Many-body quantum physics through the lens of quantum
entanglement

Shinsei Ryu

December 3, 2021



Many-body quantum systems
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e May exhibit a rich varieties of phenomena: spontaneous symmetry
breaking, topological phases of matter, non-equilibrium physics, eigenstate
thermalization, quantum information scrambling, etc.

e Known to be very hard: dim X ~ e

e May exhibit (ground) states with non-trivial quantum entanglement



Quantum entanglement

e Product states v.s. entangled states:

W) = [ D1 vs. 7

e Conventional v.s. topological order:

W) = 11t -) 7

Resonating valence bond (RVB) state

D1

[Anderson (73)]



“Conventional” phases of matter

e Many phases of condensed matter can be characterized by spontaneous
symmetry breaking and local order parameters.




Topological phases of matter

e Topological phases escape from the symmetry breaking paradigm (i.e., no
order parameter).

e Instead, characterized by their quantized responses and/or existence of
exotic excitations

e E.g., the Hall conductance in the quantum Hall effect

Pays KOM

o Other examples: topological insulators, topological superconductors,
Haldane spin chain, etc.



Topologically-ordered phases in (2+1)D

Phases that support anyons

Anyons are neither bosons nor fermions; have non-trivial exchange
(braiding) statistics

Abelian/Non-Abelian topological order

Not characterized by the symmetry-breaking paradigm, but by the
properties of anyons (fusion, braiding, etc.)

| SSB phases | Topologically-ordered phases
Ground states Degeneracy w/ SSB Topological degeneracy
Excitations Nambu-Goldstone bosons Anyons

Effective theory Landau-Ginzburg Topological field theory

Bulk-boundary correspondence
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Fractional quantum Hall effect ({)
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Spin-orbital-assisted Mott insulator a-RuCls (“Kitaev spin liquid”) (1)

Rydberg atoms on a Kagome lattice (]) [Semeghinil et al (21)]
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e Conventional phases can be detected by conventional probes: (local)
correlation functions (0102 - - )

e How can we extract/measure topological data?
Direct observation of abelian braiding statistics [Nakamura et al (20), Bartolomei et al

(20)]
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e Other measurable quantities? Topological invariants?



Entanglement entropy

e The von-Neumann entanglement entropy:

Sa:=—-Tra(palogpa)

for the reduced density matrix pa = Trp |¥) (|

B

e For topologically-ordered states in (2+1)D [Levin-Wen, Kitaev-Preskill (05)]
Sa = const. x { —log D

“Topological entanglement entropy” v = log D carries universal data
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Entanglement spectrum

e The spectrum of the reduced density matrix pa

e pa~ e*EHedye

[Li-Haldane (08)]

e E.g. Chern insulators (single-particle entanglement spectrum)

[SR-Hatsugai (06)]

Energy

Energy
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for topological phases. “Bulk-boundary correspondence”




Entanglement as a probe for dynamics

e Time evolution of von Neumann or Rényi entropy
Sa=—-Trpalogpa, Sff) = —log Tr p%

in non-equilibrium process. E.g., quantum quench: |¥(¢)) = e 7" W;)

Sa

0] ¢

e Thermalization, quantum information scrambling, many-body localization,
etc.
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“Effective” descriptions of entanglement propagation

“Hydrodynamics” of entanglement

Two canonical models for entanglement propagation:

Quasi-particle picture v.s Membrane picture

time

[Figures: Jonay-Huse-Nahum (18)]



Can we measure entanglement entropy?

® [Islam et al (15)] [Kaufman et al (16)] [Lukin et al (18)]
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Introduction; topology and dynamics in quantum many-body systems
detected by entanglement

Negativity and reflected entropy
Tripartitioning topological liquid

Summary and outlook



Going beyond entanglement entropy for bipartition

e Go beyond bipartition, and study entanglement quantities

(a)

e Multipartite entanglement?
L L
V2 V3

o Entanglement negativity and reflected entropy

(1) + 1 D], () + [N + 1],
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Entanglement negativity

How to quantify quantum entanglement between A and B when payug is
mixed 7 E.g., finite temperature; A, B is a part of bigger system.

The entanglement entropy is an entanglement measure only for pure
states (not monotone under LOCC).

Entanglement negativity and logarithmic negativity, using partial transpose
[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

= |A|— (o™ |l = 1),

A <0

£(p) = log(2N'(p) + 1) = log |[o" 1.
Good entanglement measure since LOCC monotone.

For mixed states, negativity can extract quantum correlations only.
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Partial transpose

o Definition: for an operator M, its partial transpose M 7B is
A) (B Tg | (A) (B A) (B A) (B
(i Vel IMTE |eMef ) = (Ve[| Me;V el

(A,B)

where |e; ) is the basis of Ha, 5.

e For fermionic (anyonic) systems, we need to take into account particle
statistics properly. [Shapourian-Shiozaki-SR (16); Shapourian-SR (18); Shapourian-Mong-SR (20)]

M Trp(M) I:]
Tp
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Reflected Entropy

[Dutta-Faulkner (19)]

e The von-Neumann entropy of a canonical purification:

pPAB = Zpi [¢i) Vil s

—|VPAB) as BB+ = Z\/Z’T‘WﬁAB [93) axp= -

Ra.B := Sun (A Uy A*)

e Satisfies Ja.5 < Ra:p < 2min[S(A), S(B)].
e Admits holographic dual Ra.p = 2Ew [Dutta-Faulkner (19)]
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Introduction; topology and dynamics in quantum many-body systems
detected by entanglement

Negativity and reflected entropy
Tripartitioning topological liquid

Summary and outlook
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Going beyond entanglement entropy for bipartition

e What can we learn by studying entanglement negativity and reflected
entropy?

o Will show results for the following two setups:

(a)

[Wen-Matsuura-SR (16)]
[Liu-Sohal-Kudler-Flam-SR (21)]
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Negativity for topological liquid
[Lee-Vidal (13), Castelnovo (13), Wen-Matsuura-SR (16), Wen-Chang-SR (16) Lim-Asasi-Teo-Mulligan (21)]

e Generic state on a torus: [¢)) = Za Ya|bha))

e Mutual information and negativity:

e lo

IAl:AZ == Ez _21nD+QZ|wa‘2lnda _Z|wﬂ|21n|wa‘2

Eayiny = %% ~InD+1n () [¢al* Ind,)

a

& is dependent on 1, only for non-Abelian topological order (for Abelian
topological order, d, =1 for all a).
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Negativity and reflected entropy in tripartition setup

[Liu-Sohal-Kudler-Flam-SR (21)]

e Studied chiral p-wave superconductor (the Ising TQFT) with ¢ = 1/2 and
the integer quantum Hal state with ¢ = 1.



Negativity spectrum
o For fermionic systems, the eigenvalues of pZﬁB are complex.

o Nontrivial distribution of the eigenvalues of p’,> ,

Re(¢)

o C.f. (1+1)D fermionic CFTs (6—f0|d structure) [Shapourian-Ruggiero-SR-Calabrese

(19)] (1+41)D topological superconductor (8-fold structure)
[Inamura-Kobayashi-SR (19)]
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Reflected entropy
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e The “Markov gap” ha.p = Ra.B — Ia.B seems universal and given by

hag = §1n2

where c is the (total) central charge. Agrees with the recent claim [zou, siva,
Soejima, Mong, Zaletel (2110.11965)] (hA;B = (0/3) In2 = 0116, 0.231 forc=1
and ¢ =1/2).
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Central charge ¢

e Chiral central charge can be measured by the thermal conductance in the

edge [Kane-Fisher (96)] :
k3T
KR = X c
6

E.g. half-filled Landau level [Banerjee (18)], Kitaev spin liquid [Kasahara (18)]
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e Modular commutator i([Kap, Kpc]) = mc/3 1 Kim-Shi-Kato-Albert (21)



Multipartition topological phases using string field theory

e String field theory = many-body (second quantized) string theory

o Interaction vertices in string field theory

)

[Witten (86), Gross-Jevicki (87), LeClair-Peskin-Preitschopf (89), ...]

e Vertex state |V) ~ Topological ground state |¥) near the entangling
boundary by utilized bulk-boundary correspondence

vy = i

o Generalized [Qi-Katsura-Ludwig (12)] for tripartition geometry

26
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Lattice Chern insulator calculations

e Lattice fermion model:

H=2030 3 [Arites, — e, 7]

r pu=x,y
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Negativity and negativity spectrum

Entropy and Negativity Negativity spectrum
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e “Trivial” for |u] — oo
e “Circular distribution”
deep in the Ch=1 phase
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Reflected entropy

® ha.p is minimal in the topological phase around u = 1.34
e hap~(c/3)In2x 23

o Note that there are four trijunctions, as opposed to two in the edge theory
calculations. May result in a factor of 2.
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e See also: [Zou, Siva, Soejima, Mong, Zaletel (2110.11965)]
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Summary/Outlook

New tripartition setup and new calculations of entanglement quantities

They may capture topological data beyond topological entanglement
entropy, e.g., Abelian v.s. Non-abelian, total central charge.

Finite-T topological transition can be detected by negativity
[Hart-Castelnovo(18);Lu-Hsieh-Grover(19)]

May have an implication on numerics (tensor-networks)
May have an implication in string field theory?

Other entanglement quantities, such as odd entropy, entanglement of
purification, etc?

Experiments: Many-body interference or randomized measurements [islam et
al (15)] [Kaufman et al (16)] [Lukin et al (18)] [Brydges (19)]
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Negativity /reflected entropy in quantum dynamics

e Quantum quench in integrable/chaotic (14+1)D CFT [Kudier-Flam-Kusuki-SR (20)]

A B
la d s
I d < min|la,lg] e d < minlla,lp]

e Many-body localizing dynamics [VacCormack-Tan-Kudler-Flam-SR (19)]
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e Thanks also:
Hassan Shapourian, Ken Shiozaki, Yuya Kusuki, Laimei Nie, Masahiro
Nozaki, Ryohei Kobayashi, Kansei Inamura, Paola Ruggiero, Pasquale
Calabrese.



Edge theory approach to entanglement

e pa obtained from a ground state |GS) by tracing out half-space can be
obtained from conformal boundary state |B): [Qi-Katsura-Ludwig (12)]

[T(0) = T(o)]|B) =0

e Near the entangling boundary, |GS) ~ e™“Heds¢| B) so that the reduced
density matrix is

pa o< Trp [e”“Mese| B) (Ble™ Meise]

e “Physical picture”: healing the cut; gapped edge by potential
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