Δ𝑘 𝜙 = 𝜕𝑘Γav
1PI 𝜙 −

ℏ

2
𝜕𝑘 ℛ𝑘;𝑥,𝑦∆𝑘;𝑥,𝑦 𝜙

𝜕𝑘Γ 𝜙, Δ𝑘 𝜙 = −
ℏ

2
ℛ𝑘;𝑥,𝑦𝜕𝑘∆𝑘;𝑥,𝑦 𝜙

An alternative flow equation for the exact RG

The regulator-sourced 2PI effective action

What if 𝒦𝑥,𝑦 𝜙, Δ = −ℛ𝑘;𝑥,𝑦 is (minus) the inverse Fourier transform of the regulator and 

𝒥𝑥 𝜙, Δ is such that 𝜙 is independent of the scale 𝑘? [Alexander, PM, Nursey & Saffin ‘19]

[for average 1PI, see Wetterich ’91 & ’93; Morris ’94; Ellwanger ‘94]



An alternative flow equation for the exact RG

Boundary conditions and closure

Boundary conditions:

• 𝑘 → 0, ℛ𝑘 → 0, and the regulator-sourced 2PI and average 1PI effective actions

coincide with the 1PI effective action Γ1PI 𝜙 = 𝑊 𝒥 + 𝒥𝑥𝜙𝑥.

• 𝑘 → ∞, both coincide with the classical action 𝑆 𝜙 .

Closure:

• It follows from convexity of the 2PI effective action when Τ𝛿𝜙 𝛿𝒦 = 0 that

Δ𝑘;𝑥,𝑦
−1 𝜙 =

𝛿2Γ 𝜙, Δ𝑘
𝛿𝜙𝑥𝛿𝜙𝑦

=
𝛿2𝑆 𝜙

𝛿𝜙𝑥𝛿𝜙𝑦
+ℛ𝑘;𝑥,𝑦 + 𝒪 ℏ



An alternative flow equation for the exact RG

Imports

Observation:
We have two closed systems with the same boundary conditions, but with 
different flow equations.

Take home question:
To which should we apply the standard zoology of Ansaetze: the average 1PI 
effective action or the regulator-sourced 2PI effective action?



An alternative flow equation for the exact RG

An example

• Take the derivative expansion, making the Ansatz [see, e.g., Berges, Tetradis & Wetterich ’02]

Γ 𝜙, Δ𝑘 = නd𝑑𝑥 𝑈𝑘 𝜌 +
1

2
𝑍𝑘 𝜌, 𝜕𝜙 2 𝜕𝜙 ∙ 𝜕𝜙 + 𝒪 𝜕4 , 𝜌 ≡ 𝜙2/2

with 𝑈𝑘 𝜌 =
1

2
𝑔𝑘 𝜌 − 𝜌𝑘

2
+ Λ𝑘 and Δ𝑘 𝜌; 𝑞2 =

1

𝑍𝑘 𝜌; 𝑞2 𝑞2 + ℛ𝑘 𝑞2 + 𝑈𝑘
′ 𝜌 + 2𝜌𝑈𝑘

′′ 𝜌

• Define

𝜅𝑘 ≡ 𝑍𝑘 𝜌𝑘 , 𝑘
2 𝑘2−𝑑𝜌𝑘 and 𝜆𝑘 ≡ 𝑍𝑘

−2 𝜌𝑘, 𝑘
2 𝑘𝑑−4𝑔𝑘

• Casually neglect the anomalous dimension and take the Litim regulator [Litim ‘02]

ℛ𝑘 𝑞2 = 𝑍𝑘 𝜌𝑘 , 𝑘
2 𝑘2 − 𝑞2 𝜃 𝑘2 − 𝑞2



An alternative flow equation for the exact RG

An example (threshold functions)

Regulator-sourced 2PI:

𝜕𝑡𝑈𝑘 𝜌 = −
1

2
න

d𝑑𝑞

2𝜋 𝑑
ℛ𝑘 𝑞2 𝜕𝑡Δ𝑘 𝜌; 𝑞2

𝜕𝑡Λ𝑘 =
8𝑣𝑑𝑘

𝑑

𝑑 𝑑 + 2

1

1 + 2𝜅𝑘𝜆𝑘 2

𝜕𝑡𝜅𝑘 = 2 − 𝑑 𝜅𝑘 +
48𝑣𝑑

𝑑 𝑑 + 2

1

1 + 2𝜅𝑘𝜆𝑘 3

𝜕𝑡𝜆𝑘 = 𝑑 − 4 𝜆𝑘 +
432𝑣𝑑
𝑑 𝑑 + 2

𝜆𝑘
2

1 + 2𝜅𝑘𝜆𝑘 4

Average 1PI:

𝜕𝑡𝑈𝑘 𝜌 = +
1

2
න

d𝑑𝑞

2𝜋 𝑑
Δ𝑘 𝜌; 𝑞2 𝜕𝑡ℛ𝑘 𝑞2

𝜕𝑡Λ𝑘 =
4𝑣𝑑𝑘

𝑑

𝑑

1

1 + 2𝜅𝑘𝜆𝑘

𝜕𝑡𝜅𝑘 = 2 − 𝑑 𝜅𝑘 +
12𝑣𝑑
𝑑

1

1 + 2𝜅𝑘𝜆𝑘 2

𝜕𝑡𝜆𝑘 = 𝑑 − 4 𝜆𝑘 +
72𝑣𝑑
𝑑

𝜆𝑘
2

1 + 2𝜅𝑘𝜆𝑘 3

[Alexander, PM, Nursey & Saffin ’19; cf. Berges, Tetradis & Wetterich ‘02]
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An alternative flow equation for the exact RG

A remark on convexity
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[PM & Saffin ‘19]

𝒦 = 0

𝒥 = 0



An alternative flow equation for the exact RG

A remark on multiple saddle points

• The variables 𝜙, Δ determine 

the type and number of saddle 

points, i.e.,

𝜑𝑖 ≡ 𝜑𝑖 𝜙, Δ

• In our zero-dimensional example, 

with 𝑚2 = −1 and 𝜆 =

6,we have 1 to 3 saddles (left).

2

0

−2

3
2

1
0

0
2

−2
𝜙Δ

𝜑

[PM & Saffin ‘19]



An alternative flow equation for the exact RG

A remark on symmetry preservation

• Consider a globally 𝑂(2)-invariant model with SSB (𝑚2 < 0):

ℒ =
1

2
𝜕Φ𝑖 ∙ 𝜕Φ𝑖 +

1

2
𝑚2Φ𝑖

2 +
𝜆

4
Φ𝑖
2Φ𝑗

2, 𝑖, 𝑗 = 1,2

• In the Hartree-Fock approximation, the Goldstone boson is spuriously massive in the SSB phase.

• Using the Ward identities to constrain 𝒦𝑖𝑗 𝜙, Δ resolves this problem [Garbrecht & PM ‘16]:

𝒦𝑥,𝑦
𝐺𝐺 𝜙, Δ = 𝒦𝑥,𝑦

𝐻𝐻 𝜙, Δ = −2ℏ ቮ
𝛿Γ2

HF
𝜙, Δ

𝛿Δ𝑥,𝑦
𝐻𝐻

𝜙=𝜑,Δ=𝒢

= −ℏ𝜆(3𝒢𝑥,𝑥
𝐻𝐻 + 𝒢𝑥,𝑥

𝐺𝐺)𝛿4 𝑥 − 𝑦

i.e., replace the HF Goldstone self-energy by the Higgs self-energy. [cf. Pilaftsis & Teresi ‘13]

• The pathological mass cancels algebraically, and we get the correct second-order phase transition.



A few concluding remarks

• A new perspective on the quantum effective action:
• Exploiting the full role of the external sources.
• Allowing us to map between different realisations of the quantum effective action.
• And derive an alternative flow equation for the exact RG.

• Outstanding questions:
• Is there a unique realisation of the effective action to which we should apply the 

usual Ansaetze for solving the flow equations?
• How significant are the differences between the two flow equations?
• Can we improve issues of gauge dependence in the exact RG by constraining sources 

appropriately? [cf. Garbrect & PM ’16; Lavrov, ‘20]



Thank you

• Questions or comments?

• Chat with me on the slack channel 11-2_millington-peter.

• Chat with me on Remo later: https://live.remo.co/e/erg2020-nov2.

• Message me on twitter @pwmillington or on Skype at peterwmillington, 
or email me at p.millington@nottingham.ac.uk.

• Slides and key references on the slack channel 11-2_millington-peter.
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Back up slides



A bit of a recap
The average 1PI effective action

• The average 1PI effective action is

Γav
1PI 𝜙, ℛ𝑘 = 𝑊 𝒥,ℛ𝑘 + 𝒥𝑥𝜙𝑥 −

1

2
𝜙𝑥ℛ𝑘;𝑥,𝑦𝜙𝑦

• The regulator-sourced 2PI effective action is (schematically)

Γ 𝜙, Δ𝑘 = "max−ℛ Γav
1PI 𝜙,ℛ𝑘 "

i.e., the two are related by a Legendre transform.



Closure
Extra details

• Convexity implies that

−
𝛿2Γ 𝜙,Δ𝑘

𝛿𝜙𝑥𝛿𝜙𝑦

𝛿2𝑊 𝒥𝑘,𝒦𝑘

𝛿𝒥𝑘;𝑥𝛿𝒥𝑘;𝑦
−

𝛿2Γ 𝜙,Δ𝑘

𝛿𝜙𝑥𝛿Δ𝑘;𝑦,𝑧
′

𝛿2𝑊 𝒥𝑘,𝒦𝑘

𝛿𝒥𝑘;𝑥𝛿𝒦𝑘;𝑦,𝑧
′ = 1, 𝒦𝑘;𝑥,𝑦

′ ≡ 𝒦𝑘;𝑥,𝑦/2

•
𝛿2Γ 𝜙,Δ𝑘

𝛿𝜙𝑥𝛿𝜙𝑦
Δ𝑘;𝑥,𝑦 +

𝛿2Γ 𝜙,Δ𝑘

𝛿𝜙𝑥𝛿Δ𝑘;𝑦,𝑧
′

𝛿𝜙𝑥

𝛿𝒦𝑘;𝑦,𝑧
′ = 1

• By construction, 
𝛿𝜙𝑥

𝛿𝒦𝑘;𝑦,𝑧
′ = 0, so

𝛿2Γ 𝜙, Δ𝑘
𝛿𝜙𝑥𝛿𝜙𝑦

Δ𝑘;𝑥,𝑦 = 1



Multiple saddle points
Source dependence

[PM & Saffin ‘19]

𝒥 +𝒦Φ

𝒥



Example
Evolution in four dimensions

[Alexander, PM, Nursey & Saffin ’19]


