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Many-body quantum systems

H =
N>1023∑
i=1

[
p2
i

2m + v(ri)
]

+
∑
i,j

V (|ri − rj |)

H = J

n.n.∑
i,j

Si · Sj

LQCD = ψ̄ (γµDµ −m)ψ − 1
2trGµνGµν

...

• May exhibit a rich varieties of phenomena: spontaneous symmetry
breaking, topological phases of matter, non-equilibrium physics, eigenstate
thermalization, quantum information scrambling, etc.

• Known to be very hard: dimH ∼ eN

• May exhibit (ground) states with non-trivial quantum entanglement
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Quantum entanglement

• Product states v.s. entangled states:

|Ψ〉 = | ↑〉| ↑〉 vs. |Ψ〉 = | ↑〉| ↓〉 − | ↓〉| ↑〉√
2

• Conventional v.s. topological order:

|Ψ〉 = | ↑↑↑↑ · · · 〉
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“Conventional” phases of matter

• Many phases of condensed matter can be characterized by spontaneous
symmetry breaking and local order parameters.
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Topological phases of matter

• Topological phases escape from the symmetry breaking paradigm (i.e., no
order parameter).

• Instead, characterized by their quantized responses and/or existence of
exotic excitations

• E.g., the Hall conductance in the quantum Hall effect

• Other examples: topological insulators, topological superconductors,
Haldane spin chain, etc.
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Topologically-ordered phases in (2+1)D

• Phases that support anyons

• Anyons are neither bosons nor fermions; have non-trivial exchange
(braiding) statistics

• Abelian/Non-Abelian topological order

• Not characterized by the symmetry-breaking paradigm, but by the
properties of anyons (fusion, braiding, etc.)

SSB phases Topologically-ordered phases
Ground states Degeneracy w/ SSB Topological degeneracy

Excitations Nambu-Goldstone bosons Anyons
Effective theory Landau-Ginzburg Topological field theory

• Bulk-boundary correspondence
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Fractional quantum Hall effect (↓)

Spin-orbital-assisted Mott insulator α-RuCl3 (“Kitaev spin liquid”) (↑)

Rydberg atoms on a Kagome lattice (↓) [Semeghini1 et al (21)]
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• Conventional phases can be detected by conventional probes: (local)
correlation functions 〈O1O2 · · · 〉

• How can we extract/measure topological data?
Direct observation of abelian braiding statistics [Nakamura et al (20), Bartolomei et al

(20)]

• Other measurable quantities? Topological invariants?
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Entanglement entropy

• The von-Neumann entanglement entropy:

SA := −TrA(ρA log ρA)

for the reduced density matrix ρA = TrB |Ψ〉〈Ψ|

• For topologically-ordered states in (2+1)D [Levin-Wen, Kitaev-Preskill (05)]

SA = const.× `− logD

“Topological entanglement entropy” γ = logD carries universal data
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Entanglement spectrum

• The spectrum of the reduced density matrix ρA

• ρA ∼ e−εHedge for topological phases. “Bulk-boundary correspondence”
[Li-Haldane (08)]

• E.g. Chern insulators (single-particle entanglement spectrum)
[SR-Hatsugai (06)]
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Entanglement as a probe for dynamics

• Time evolution of von Neumann or Rényi entropy

SA = −Tr ρA log ρA, S
(2)
A = − log Tr ρ2

A

in non-equilibrium process. E.g., quantum quench: |Ψ(t)〉 = e−iHt|Ψinit〉

• Thermalization, quantum information scrambling, many-body localization,
etc.
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“Effective” descriptions of entanglement propagation

“Hydrodynamics” of entanglement

Two canonical models for entanglement propagation:

Quasi-particle picture v.s Membrane picture

[Figures: Jonay-Huse-Nahum (18)]
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Can we measure entanglement entropy?

• [Islam et al (15)] [Kaufman et al (16)] [Lukin et al (18)]

• Randomized measurement [Brydges (19)]
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• Introduction; topology and dynamics in quantum many-body systems
detected by entanglement

• Negativity and reflected entropy

• Tripartitioning topological liquid

• Summary and outlook
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Going beyond entanglement entropy for bipartition

• Go beyond bipartition, and study entanglement quantities

• Multipartite entanglement?

1√
2

[| ↑↑↑〉+ | ↓↓↓〉] , 1√
3

[| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉] ,

• Entanglement negativity and reflected entropy
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Entanglement negativity

• How to quantify quantum entanglement between A and B when ρA∪B is
mixed ? E.g., finite temperature; A,B is a part of bigger system.

• The entanglement entropy is an entanglement measure only for pure
states (not monotone under LOCC).

• Entanglement negativity and logarithmic negativity, using partial transpose
[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

N (ρ) :=
∑
λi<0

|λi| =
1
2
(
||ρTB ||1 − 1

)
,

E(ρ) := log(2N (ρ) + 1) = log ||ρTB ||1.

• Good entanglement measure since LOCC monotone.

• For mixed states, negativity can extract quantum correlations only.
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Partial transpose

• Definition: for an operator M , its partial transpose MTB is

〈e(A)
i e

(B)
j |M

TB |e(A)
k e

(B)
l 〉 := 〈e(A)

i e
(B)
l |M |e

(A)
k e

(B)
j 〉

where |e(A,B)
i 〉 is the basis of HA,B .

• For fermionic (anyonic) systems, we need to take into account particle
statistics properly. [Shapourian-Shiozaki-SR (16); Shapourian-SR (18); Shapourian-Mong-SR (20)]
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Reflected Entropy

[Dutta-Faulkner (19)]

• The von-Neumann entropy of a canonical purification:

ρAB =
∑
i

pi |ψi〉 〈ψi|AB

→|√ρAB〉AA∗BB∗ ≡
∑
i

√
pi |ψi〉AB |ψ

∗
i 〉A∗B∗ .

RA:B := SvN (A ∪A∗)

• Satisfies IA:B ≤ RA:B ≤ 2min [S(A), S(B)].

• Admits holographic dual RA:B = 2EW [Dutta-Faulkner (19)]
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• Introduction; topology and dynamics in quantum many-body systems
detected by entanglement

• Negativity and reflected entropy

• Tripartitioning topological liquid

• Summary and outlook
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Going beyond entanglement entropy for bipartition

• What can we learn by studying entanglement negativity and reflected
entropy?

• Will show results for the following two setups:

[Wen-Matsuura-SR (16)]
[Liu-Sohal-Kudler-Flam-SR (21)]
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Negativity for topological liquid

[Lee-Vidal (13), Castelnovo (13), Wen-Matsuura-SR (16), Wen-Chang-SR (16) Lim-Asasi-Teo-Mulligan (21)]

• Generic state on a torus: |ψ〉 =
∑

a
ψa|ha〉〉

• Mutual information and negativity:

IA1:A2 = πc

12
l2
ε
− 2 lnD + 2

∑
a

|ψa|2 ln da −
∑
a

|ψa|2 ln |ψa|2

EA1:A2 = πc

16
l2
ε
− lnD + ln

(∑
a

|ψa|2 ln da
)

E is dependent on ψa only for non-Abelian topological order (for Abelian
topological order, da = 1 for all a).
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Negativity and reflected entropy in tripartition setup

[Liu-Sohal-Kudler-Flam-SR (21)]

• Studied chiral p-wave superconductor (the Ising TQFT) with c = 1/2 and
the integer quantum Hal state with c = 1.
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Negativity spectrum
• For fermionic systems, the eigenvalues of ρTBA∪B are complex.

• Nontrivial distribution of the eigenvalues of ρTBA∪B

• C.f. (1+1)D fermionic CFTs (6-fold structure) [Shapourian-Ruggiero-SR-Calabrese

(19)] (1+1)D topological superconductor (8-fold structure)
[Inamura-Kobayashi-SR (19)]
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Reflected entropy

• The “Markov gap” hA:B = RA:B − IA:B seems universal and given by

hA:B = c

3 ln 2

where c is the (total) central charge. Agrees with the recent claim [Zou, Siva,

Soejima, Mong, Zaletel (2110.11965)] (hA:B = (c/3) ln 2 = 0.116, 0.231 for c = 1
and c = 1/2).
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Central charge c

• Chiral central charge can be measured by the thermal conductance in the
edge [Kane-Fisher (96)] :

κ = πk2
BT

6 × c

E.g. half-filled Landau level [Banerjee (18)] , Kitaev spin liquid [Kasahara (18)]

• Modular commutator i〈[KAB ,KBC ]〉 = πc/3 : Kim-Shi-Kato-Albert (21)
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Multipartition topological phases using string field theory

• String field theory = many-body (second quantized) string theory

• Interaction vertices in string field theory

[Witten (86), Gross-Jevicki (87), LeClair-Peskin-Preitschopf (89), ...]

• Vertex state |V 〉 ' Topological ground state |Ψ〉 near the entangling
boundary by utilized bulk-boundary correspondence

• Generalized [Qi-Katsura-Ludwig (12)] for tripartition geometry
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Lattice Chern insulator calculations

• Lattice fermion model:

H =
−i
2

∑
r

∑
µ=x,y

[
f†r τµfr+aµ − f

†
r+aµτµfr

]
+

1
2

∑
r

∑
µ=x,y

[
f†r τzfr+aµ + f†r+aµτzfr

]
+ u
∑

r

f†r τzfr ,

27 / 33



Negativity and negativity spectrum
Entropy and Negativity Negativity spectrum

• “Trivial” for |u| → ∞
• “Circular distribution”

deep in the Ch=1 phase
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Reflected entropy

• hA:B is minimal in the topological phase around u = 1.34

• hA:B ∼ (c/3) ln 2× 2.3

• Note that there are four trijunctions, as opposed to two in the edge theory
calculations. May result in a factor of 2.

• See also: [Zou, Siva, Soejima, Mong, Zaletel (2110.11965)]
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Summary/Outlook

• New tripartition setup and new calculations of entanglement quantities

• They may capture topological data beyond topological entanglement
entropy, e.g., Abelian v.s. Non-abelian, total central charge.

• Finite-T topological transition can be detected by negativity
[Hart-Castelnovo(18);Lu-Hsieh-Grover(19)]

• May have an implication on numerics (tensor-networks)

• May have an implication in string field theory?

• Other entanglement quantities, such as odd entropy, entanglement of
purification, etc?

• Experiments: Many-body interference or randomized measurements [Islam et

al (15)] [Kaufman et al (16)] [Lukin et al (18)] [Brydges (19)]
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Negativity/reflected entropy in quantum dynamics

• Quantum quench in integrable/chaotic (1+1)D CFT [Kudler-Flam-Kusuki-SR (20)]

• Many-body localizing dynamics [MacCormack-Tan-Kudler-Flam-SR (19)]
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Edge theory approach to entanglement

• ρA obtained from a ground state |GS〉 by tracing out half-space can be
obtained from conformal boundary state |B〉: [Qi-Katsura-Ludwig (12)]

[T (σ)− T̄ (σ)] |B〉 = 0

• Near the entangling boundary, |GS〉 ∼ e−εHedge |B〉 so that the reduced
density matrix is

ρA ∝ TrB
[
e−εHedge |B〉〈B|e−εHedge

]
• “Physical picture”: healing the cut; gapped edge by potential
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