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Motivation and Overview

Rigorous RG is one of many directions in mathematical physics.

Only a small selection of results will be discussed here.

Timeline

The main equations

Discrete and continuous RG flows

The use of RG equations for perturbative renormalization

Renormalization group beyond formal perturbation theory

Outlook



Timeline

The subject has a very long history within constructive field theory, starting soon after Wilson and
Wegner’s works.

An incomplete list is

1980-1987: Gawȩdzki, Kupiainen and, independently Feldman, Magnen, Rivasseau, Sénéor:
Infrared φ4 in four dimensions, Gross-Neveu model in 2, 2 + ε dimensions

1983-1989 Ba laban. Ultraviolet stability of Yang-Mills-theory in d = 4,
1990-1996 nonlinear sigma models in three dimensions

1984 Polchinski: perturbative renormalization by flow equations
followed up by many people Keller, Kopper, MS, Müller, Hollands

1987/1991 Brydges, Kennedy; Abdesselam Rivasseau.
Tree and forest formulas and their derivation from Wilsonian RG equations.

1990/1991 Benfatto-Gallavotti; Feldman-Trubowitz: perturbative RG for many-fermion systems

1992 Feldman-Magnen-Rivasseau-Trubowitz: nonperturbative fermionic RG; Fermi surface sectori-
zation and intrinsic 1/N expansions, followed up by many people (MS, Disertori-Rivasseau, Benfatto-
Mastropietro-Giuliani, Pedra)

1994 Benfatto-Gallavotti-Procacci-Scoppola:
1D Fermion systems and Luttinger liquids, followed up by many people (Mastropietro, Giuliani,...)



Generating Functionals

Generating functional for connected Green functions

e−W (J) =

∫
e−S(φ)−(J|φ) Dφ

Example: scalar theory S(φ) = 1
2 (φ | Q φ) + SI(φ), Q ≥ 0,

and (J | φ) =
∫
x
J(x) φ(x).

e−W (J) = Z0

∫
dµC(φ) e−(J|φ) e−SI(φ)

dµC : centered, normalized Gaussian measure with covariance C = Q−1 ≥ 0.

Wilson’s effective action generates connected amputated Green functions

e−G(φ) =

∫
dµC(φ+ φ′) e−SI(φ′) .

If W is strictly convex, its Legendre transform Γ can be obtained by

Γ(ϕ) = (j(ϕ) | ϕ)−W (j(ϕ))

where the functional j(ϕ) is the solution of

δW

δJ(x)
(j(ϕ)) = ϕ(x) .



Flow equations

Assume that s > 0 is some parameter, and that C = C(s) > 0 depends
differentiably on s. Source term magic implies the heat equation

∂
∂s e−W (J) = −1

2
∆

(J)

Q̇
e−W (J) ∆

(J)

Q̇
= ( δ

δJ | Q̇
δ
δJ ) Q̇ =

∂Q

∂s

W and G obey nonlinear heat equations

Ẇ = −1

2
∆Q̇W +

1

2
( δWδJ | Q̇

δW
δJ )

Ġ =
1

2
∆ĊG−

1

2
( δGδφ | Ċ

δG
δφ ) (Polchinski’s equation)

It makes sense to assume that Q̇ < 0, hence Ċ = −CQ̇C > 0.

The equation for W implies

Γ̇(ϕ) =
1

2
Tr
[
Q̇ Γ′′(ϕ)−1

]
(Wetterich’s equation)

where Γ′′(ϕ) is the Hessian of Γ : Γ′′(ϕ)x,x′ = δ2Γ
δϕ(x)δϕ(x′) .

(if one takes Q(s) = Q(s0) +R(s), then Γ̇(ϕ) = 1
2Tr

[
Ṙ (R+ Γ′′(ϕ))−1

]
).



Scalar field propagators

Cx,x′ =

∫
p

ei(x−x′)p Ĉ(p) with Ĉ(p) =
1

p2 +m2
=

∫ ∞
0

e−(p2+m2)τ dτ

For Λ = Λ0e−s, s = 0 corresponds to Λ = Λ0, and Λ → 0 means s → ∞.
The integral

ĈΛΛ0(p) =

∫ Λ−2

Λ−2
0

e−(p2+m2)τ dτ =
1

p2 +m2

(
e−(p2+m2)/Λ2

0 − e−(p2+m2)/Λ2
)

gives a propagator with ultraviolet cutoff Λ0 and infrared cutoff Λ.

By decomposing the integration interval into finitely many, e.g. correspon-
ding to s ∈ N, one gets a discrete decomposition of C in terms of a geometric
progression of scales: If sk = k, then Λk = Λ(sk) = Λ0e−k, and

ĈΛkΛ0(p) =

k∑
j=1

Ĉj(p) with Ĉj = ĈΛjΛj−1

The semigroup property for the Wilsonian effective action then leads to a
discrete flow

G0 = SI , G1, . . . , Gk with e−Gj(φ) =

∫
dµCj

(φ′) e−Gj−1(φ+φ′)

Discrete decompositions are standard in mathematical RG studies.



Perturbative renormalizability

Polchinski used his equation to prove perturbative renormalizability of scalar
field theory. Idea: expand in the loop order ` and orders n of the fields,

GΛΛ0(φ) =

∞∑
`=0

~`
n̄(`)∑
n=0

GΛΛ0

`,n (φ)

and

GΛΛ0

`,n (φ) =

∫
x1,...,xn

GΛΛ0

`,n (x1, . . . , xn) φ(x1) . . . φ(xn)

Translation invariance∫
x1,...,xn

GΛΛ0

`,n (x1, . . . , xn)e−i
∑
pj ·xj = δ

( n∑
j=1

pj
)
G̃ΛΛ0

`,n (p2, . . . , pn)

GΛΛ0

`,n (φ) =

∫
p2,...,pn

G̃ΛΛ0

`,n (p2, . . . , pn) φ̂(−p2 − . . .− pn)φ̂(p2) . . . φ̂(pn)



Convergence of the derivative expansion

Theorem [Hollands-Kopper, Comm. Math. Phys. 313, 257]. In Euclidian
scalar field theory in d = 4 with φ → −φ symmetry, for all ` and n, GΛΛ0

`,n

has a derivative expansion

GΛΛ0

`,n (φ) =
∑
w

g`,n,w

∫
x

φ(x) ∂w2φ(x) . . . ∂w2φ(x)

which converges if φ is a Schwartz function and its Fourier transform φ̂
is supported in a sufficiently small ball around p = 0. The sum runs over
(n− 1)-tuples of 4-multiindices w = (w2, . . . , wn), and the coefficients are

g`,n,w =
−i|w|

w!

(
∂wG̃ΛΛ0

`,n

)
(0, . . . , 0)

where |w| = |w2|+. . .+|wn| and w! = w2! . . . wn! (where wj ! = wj,1! . . . wj,4!).

The expansion is uniform in Λ and Λ0 and the same derivative expansion
holds in the limit Λ0 →∞ and Λ→ 0.

They also prove the convergence of the operator-product expansion.

This was generalized to massless φ4
4 in a further paper by Holland, Hollands

and Kopper.

Convergence of the sums over n and ` is not shown.



Taylor expansion

G̃ΛΛ0

`,n (p2, . . . , pn) =
∑
w

1

w!
∂wG̃ΛΛ0

`,n (0, . . . , 0) pw2
2 . . . pwn

n

gives

GΛΛ0

`,n (φ) =
∑
w

1

w!
∂wG̃ΛΛ0

`,n (0)

∫
p2,...,pn

φ̂(−p2−. . .−pn) pw2
2 φ̂(p2) . . . pwn

n φ̂(pn)

The Fourier identities

p
wj

j φ̂(pj) = (−i)|wj | (∂wjφ)
∧

(pj)

and ∫
p2,...,pn

ψ̂1(−p2 − . . .− pn) ψ̂2(p2) . . . ψ̂n(pn) =

∫
x

ψ1(x) . . . ψn(x)

imply that

GΛΛ0

`,n (φ) =
∑
w

g`,n,w

∫
x

φ(x) ∂w2φ(x) . . . ∂w2φ(x) .

The hard part is to prove that G̃ΛΛ0

`,n remains finite and infinitely often diffe-
rentiable as Λ0 →∞ and Λ→ 0, and that the sum over w converges.



Bounds for the Green functions

Set p = (p2, . . . , pn) and Λ+ = max{Λ,m}. For 4− n− |w| < 0,∣∣∣∂wG̃ΛΛ0

`,n (p)
∣∣∣ ≤ γ`,n,w Λ

4−n−|w|
+ P

[
log(sup{ |p|

Λ+
,

Λ+

m
})
]

(1)

γ`,n,w and all the coefficients of the polynomial P are independent of Λ0.

The limits Λ0 →∞ and Λ→ 0 of ∂wG̃ΛΛ0

`,n exist for all `, n, w.

This is proven using Polchinski’s induction scheme.

ĠΛΛ0

`,n = LΛ

(
GΛΛ0

`−1,n+2

)
+ BΛ

(
GΛΛ0

`1,n1
, GΛΛ0

`2,n2

)

Double induction on v = `+ n
2 − 1 ≥ 1 and at fixed v, on ` ≥ 0.

The induction turns into a recursion for the coefficients γ`,n,w.



More detailed bounds

For an action invariant under φ→ −φ, G̃ΛΛ0

`,n = 0 for odd n.

For n = 2k and 4− 2k − |w| < 0, one can choose [Hollands-Kopper]

γ`,2k,w =
√
|w|!(|w|+ 2k + 4)! K(2k+4`−4)(|w|+1) (k + `− 1)!

k!

P[x] =
∑̀
µ=0

xµ

2µµ!



Proof of convergence

w-dependence of γ`,2k,w: use (|w| + 2k + 4)! =
(|w|+2k+4

2k+4

)
|w|! (2k + 4)! and(

a
b

)
≤ 2a

γ`,2k,w ≤ |w|!
√

(2k + 4)! 2
|w|
2 +k+2 K(2k+4`−4)(|w|+1) (k + `− 1)!

k!

Thus
γ`,2k,w ≤ γ̃`,2k |w|! K̃ |w|

The polynomial P is independent of w. Set p = 0 in (1).∣∣∣∂wG̃ΛΛ0

`,n (0)
∣∣∣ ≤ γ̃`,2k |w|! K̃ |w|Λ4−n−|w|

+ P
[
log(

Λ+

m
)

]
Finally, use

|w|!
w!
≤ (4n)|w|

to get

|g`,n,w| ≤ (4nK̃)|w| Λ
4−n−|w|
+ γ̃`,n P

[
log(

Λ+

m
)

]
At fixed ` and n, this is bounded by const |w| .



Further remarks

The series in ~ is formal, and is not expected to converge.

The restriction on the support of φ̂ is plausible (small gradients).

Similar proofs of perturbative renormalizability can be done using the one-
particle-irreducible functional.

So far, there has not been success in doing nonperturbative proofs using
Polchinski’s induction scheme. For bosonic fields, the combinatorics grows
too fast when expanding in the fields. For fermionic fields, the sign cancel-
lations help, but a proof has not yet been found.

Another justification of gradient expansions is given in the work of Ba laban,
Feldman, Knörrer, and Trubowitz, in their work on the proof of Bose con-
densation for weakly interacting boson systems. The hypothesis there is the
so-called small-field condition, where they prove that the action is analytic
in the fields and its derivatives.



Brydges-Kennedy formula

Brydges and Kennedy first showed that integrating Polchinski’s equation
over a finite scale interval leads to a convenient reorganization of perturba-
tion theory in terms of trees. For

e−Gj(φ) =

∫
dµCj (φ′) e−Gj−1(φ+φ′)

it reads

Gj(φ) =

∞∑
p=1

G
(p)
j (φ)

G
(p)
j is of order p in Gj−1, and given by

G
(p)
j (φ) =

1

p!

∑
T∈Tp

∫
[0,1)p−1

dT s

∫
dµCj,p,s,T

(φ′1, . . . , φ
′
p)
∏
θ∈T

∆
(θ)
Cj

p∏
q=1

Gj−1(φ′q + φ)

(Cj,p,s,T )(q,x),(q′,x′) = Cj(x, x
′)
∫ 1

0
dt1 (s` < t ∀` ∈ Pq,q′(T ))

Pq,q′(T ) the unique path on the tree T from q to q′.



Brydges-Kennedy formula

G
(p)
j (φ) =

1

p!

∑
T∈Tp

∫
[0,1)p−1

dT s

∫
dµCj,p,s,T

(φ′1, . . . , φ
′
p)
∏
θ∈T

∆
(θ)
Cj

p∏
q=1

Gj−1(φ′q + φ)



Fermions: basic convergence theorem

‖Gj‖h =
∑
m≥2

h2m

∫
x2,...,xm

|G(j)
m (0, x2, . . . , xm)|

Assume ‖Ĉj‖1 =
∫
p
|Ĉj(p)| = δ2

j <∞ and αj = ‖Cj‖1 =
∫
x
|Cj(0, x)| <∞.

Set ω = αj δj
−2.

If ω‖Gj−1‖3δ < 1, then for all P ≥ 0∥∥∥∥∥Gj −
P∑
p=1

1

p!
G

(p)
j

∥∥∥∥∥
δ

≤
(ω‖Gj−1‖3δ)

P

1− ω‖Gj−1‖3δ
‖Gj−1‖3δ

With more general weighted norms, one can get much more detailed, point-
wise estimates.

Thus under these hypotheses the discrete RG iteration can be done using
convergent expansions, and the effective action is analytic in the fields.

Gross-Neveu model, many-fermion models in d = 1 and d = 2 with pointlike
singularities (graphene) and extended Fermi surfaces have been treated this
way. The ‘sector’ method used in these proofs is similar to the N -patch
technique of the fermionic fRG. A classic in the field is

J. Feldman, H. Knörrer, E. Trubowitz, A Two-Dimensional Fermi Liquid
Comm. Math. Phys. 247 (2004), Rev. Math. Phys. 15 (2003) (12 papers)



Some recent works using fermionic expansions

W. de Roeck, M.S., Persistence of Exponential Decay and Spectral Gaps for
Interacting Fermions

Comm. Math. Phys. 365 (2019) 773-796

Alessandro Giuliani, Vieri Mastropietro, Marcello Porta, Quantization of the
interacting Hall conductivity in the critical regime

Journal of Statistical Physics 180 (2020) 332-365

J. Magnen, J. Unterberger, A mathematical derivation of zero-temperature
2D superconductivity from microscopic Bardeen-Cooper-Schrieffer model

https://arxiv.org/abs/1902.02337

https://arxiv.org/abs/1902.02337


Nonperturbative aspects: bosons

A straightforward expansion in the fields does not work for bosons: e.g. in the
Brydges-Kennedy formula, the remaining Gaussian integral, which creates
the loops, grows too fast in p.

Decompositions in ‘large and small fields’ allow to bypass this problem, but
create technical overhead. One alternative to this in scalar field theories is the
‘loop-vertex expansion’ of J. Magnen, V. Rivasseau, Constructive field theory
without tears, Ann. Henri Poincaré 9 (2008) 403. Combining this method
with RG also creates complicated proofs. But a similar method works also
for quantum many-boson systems MS, arXiv:2006:12281.

Proving Bose-Einstein condensation as spontaneous symmetry breaking in a
weakly interacting gas at low temperature is currently under study. For an
overview, see

T. Ba laban, J. Feldman, H. Knörrer, E. Trubowitz, Complex Bosonic Many-
body Models: Overview of the Small Field Parabolic Flow. Annales Henri
Poincaré, 18, 2873-2903 (2017).



Perspective

Mathematical results on a variety of physically interesting models have been
achieved by RG methods (many-body models, prototypical models of high-
energy physics).

Almost all of these proofs use discrete RG iterations, not continuous flows.
This is a technical limitation (controlling combinatorics).

Many rigorous results exist about the Wilson-Polchinski effective action. It
will be interesting to derive similar results for the 1PI generating functional.

Three major open problems for mathematical physicists working with RG
methods are:

proving Bose-Einstein condensation in d ≥ 3 dimensions,

proving that a three-dimensional many-electron-system with round Fermi
surface and short-range interaction is a Fermi liquid above a critical tempe-
rature, and a superconductor below that temperature,

proving decay of correlations for Yang-Mills theory in 4 dimensions.



Thank you for listening!


