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Part I:

MBQC



The 2D cluster state is a computationally universal “material”

Quantum states can have computational power



Measurement-based quantum computation
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Measurement-based quantum computation

measurement of Z (�), X ("), cos↵X + sin↵Y (%)

• Information written onto the resource state, pro-
cessed and read out by one-qubit measurements only.

• Universal computational resources exist:
cluster state, AKLT state.

R. Raussendorf, H.-J. Briegel, Physical Review Letters 86, 5188 (2001).



The MBQC “elevator thought experiment”

Consider a 2D cluster state:
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At the end of any MBQC, all that is left is a tensor product state
and the measurement record s.

• The computational output o is extracted from the measure-
ment record s = (s1, s2, .., sN).

• Individually, each bit si of measurement record is completely
random; information is only in the correlations.



The MBQC “elevator thought experiment”

Consider a 2D cluster state:
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Some cluster qubits simulate the preparation of a quantum regis-
ter, some its measurement, and some implement quantum gates.

Do these di↵erent types of qubits contribute di↵erently to the

MBQC output?

No!
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The classical side-processing relations

Every MBQC has a classical side-processing relation that convert
measurement record s into

• computational output o, and
• the choice q of local measurement bases,

o = Zs mod 2, q = Ts mod 2. (1)

Every bit of computational output is a parity
of individual local measurement outcomes.

What determines the support of these parities?

Which measurement outcomes si contribute

to what output bit oj?



The classical side-processing relations

Every MBQC has a classical side-processing relations

o = Zs mod 2, q = Ts mod 2.

Every bit of computational output is a parity
of individual local measurement outcomes.

What determines the support of these parities?

The measurement record s is a gauge field, and each bit of
the computational output o is a holonomy of the gauge field.



How the side-processing comes about

... it describes how to counteract the randomness of measure-
ment outcomes.
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• Propagate the random heralded byproduct operators forward
in time past the end of the computation.



Part II:

A short history of

“computational phases of quantum matter”



Symmetry-protected phases of quantum matter

Image credit Tzu-Chieh Wei 

zero temperature

spin lattice
in 2D

symmetry

... all across support quantum computation.



Motivation: MBQC and symmetry

Can MBQC schemes be classified by symmetry, in a similar way

as, say, elementary particles can?

If so, does this have a bearing on quantum algorithms?



I. Symmetry protects computation

A. Miyake, Phys. Rev. Lett. 105, 040501 (2010).



II. Symmetry-protected wire in MBQC

• Computational wire persists throughout symmetry-protected
phases in 1D.

• Imports group cohomology from the classification of SPT
phases.

D.V. Else, I. Schwartz, S.D. Bartlett and A.C. Doherty, PRL 108 (2012).

F. Pollmann et al., PRB B 81, 064439 (2010); N. Schuch, D. Perez-Garcia, and I. Cirac,

PRB 84, 165139 (2011); X. Chen, Z.-C. Gu, and X.-G. Wen, PRB 83, 035107 (2011).



Under the hood ..

Theorem. Consider a symmetry-protected phase character-
ized by a finite abelian symmetry group and a maximally non-
commutative cohomology class [!]. In the symmetry-respecting
basis B = {|ii}, the MPS tensor of a given state in the SPT
phase described by [!] has the form

A[i] = Bi ⌦Ajunk[i].

The byproduct operators Bi are all unitary and constant through-
out the phase.

D.V. Else, I. Schwartz, S.D. Bartlett and A.C. Doherty, PRL 108 (2012).
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III. First quantum computational phase

• 1-qubit universal MBQC on a chain of spin-1 particles pro-
tected by an S4 symmetry.

J. Miller and A. Miyake, Phys. Rev. Lett. 114, 120506 (2015).



IV. The SPT)MBQC meat grinder

A classification of MBQC schemes by symmetry in 1D.

A. Prakash and T.-C. Wei, Phys. Rev. A (2016).

RR, A.Prakash, D.-S. Wang, T.-C. Wei, D.T. Stephen, Phys. Rev. A (2017).



Under the hood ..

cohomology class [!]

# The given SPT phase determines the
byproduct operators [Else et al., RRL 2012]

Bi

# The byproduct operators determine MBQC
computational power [RR et al., RRA 2017]

set of gates

Byproduct operators: What entered as a nuisance that could

fortunately be dealt with, becomes the central object governing

MBQC computational power.



V: Computationally universal SPT phase in 2D

• The symmetries of the phase are
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• The 2D cluster state is inside the phase

Result. For a spin-1/2 lattice on a torus all ground states in the
2D cluster phase, except a possible set of measure 0, are universal
resources for measurement-based quantum computation.

R. Raussendorf, C. Okay, D.S. Wang, D.T. Stephen, H.P. Nautrup, A computationally uni-

versal quantum phase of matter, Phys. Rev. Lett. 122, 090501 (2019).



Part III:

A gauge theory of MBQC



Motivation

The discussion of computational phases of quantum matter is
ongoing. It has so far taught us

• The computational capability of MBQC schemes is deter-
mined and classified by symmetry.

• To harness this capability, however, a breaking of symmetry
is required, namely through the local measurements.

We want a complete picture of the role of symmetry in MBQC.

Gauge symmetry seems part of that.



Result #1

Recall the MBQC elevator thought experiment:
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All cluster qubits contribute in the same fashion to the compu-
tational output, namely through parities.

What determines the support of these parities?

Answer: The measurement record s can be regarded as a gauge

field, and the computational output o corresponds bit-wise to

holonomies of that gauge field.



Slightly modified setting—dodging boundaries
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What is implemented on the cluster ring?
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What do the two output bits represent?

U = ↵I + �X + �Z + �Y.

outcome occurs with probability

00 |↵|2
01 |�|2
10 |�|2
11 |�|2

Bell
state ftp.i#uz*-**MBFeasnromentprep
-

implemented
unitary



How are the two output bits obtained from s?

o1 =
X

i even
si mod 2, o2 =

X

i odd
si mod 2. (2)

Bell

projection%÷|☐_!¥¥¥É¥¥÷¥+÷±÷±i¥
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Recap: cluster state stabilizer
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Pauli/ stabilizer action on s and q

O↵(q) = cos↵X + (�1)q sin↵Y.

X
†
O↵(q)X = O↵(q � 1),

Z
†
O↵(q)Z = �O↵(q).

"

÷
.

Localobservablesmeasured :

a-2-flips s



Gauge transformations

Recall:

X
†
O↵(q)X = O↵(q � 1),

Z
†
O↵(q)Z = �O↵(q).

hC|O(i)
↵i

(qi)|Ci = hC|K†
j
O

(i)
↵i

(qi)Kj|Ci, 8i, j

Thus we have the following equivalence/ gauge transformations

Kj :
sj�1 7! sj�1 � 1,
sj+1 7! sj+1 � 1,

qj 7! qj � 1.
(3)

• Those equivalence transformations are local.

• For j = 2, ..,2N � 1 those equivalence transformations pre-
serve the classical processing relations.

flips 9
flips s
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Cohomological interpretation
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Gauge transformations in cohomological form

standard form cohomological form

Kj :
sj�1 7! sj�1 � 1,
sj+1 7! sj+1 � 1,

qj 7! qj � 1.

s 7! s� d⇤,
q 7! q � ⇤,

s 7! s� d⇤,
q 7! q � ⇤.

6 cos -4
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Gauge-invariant quantities

Find a 1-chain e such that, for all �

s(e) 7! [s� d⇤](e) = s(e).

Requires

d⇤(e) = 0.

Hence,

0 = d⇤(e) = ⇤(@e), 8⇤,

and thus

@e = 0.

The 1-chain e is, in fact, a 1-cycle.

• s(e) is the corresponding holonomy.

• s(e) is gauge invariant.

• Have the same invariant s(e) on the dual complex C.



Gauge-invariant quantities

• s(e) is gauge invariant.

• Have the same invariant s(e) on the dual complex C.

These holonomies have previously been identified as the compu-
tational output. Recall:

o1 =
X

i even
si mod 2, o2 =

X

i odd
si mod 2.
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The MBQC “elevator thought experiment”

Consider a 2D cluster state:
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quantum gates

Every bit of computational output is a parity
of individual local measurement outcomes.

In 1D at least, these parities repre-
sent holonomies of a gauge field.

C
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Summary

• In 1D so far, MBQC can be understood in terms of gauge
theory, with the measurement record as the gauge field.

• In that picture, the MBQC computational output arises as
holonomies of the gauge field.

• Extension to computational phases of quantum matter is
suggestive.

Joint work with Gabriel Wong (Harvard)

and Bartek Czech (Tsinghua)


