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Part I:

MBQC



The 2D cluster state is a computationally universal “material”’

Quantum states can have computational power




Measurement-based quantum computation

Unitary transformation Projective measurement
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deterministic, probabilistic,
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Measurement-based quantum computation

\§\\>?Tf1f/\./\f*i>
N ¢ & o © 0o 6 0 © o o o
E%ND’fL“f Ty
§\§: : z i i : i‘ﬂ::‘i“;w/:u«{@@
=5 el cife o ehrTE IR i

measurement of Z (®), X (1), cosa X +sinaY ()

e Information written onto the resource state, pro-
cessed and read out by one-qubit measurements only.

e Universal computational resources exist:
cluster state, AKLT state.

R. Raussendorf, H.-J. Briegel, Physical Review Letters 86, 5188 (2001).



The MBQC “elevator thought experiment”

Consider a 2D cluster state:

quantum gates

preparation
Juswainseawl

At the end of any MBQC, all that is left is a tensor product state
and the measurement record S.

e [ he computational output 0O is extracted from the measure-
ment record s = (s1,52,..,SN).

e Individually, each bit s; of measurement record is completely
random:; information is only in the correlations.



The MBQC “elevator thought experiment”

Consider a 2D cluster state:
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quantum gates

Some cluster qubits simulate the preparation of a quantum regis-
ter, some its measurement, and some implement quantum gates.

Do these different types of qubits contribute differently to the
MBQC output?



The MBQC “elevator thought experiment”

Consider a 2D cluster state:
00000000000 OCDOCGCOCGS

S000000000000000 -
- 000000000000000
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quantum gates

Some cluster qubits simulate the preparation of a quantum regis-
ter, some its measurement, and some implement quantum gates.

Do these different types of qubits contribute differently to the
MBQC output?
NO!



The classical side-processing relations
|

Every MBQC has a classical side-processing relation that convert
measurement record s into

e computational output 0, and
e the choice q of local measurement bases,

o=/7s mod2, q=1Ts mod 2. (1)

Every bit of computational output is a parity
of individual local measurement outcomes.

What determines the support of these parities?

Which measurement outcomes s; contribute
to what output bit 0j7



The classical side-processing relations
|

Every MBQC has a classical side-processing relations

o=7s mod?2, q=171s mod 2.

Every bit of computational output is a parity
of individual local measurement outcomes.

What determines the support of these parities?

The measurement record s is a gauge field, and each bit of
the computational output o is a holonomy of the gauge field.




How the side-processing comes about
|

it describes how to counteract the randomness of measure-
ment outcomes.

e Propagate the random heralded byproduct operators forward
in time past the end of the computation.



Part II:

A short history of

“‘computational phases of quantum matter”



Symmetry-protected phases of quantum matter

spin lattice
in 2D

zero temperature -

Image credit Tzu-Chieh Wei

.. all across support quantum computation.



Motivation: MBQC and symmetry

quantum phases

quantum computation

Lie group of gates
for MBQC

Can MBQC schemes be classified by symmetry, in a similar way
as, say, elementary particles can?

If so, does this have a bearing on quantum algorithms?



I. Symmetry protects computation

we observe low-maintenance features of the ground-code
MQC in that this computation is doable without an ex-
act (classical) description of the resource ground state
as well as without an initialization to a pure state. It

It
Ns outtghesclfeatures are deeply intertwined with the
physics of the 1D Haldane phase (cf. Fig. 1), that is
well characterized as the symmmetry-protected topolog-
ical order in a modern perspective [6, 7]. We believe our
approach must bring the study of MQC, conventionally
based on the analysis of the model entangled states (e.g.,
[1, 8, 9]), much closer to the condensed matter physics,
which is aimed to describe characteristic physics based
on the Hamiltonian.

A. Miyake, Phys. Rev. Lett. 105, 040501 (2010).



II. Symmetry-protected wire in MBQC
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e Computational wire persists throughout symmetry-protected
phases in 1D.

e Imports group cohomology from the classification of SPT
phases.

D.V. Else, 1. Schwartz, S.D. Bartlett and A.C. Doherty, PRL 108 (2012).

F. Pollmann et al., PRB B 81, 064439 (2010); N. Schuch, D. Perez-Garcia, and I. Cirac,
PRB 84, 165139 (2011); X. Chen, Z.-C. Gu, and X.-G. Wen, PRB 83, 035107 (2011).
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Theorem. Consider a symmetry-protected phase character-
ized by a finite abelian symmetry group and a maximally non-
commutative cohomology class [w]. In the symmetry-respecting
basis B = {|i)}, the MPS tensor of a given state in the SPT
phase described by [w] has the form

Ali] = B; @ Ajunklil-
T he byproduct operators B, are all unitary and constant through-
out the phase.

D.V. Else, I. Schwartz, S.D. Bartlett and A.C. Doherty, PRL 108 (2012).
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III. First quantum computational phase

‘_

e 1-qubit universal MBQC on a chain of spin-1 particles pro-
tected by an S5 symmetry.

J. Miller and A. Miyake, Phys. Rev. Lett. 114, 120506 (2015).



IV. The SPT=MBQC meat grinder

quantum phases

quantum computation | ,‘

Lie group of gates
for MBQC

A classification of MBQC schemes by symmetry in 1D.

A. Prakash and T.-C. Wei, Phys. Rev. A (2016).
RR, A.Prakash, D.-S. Wang, T.-C. Wei, D.T. Stephen, Phys. Rev. A (2017).



Under the hood ..

cohomology class [w]

The given SPT phase determines the

¥ byproduct operators [Else et al., RRL 2012]

B;

i The byproduct operators determine MBQC
computational power [RR et al., RRA 2017]

set of gates

Byproduct operators: What entered as a nuisance that could
fortunately be dealt with, becomes the central object governing
MBQC computational power.



V: Computationally universal SPT phase in 2D

e [ he symmetries of the phase are

virtual quantum register

circuit model time

e [ he 2D cluster state is inside the phase

Result. For a spin-1/2 lattice on a torus all ground states in the
2D cluster phase, except a possible set of measure O, are universal
resources for measurement-based quantum computation.

R. Raussendorf, C. Okay, D.S. Wang, D.T. Stephen, H.P. Nautrup, A computationally uni-
versal quantum phase of matter, Phys. Rev. Lett. 122, 090501 (2019).



Part III:

A gauge theory of MBQC



Motivation

The discussion of computational phases of quantum matter is
ongoing. It has so far taught us

e [ he computational capability of MBQC schemes is deter-
mined and classified by symmetry.

e [0 harness this capability, however, a breaking of symmetry
IS required, namely through the local measurements.

We want a complete picture of the role of symmetry in MBQC.
Gauge symmetry seems part of that.



Result #1

Recall the MBQC elevator thought experiment:

quantum gates

preparation
Juswainseaw

All cluster qubits contribute in the same fashion to the compu-
tational output, namely through parities.

What determines the support of these parities?

Answer: The measurement record s can be regarded as a gauge
field, and the computational output o corresponds bit-wise to
holonomies of that gauge field.



Slightly modified setting—dodging boundaries
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What is implemented on the cluster ring??
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What do the two output bits represent?
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outcome  occurs with probability

00 al?
01 8|2
10 7|2
11 5|2




How are the two output bits obtained from s?
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= Z s; mod 2, oo, = Z s; mod 2. (2)

1 even

1 odd



Recap: cluster state stabilizer




Pauli/ stabilizer action on s and q
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Gauge transformations

Recall:
X1 0al@)X = Oulqg®1), {lips
ZionDzZ = ~Oua). fole o
andd K) = Zj-c Xj Z)H
clof(gle) = (cIkio$ (@) K;lc), Vi,i Inserbion f k/
A has noeffed”.

Thus we have the following equivalence/ gauge transformations

Sj—1  $;-1D 1,
Kj L Sj41 P Sj41 D 1, (3)
q; — q;D 1.

e [ hose equivalence transformations are local.

e For j = 2,...,2N — 1 those equivalence transformations pre-
serve the classical processing relations.



Cohomological interpretation
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Gauge transformations in cohomological form
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Gauge-invariant quantities
e

Find a 1-chain e such that, for all A\
s(e) — [s D dA](e) = s(e).

Requires
dA\(e) = 0.
Hence,
0 = dA(e) = A(9e), VA,
and thus

Oe = 0.
The 1-chain e is, in fact, a 1-cycle.
e s(e) is the corresponding holonomy.

e s(e) is gauge invariant.

e Have the same invariant 5(e) on the dual complex C.
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Gauge-invariant quantities Cormpley covmplex

e s(e) is gauge invariant.

e Have the same invariant s(e) on the dual complex C.

These holonomies have previously been identified as the compu-
tational output. Recall:

Z s; mod 2, oo, = Z s; mod 2.

1 even 1 odd
N 2
s(e) S €




The MBQC “elevator thought experiment”

Consider a 2D cluster state:

quantum gates

\/ preparation
jJuswiainseaw

Every bit of computational output is a parity
of individual local measurement outcomes.

In 1D at least, these parities repre-
sent holonomies of a gauge field.




Outlook
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Summary
T .,

e In 1D so far, MBQC can be understood in terms of gauge
theory, with the measurement record as the gauge field.

e In that picture, the MBQC computational output arises as
holonomies of the gauge field.

e Extension to computational phases of quantum matter is
suggestive.

Joint work with Gabriel Wong (Harvard)
and Bartek Czech (Tsinghua)



