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Ssummary:
Part |: Introduction

1. Universality and quantum chaos
2. Sachdev-Ye-Kitaev model and quantum chaos
3. Why SYK is interesting in quantum gravity?

Part Il: SYK and wormholes

1. Traversable wormholes and SYK (Maldacena and
Qi). Why is it relevant beyond quantm gravity?

2. Euclidean wormholes and SYK (Godet, AGG)

3. Kelydish wormholes and real time evolution of SYK
(AGG, Sa, Verbaarschot, Zheng)
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What universality means?

Universality can be a quite misleading name!

For some, it is related to the behavior of systems close to
thermal second order phase transitions controlled by
critical exponents.

For others, it is related to systems

close to quantum phase transitions. ' °
More boldly, it is claimed that one \
can use CFT to describe strongly
interacting phases of quantum

matter close to these critical points.

This talk is not about this!




What universality
means?

Details of the Hamiltonian are not important.
For sufficiently long times, the system relax to a
state which is only controlled by the global
symmetries of the system

What dynamical feature is related to universality?

Maybe easier in simpler systems:

Non-interacting qguantum chaotic systems
Non-interacting quantum disordered systems



Quantum Chaos

What is quantum  Quantum mechanics of
chaos? classically chaotic systems

Why is

quantum chaos  Universality
important?

All happy families are alike; each unhappy
family is unhappy in its own way.

Anna Karenina, Toltstoy



Butterfly effect

Classical chaos

Hadamard 1898
Lyapunov 1892

15x ()|l = e*||6x(0)|
A>0 Pesin

hgs >0  formula

Difficult to compute!

Lorenz 60’s

Meteorology




Random Matrix Theory characterizes
universality of Quantum Chaos

Bohigas-Giannoni-Schmit conjecture rais2, 1 (sss) &
Proof Periodic Orbit Theory Sieber, Richter, Altland, Haake, ~2000

Oriol Bohigas
R R
plo.s)| I -
% stadum | (| )
, . 5
k | I L
as ~
i b GOE
\,\‘h
Pﬁlmn!’“\""‘\ﬁ
T T i 2 FEL I e :

Level statistics is
Random Matrix

Quantum Chaos ﬁ

Universality t ~ ty Heisenbserg time

Similar results for a particle in a random potential (d>2) 1984

Efetov



Nuclear
Physics 60’s:

Wigner
How to model the
atomic nucleus?

The ultimate
approximation “A random
matrix as an effective
nuclear Hamiltonian”
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] ] O. Bohigas, R.U. Hag, and A. Pandey, in Nuclear Data for
1.5 e 2 keV Science and Technology, (1983)
n

Coceva and Stefanon, Nuclear Physics A, 1979

Flores, Bohigas, French 1970

Whenisit ¢~ 1/A Heisenberg time

valid?

A =Mean level spacing



Poisson Nuclear
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Random <a;1 ayv) a;; =a; €ER  GOE

Matrix  \ay, -~ aw/ a;=a;€C GUE

Dyson-Mehta

Semicircle law p(E) ~ |E¢ —E% Only for Gaussian variables. No universal
s 2

Two level universal correlations: Ry(s) ~ 1 —=——> GUE

T<sS

Level Repulsion —As?

P P(s) ~ sPe s = (Ei+1—Ep)/A

»2(N) Number variance related to [ R,

Spectral rigidity
Long range correlations ZZ(N) — (n(N)2> _ (n(N))2

. ~log(N) N > 1
R,(s) ~— s>1

5% Universality



Spectral form factor = Fourier transform of £%(N)

0 T TR ] or T TR A 3
1611 046%% S\ SYK, N, = 34, 90 samples, =5, g(t)
102 | .
S 408 L E
., ty ]
10 b W 4 Universal ramp
i M’” 1{ related to spectra
10° tw} Umversahty rigidity
Y BT L N
107 10° 10! 102 10° 104 10° 105 107 1
Time tJ R, (s) ~ 5_2 s> 1

trn = Thouless time. Minimum time scale for which
the system feels the spectrum is discrete



Multiple applications: Quantum chaos-RMT

Mesoscopic physics: Interactions, disorder  Efetov

Deterministic chaotic systems Bohigas

k-body random ensembles  French, Bohigas, Before
Ma, Flores 70’s  Sachdev-Ye!

H = kaCIA(lk + A Z (pq| V" |kl) (ﬂa.z_fa.la.k

E<Il.p<q

QCD: Spectrum Dirac operator  verbaarschot, Shuryak

Chiral ensembles, lattice simulations

Quantum gravity?



Another window of universality

tr (exponential) growth e oo zesis, perman

Physica 91A 450 (1978)
of quaNtumM UNCErtainty  seenme wrss 00 a9
Quantum Chaos

~ - ,\te~ 108 h=1/2 A Classical Lyapunov
<[0 (1), 0(0)] > ~ X hzexp(/lt) exponent

The exponential growth at Ehrenfest time tg
is Universal for guantum chaotic systems

Non-quantum chaotic motion Quantum effects

<[6(t); 6(0)]2> ~ C hz tﬁ develop faster in
. guantum chaos!
tr < h% a > 0 Non-universal



What quantum chaos has to
do with (quantum) gravity?



Chaos in black-hole physics

Quantum Black Holes are fastest scramblers in nature

P. Hayden, J. Preskill, JHEP 0709 (2007) 120 Sekino, Susskind,JHEP 0810:065,2008

Membrane ' Handwaving GR +
paradigm

ts~tg~log(h™") ~log(N)

Rindler geometry is important
AdS/CFT

Field theory dual also fastest scramblers

Heisenberg principle ....



A bound on chaos arXiv:1503.01409

Maldacena, Shenker, Stanford

OTOC
PR )
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i yn OgN
2

fa<<t<L F(t)=fo j{;g exp ;Tt -O(N™)

A < 2nkyT/h

([p-(£), p;(0)]*) ~

h*({p,(t),p,(0)}*) « h*exp(At)

Black holes and its field theory dual saturate the
bound



Holographic dualities (AdS/CFT): Certain

(quantum) asymptotically AdS gravity
theories in d+1 are dual to field theories in

d dimensions. N=4 Super-Yang Mills theory

2mkgT .
Maldacena et. al, proposes that A = nhB in

these theories but no example is given!!!

Kitaev,
KITP 2015

talks

“I have got
one example”




Kitaev: “A simple model of guantum holography”
http://online.kitp.ucsb.edu/online/entangled15/kitaev/

H= ) Jgahidy b q=4

Majoranas Wi} = 6y

Gaussian i) ~ 12 /N3

Strong coupling Bl >1 1] > 1

A solvable field theoy with a quantum gravity dual

SYK = Sachdev-Ye-Kitaev
Motivation: Test Maldacena bound on chaos



Before Kitaev .... only Dirac fermions, technically
more challenging... Kitaev idea of Majoranas very

clever N fermions  French, Bohigas,
m levels

k-random body ensembles rbody  Tlores, Wong,70's

H = Z gkazak +\ Z <pq| V |]€[> a;f)azalak French, Mon, Annals of
k

k<l p<q Physics 95, 90 (1975).

m>N (HP) - p(E)oce_Ez/U2

Very popular in 1980-2000’s! ardomar
in Quantum
. . Physics
Thermalization Metal-insulator transitions :
Level statistics Transport, quantum dots Kota
Heisenberg Spin-Chain Holography dual?

Sachdey, Ye, PRL. 70, 3339 (1993) S. Sachdev PRL 83, 74408 (2010)



Why is SYK
interesting?’



Conformal (reparametrization)
symmetry in the IR limit... like gravity

Jt,JB>1 9, >0 A=1/q
G — G(r,7) = [f' (1) f (F)NAG(f(r), f()
Finite Zero | |

& — llogz — /A dx;r(l — x) tan zx
Temperature N 2 0 2
entro py Georges, Parcollet 90’s  Kijtaev 2015

Conformal symmetry spontaneously and explicitly
broken to SL(2,R) due to finite T, N effects



Conformal symmetry broken to SL(2,R) in the
L] > 1 limit

" 3(f">2 Schwarzian
_ 7

_ % A=l 2
5= Nj' de{f.zp A fro2 action

p(E) « sinh(yy/|E — E])  Quantum black holes

(Wi (0)1;(7)1:(0)1h; (7)) BJ 2xr T around

xX1+1—e 7

(10i(0)203(0)) (1 ()15 (7)) N ty < ty

SYK is quantum chaotic and analytically tractable

SYK saturates Maldacena bound
SYK in the low T is dual to NCFT/NAdS2, why?




Jackiw-Teitelboim gravity 1606.01857
1809.08647

Simple non-trivial model in (near) AdS,

. | . -
2 Ons 2 \Ju aM
N ——— —— g

W

Einstein-Hilbert Action Jackiw-Teitelboim action ] .
K extrinsic
Classical EOM: curvature
P = _9 Poincare ¢ = dilaton
disk d = 2

Boundary action

I — —2}_1‘51}{] \(JI) N (.:"'5/ Pf T Sﬂmtter(gﬁ 'L"{I])
aM



Schwarzian low energy action

¢ ]

Diffs invariance ‘ SL(2,R)

The physics is in the motion of the physical
boundary of AdS, inside a rigid AdS, space.

e->0 1= /duSeh{tam pu) u)

Quantum Chaotic
(V(H')I“'Vg(b + *&.)V(U)[.{,f(ﬂ)) !

SYK dual”™ to a quantum JT gravity



SYK and RMT

RMT in SYK?

s g=4 SYK spectral
density consistent with
that of a black hole 7

Universality
classes in SYK?

s RMT a feature of JT
guantum gravity?

AGG, Verbaarschot Phys.

YeS Rev. D 94, 126010 (2016)
(a few weeks later: 1611.04650)

YeS AGG, Verbaarschot, Phys.
Rev. D 96, 066012 (2017)

AGG, Jia, Verbaarschot, PRD
YeS 97, 106003 (2018) Before:
Wettig et al., Ludwig et al.,

Yes Saad et al. 1903.11115

AGG, S. Zacarias Phys. Rev.
Res. 2 (2020) 4, 043310



Symmetries of SYK depend on N,qg

(C1K,H] =0, [CoK,H]=0

N
C1 = 84! H Yo2i kK, N (C,K)? (C,K)? C,KC,K RMT
;’;_2 ) 2 I -1 il GUE
4 -1 -1 T GSE
Cy =72 |] 2K 6 -1 1 —il’s GUE
i=2 8 1 1 I's GOE
10 I -1 ~iTs GUE
12 -1 -1 I GSE

K = cCharge conjugation. Cy, C, anti-unitary symmetries

You, Ludwig,

WWV? Clifford algebra representations in N dimensions 7. o6

Why relevant?

If SYK is quantum ergodic for long times, then it can be a
toy model for different systems that share the same
global symmetries: Tenfold way of RMT



SYK spectral density is the same as that of quantum

black holes

Pedge (E ) ~  2cnexp

J. Riordan, Mathematics of

= 4 N(N) Computation 29, 215 (1975)
AGG, Verbaarschot, PRD 96, 066012 (2017)

Density = Q-Hermite polynomials
Agreement with the exact Schwarzian path integral

0.20

Exponential 015l

Increase

p(E) 0.10]

Cardy’s formula

Bethe’s formula

Black holes density

sinh
2 log -n]

onv2\/1— (E/Eo)
— log 1
_q o« N1/2 Erdos, et. al, 1407_1-552

0.05¢

0.09

N =32

PqH

Psubtracted

~0.85

Bagrets, et al., 1702.08902
Stanford, et al. 1703.04612

| Sqgrt edge

Typical of
random
matrices



Level statistics RMT P(s) = ays’ exp(—bys*)

Close ground state  High excitations
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AGG, Verbaarichot Phys. Rev. D 94, 126010 (2016), later Cotler et al.
1611.04650

Random matrix correlations characterize
guantum black holes?

Tenfold way in black hole physics?



Yes!

1610.08917/

Fu, Gaiotto, Maldacena, Sachdev

2

pa(E) = Ap (g)

a

PRD 97, 106003 (2018)

Li, Liu’ Xin, Zhou ) 1'2j l’ ..“ ThOMY e §,,n" o B o i o 2
1702.01738 01 _Q o

Wettig, Kanazawa 0af

1706.03044 0'2’ |

H=0Q? Q=

N=24 =

us) chGOE

AGG, Jia, Verbaarschot, !

pm(E)

Supersymmetric SYK I\/Iodel

E jijh i Vi Tk

1,7,k=1
' N =22
2 6 8 0
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N' 20
28
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Fven more, the non-Hermitian SYK 1s also a
toy model for strongly interacting open and/or
dissipative guantum chaotic matter

Hyu—syxk = Z]ijkl lpilpjlpklpl
ikl
Jijki = Jijki + Mg

Depending on g and N, we identify 19 out of the 38 Phys. Rev.
X 9, 041015 (2019) non-Hermitian universality classes in the
NHSYK model,

AMGG, L Sa, JJM Verbaarschot, PRX 12, 021040 (2022)



Global symmetries

T.HT ' = H, T = +1,
T HT '=-H,  T?=x+1,
c.HcT' = H, Ci = +1,
C_H'CC'=-H, (C*=4+1,
[MHI ' = —H, I’ =1,

nH'n™' = H, n’ =1,

SYK Operators

N/2

P:KH'YQi—l RZKHW%
i=1 *

K charge conjugation

7. anti-unitary
7_ anti-unitary
C. anti-unitary
C_ anti-unitary
II unitary

7 unitary

1=1

Time-Reversal Symmetry),
Particle-Hole Symmetry),

Time-Reversal Symmetry),

(

(

(

(Particle-Hole Symmetry),
(Chiral Symmetry),

(

Pseudo-Hermiticity).



D2 _ (_1)%N/2(N/2—1) and R2 — (_1)%N/2(N/2—|—1)

Action of symmetry operators on the SYK

PH'P~ = (_1)q(q+1)/2(_1)qN/2H
RH'R™! = (_1)q(q—1)/2(_1)qN/2H
SHS™ = (-1)'H.



e &

Matrix realization

Class Hermitian corresp.

0O 0 O

+1 0 O

A GUE (A)

ATIT" chGUE (AIII)
AT"  GOE (AI)
AII" GSE (AII)
D  BdG-S (D)

C  BdG-A (C)



+1

+1

+1

+1

.l.
ATl

.I.
ATt

ATT

AT

chGOE (BDI)

chGSE (CII)

chBdG-S (CI)

chBdG-A (DIII)



Symmetry Classification for nhSYK

Nmods 0 2 % % This completes the

qmod4 =0 AI' A Al A tenfold way and add a

qmod4 =1 AIL AIL AL AL fo\y more universality
gmodd=2 D A C A 55505

gmod4 =3 ATl AIIT ATt ATT =
Hl

H = antidiag(H, H') :=
Symmetry Classification for chira/ nhSYK

N mod 8 0 2 4 6 N mod 8 0 2 4 6

¢mod4 =0 BDI' , AIII_ CII' , AIIl_ gmod4 =0 AI' A" A" Amr
gmod4 =2 BDI, _ AIIl_ CII,_ AIll_ gmod4 =2 AII' AIII' AI" Am

H, H' Hermitian H, H' non-Hermitian



Complex spacing ratios

ELN —F,

A = .
R g,

0.00025 0.00014
0.00012
0.0002
0.0001
0.00015 8105
-5
0.0001 6x10
4x10°5
5x10°5
2x10°5
- 0 - 0
-1 05 0 0.5 1 1 05 0 0.5 1
Re A Re A

Integrability Quantum Chaos



Radial p(r) and angular p(8) distributions of

the complex spacing ratio
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p(r)
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Excellent quantitative agreement with
random matrix theory
Assuming that BGS conjecture applies, it means that

random matrix theory can be used to describe
many-body dissipative quantum chaos

SYK, a toy model for many-body dissipative guantum
chaos. Can all universality classes be identified?

Relation to quantum gravity”? See next

Long range spectral correlations and limits of dissipative
gquantum chaos? See AMG, Sa, Verbaarschot
2211.01650



SYK beyond quantum black
noles: traversable/
-uclidean/Keldysh(?)
wormholes




SYK and traversable wormholes saosaterswan

arXiv:1608.05687

Hy = HPYE + HRYK + zAZ¢ P

Maldacena and Qi 1804.00491

A two-site SYK model with a weak 4 < 1 coupling is dual, in
the low T limit, to a traversable wormhole in a near AdS,
backgrounad

Why?

Both models share the same Schwarzian effective action

A
, ()t (u
S =N /dz"l ({ an “}) 1 ";(%E?)(-w
OS2 %

Where this gravity action comes from?

u,} + {t an




Global AdS,

, —dt? + do*

ds ,0 € |0, m]

sin? o
't covers the full spacetime (two boundaries) which
has a SL(2, R)group of isometries

The idea of MQ paper Is to find solutions where the boundaries
corresponds to lines of constant o In these coordinates. In this
setting, a t-translational invariant dilaton would grow towards
both boundaries This is not possible in pure JTgravity. It is also
not possible If matter obeys the integrated null energy
condition in the bulk. However, it becomes possible (Gao,
Jafferis 1608.05687) if we introduce a double trace deformation
that (weakly) couple the two boundaries explicitly.



N
Sne = 9 ) [ du 0§ (w)0k(w)

N operators of conformal weight A corresponding to N
bulk matter fields. Large N is needed to enhance its effect.

For technical reasons we need g < 1 so

<eig ¥ duof (W ok <u>> - oig 3 [ dw(0} w0k W)

This Is equivalent to a perturbative re-summation of ladder
diagrams, see next figure, that is dominant in the large N,
small g Iimit with Ng fixed.



t(u)

=0 ___ o=T c=0 _ _ o=
c c
(a) (b)

Figure 2: (a) Trajectories of the physical boundaries (in magenta) for the Nearly-AdS,
geometry with a global time isometry. These trajectories are the lines where the dilaton
acquires its boundary value. It can be obtained by introducing an interaction between
the two boundaries. (b) We can describe the fluctuations of the boundary trajectories
in terms of a pair of functions, #;(u) and t,(u), mapping (rescaled) proper time u along
the trajectory to the global AdSs; time coordinate t. The dotted lines can be viewed as
insertions of the interaction Hamiltonian. They join points with the same value of u on
both boundaries. (c¢) The physical boundaries for a Nearly-AdS; geometry with thermal
isometry. Here the two boundary trajectories cover only a finite range of global time and
we cannot send a signal between the two trajectories.



After coupling this to the gravity modes by performing a
reparametrization of the left and right times. More specifically,
this Is a map between the boundary time u and the global
times t;(u), tp(u) at the two boundaries.

2 i

2

A
(@)t (a)
C'OESQ i (ﬂ)_f'r(ﬂ)

t (i t (1)
S = L\-T/d& { ({tan E('u),-fl} + {tan (u).u}) + 1)

In this way, we describe the theory describes the position of
the physical boundary.

Why Is this interesting?



LIITIYYy Yap al HATU [UW IETHHpelaluie, p = 1vuv
Egap

Interesting features A < 1+

0.6F

05F

Gapped system Eg ~ A%/3

0al T Egap:ki_
Not E; ~ A as expected : a0t
o , 02f = Lgap =K+ U.
from a explicit coupling :
Important! A k

Non trivial interplay of interactions
In each site and Intersite-coupling
leads to a novel form of overiap

interaction-enhanced tunneling ™"
Ground state close to
a TI:D State 0.9805-
(TFDp k| GS) -V




Hawking-Page transition between
wormhole and two blackhole configurations

-0.115 ¢

-0.12

F(T)

-0.13

-0.135

Mapping to a Liouville like QM problem with
bound states related to wormhole excitations

S =N [ dif = ¥ 4 e

A=0.03

-0.125 ¢

0.01

0.02
T

0.03

0.04

0.2

0.157

0.1¢

0.05¢

phase diagram

-----

2BH

1] Vi)




Quantum chaos anc
traversable wormholes

N/2
Hioa = Hp, + aHp + Higy  Hiy = ik Z&L,jtffﬁ,j-
=1
Two site SYK dual to a

transversable wormhole Maldacena, Qi 1804.00491

Hawking Page transition (weak |
coupling) Is also a quantum- ;=

chaos Integrable transition

AGG, Rosa, Nosaka, Verbaarschot, PRD 100, 026002 (2019), 28

P(s)

"N=26,k=0000 =
N=26k=0015 =

\ N = 26, k = 0.500
0.8+ GOE
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| ]
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Non-Hermitian two-site SYK and Euclidean
wormholes

_ /SYK SYK | R
Hgy = Hj Hp 1k
:

A=0
Hgyg = Z]ijkl Yy,

ijkl

Jijki = Jijki + Mk

Complex couplings



Because of dominance of replica off diagonal configurations,
the properties of the SYK system after ensemble average are
qualitatively different.

SYK free energy undergoes a first order
transition that in the gravity dual Is interpreted
as wormhole/black hole phase transition In

F(T)

~v2  near AdS,
-0.015 ¢ _

F(T) _2E06’(T _7)— T log ZG(T— T)
~0.025 N N ¢ ¢/
— Analytical
_0.035F >YK AMG, Jia, Rosa, Verbaarschot,
PRL, 128, 081601 (2022)

0.01 0.02 0.03 0.04 0.05



Spectrum of the averaged system Is gapped

Gr(T) 0 ggfk)
10-3 0.05} o Data points
0.04% — Quadratic fit
107 0.03}

T

— Data points
107"t __ sinh fit

0.02
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2
E, ~k
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100 300 500 700 900

0—15

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0.3 T T T T
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0.1f

But there 1s no gap for a o
single disorder realization!

40.1

-0.2F 1-0.2
. Eigenvalues

— Circle

-0.3 n L L L 0.3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3




Interactions g = 4 are important

The free energy for a g = 2 two site SYK IS
qualitatively different

2 dF (T)

N dT

0.5r

0.1 0.2 0.3 0.4



Gravity dual?

Fuclidean Wormholes

We find solutions in near AdS?
background (JT gravity) with additional
matter

Relevant for the problem of factorization In
holography and, in a different context, for

the information paradox
V. Godet, AGG, Phys. Rev. D 103, 046014 (2021)



S = SJT + Sma[ter ; (5)
where we have
Soll [, I [
Sir=-5-|5 | dxvER+ dT\/i_lK—E Px\GOR+2)— | detVhd(K -1),  (6)
T

|
S matter = 5 fdzx \@(a/\/)z . (7)

lim y = ik, [im y = —ik,
p—leX p—>—::'r;‘2X

(73 Br

Complex .
sources ~ b fixed by dynamics

Fuclidean wormhole solutions of JT gravity
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How Is the physics of wormholes related to the
out of equilibrium dynamics of dissipative
gquantum chaotic matter?

Keldysh Wormholes and Anomalous Relaxation in the Dissipative

Sachdev-Ye-Kitaev Model

Antonio M. Garcia—GarcIa,L Lucas Sé,g’lﬂ Jacobus J.
M. Verbaarschotj&lﬂ and Jie Ping Zheng (%EZ'EEF)LEI

arxXiv:2210.01695

AdS/CFT Takayanagi 1911.0/861

Overlap with Ryu. et al. 2210.04093 that came out a few days later



The real time dynamics of a SYK at T — oo weakly
perturbed by a Markovian environment i1s equal to

the Euclidean dynamics of a two-site non-Hermitian
SYKinthe T = 0 [imit

The late time dynamics Is characterized by the decay
rate/gap to a steady state which is computed by the
exponential decay of certain Green’s functions.

Quantum chaos is iImportant. Only for g > 2, the decay
rate Is finite even If there i1s no coupling with the bath.

The free energy of the Euclidean problem undergoes
a first order transition as in wormholes settings.

We speculate that our SYK Is dual to a bra-ket 2007.16091
wormhole: a perturbed double cone in near dS,



Real time evolution of a SYK coupled to
a Markovian bath

HYE =02 % T 09", Single site SYK

i1 < <ig

L;, = \/ﬁ@b”’ Jump operators that characterize the bath
1
£p) = —iH™ )+ 2 | Loplh = 5 (L )|

We study the dynamics after a weak perturbation
(Inear response) of a TFD state at T = oo

1
k



Keldysh formalism

We are interested In the following retarded Green's
function

iG" (1) = O(t) (Tr [poo{ W' (), 47 (0)}]).

INn order to proceed, It 1s useful to employ the Keldysh
path integral that involves the doubling of degrees of
freedom and the vectorization of the Liouvillian

The partition function related to the path integral
IS given by,

7 — /D@DL’DIDR !SR]



The degree of freedom are doubled In the
Keldysh action Sk

se= [ dt——ZwtwL 30 WhOk+ L)

Vectorized Liouvillian H = H; @ Hp

q A |
L= —iHS + ((—DZHES — i ) plaph — SN
i
We assume the system Is sufficiently close to the steady state so
we neglect initial conditions. We assume f = 0

Note the similarities are differences with the
previous SYK related to wormholes



Solving numerically the saddle point equations for
q = 4 and analytically in the large g limit and for

q = 2, we have found that for g > 2, the retarded
Green’s function decays exponentially even If there
s no coupling (4 = 0) to the environment.

iGR(t) x e Tt cos Q(p)t

I' Is the typical (inverse) relaxation time to the
steady state.

We Interpret 2 as an imaginary part of I' indicating
metastability though it also occurs at u = 0!



The Euclidean problem
H = i3S ()P HRS 4 in Y b,
k
Note that the SYK's are anti-Hermitian

The ground state

0) =) _|k) @ UK|k),
k

of this Hamiltonian is the thermofield-double
(TFD) state at f = 0



iGp (1) x e TW cos QO (1)t

This I1s identical to the real time results with 7 =t
provided that the two Green's functions Gg(t) and
G r(T) are identified

Therefore the original one-site SYK coupled to an
environment Is mapped to a two-site non
Hermitian SYK at zero temperature



Fquivalence of Gy r(t) and Gg(t)
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q p— 4- ——T, GE(1)
—8—E,, Gp(1), T = 0.002
09
~
508
&
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0.6 ' ! !
0 0.2 0.4 0.6 0.8

L4

The existence of a gap/decay rate (E4, I') does not require

the coupling to a bath. Only for u large, we recover the

expected I' ~ u dissipation driven decay. Transition at 4 ~
0.14



0.4[ :
9 O Q GE@)
© O 0 Q,Grr(r), T = 0.002
) o Q=+va+bu
0.3_ |
O
a
|
o
S 02¢F -
8
a]
0.1r %\é |
O
S,
0 : L 1
0 0.05 0.1 0.15
7

The frequency {2 vanishes in what looks a second
order phase transition for sufficiently strong
coupling to the environment.



Analytical large q calculation

1 1, 1. 1
Grr = §s1gn(fr)eq = 581gn(7)(1 + 591;[, +...),
_ v tam _ bt 1
GLR—QBQ' —2(1—0—ngLR—|—...).
It is important to impose Grr(7) = —isign(7) Grr(7),

CZZ

J? cosh?(alt| + y)
a?/J? cosh?y = 1,2atanhy = /i

2

2a0 2 i

g =222 (ﬁ) +1
q q 2]

This result i1s only about 20% off the numerical one for g = 4.

it agrees with E; ~ u for u > 1 but it does predict oscillations
O

eILL = eILR =




Non-chaotic case g = 2
The previous results require that the dynamics is quantum chaotic.

For g = 2, where the dynamics is not quantum chaotic, I' = 0 if no
coupling to the bath u = 0. For u > 0, I' = u so the relaxation is always
dissipation driven.

u=20 1 = (—iw + J°Gr1)Grr — J*GLrGLR,

0= (—iw+ J°Grr)Grr + J°GLrGLL.

w sign(w)

Ry W
Cw=-5m+ 55

V(w4 i€)2 — 42

with € — 07, and the advanced Green’s function is equal to

w sign(w .
GMw) = ~57 + ggj(2 )\/(w—ze)2 — 4.J2.




1 w? iw ,
Grr(w) = V- e Grr(w) = 572 if [w] < 2,

W w?

GLR(LU) =0, GLL(W) = Zl (_ - Sign(w) 4—J2

—1 if 2J.
7\ 57 ), if |w| > 2J

In the time domain, the retarded and advanced Green’s functions are given by

, o J1(2JT) . J1(2J71)
R _ er V1 A — . er ¥1
G (r) = —i0(r)e T GA(r) = i(-r)eT T
> O R _ ((.d + T'IJL) o Sigﬂ((.d) C N2 2
w—1ip) sign(w _
G w) = ( 572 ) _ 572 )\/(w—zu)z—élJQ.
Fourier transforming to the time domain, we find
GR(1) = —iO(1) e H" N2J7) (i{ﬂ’
2
GA(r) = iO(—7) el w

(48)

(49)

(50)



log ’GLL(TN

-10 ¢

-15

g=2, u=0.05 T = 0.002

« data
exp(—E,7)J,(br)/T

log ‘GLL(T”

A0}

A5}

-20

q=2, u=0.25 T =0.002

« data
exp(—E,7)Jo(bT)/T

Excellent agreement with analytical results. E4(0) =

0 so quantum chaos (q > 2), especially for u < 1,
alters qualitatively the way the system approaches

the steady state.
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Dissipation driven relaxation E; = u



Gravity dual of a dissipative SYK: Keldysh dS
wormhnoles

0 = 0.05 0 p=0.1
\ T T T T T
\
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T T

Free energy of the Euclidean SYK setting at

finite T I1s similar to that of wormholes in near
AdS,



SD eqs.
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Good agreement with numerical results



Gravity dual cannot be traversable or Euclidean wormhole
in near AdS, because the Schwarzian action is different

However, the @

difference is just the \Y/
CompleX|f|cat|on of (’(’) a
the couplings A
J =y, )= =g

Figure 2. Under the analytic continuation b — i, Jp — —iJ, J; — iJ, the double trumpet

of [21] is mapped to nearly global dS,.

Cotler et al. JHEP 2020, 6, (2020), Maldacena et al., JHEP 2021, 1 (2021)

Double-trumpet configuration in a near de Sitter
background in two dimensions (dS2) in Lorentzian time



After a matter perturbation (¢ in our case)
we speculate that dS, is unstable to the
formation of bra-ket wormholes

ds, CFT,
fl CFT, Late universe where with gravity
i at spa?te ~ gravitational effects Bra —
o gravi
g y are neglected. o ity CFT,

+— Reheating surface

Flat space CFTZ

T No gravity Schwinger-
e ; Keldysh contour
with dynamical gravity Inflation Ket — ds, CFT,| b
with gravity
(@) (b) (c)

Figure 17. (a) We study a model which consists of de Sitter gravitational evolution followed by an |_ k I f
evolution in flat space with no gravity. (b) When we consider expectation values, we join the bra O O | n g O r
and the ket following the Schwinger-Keldysh contour. In (c) we see a more traditional depiction of

the Schwinger-Keldysh evolution. We go forwards in time to prepare the bra, then go backwards

e gravity
- specialists to

0 t

ds® = —dt? + sinh? tdx? test th i S

Figure 23. The geometry that appear in the 7 contour is very similar to the double cone considered
in [31], except for an overall sign in the metric, which exchanges space and time and changes the

sign of the curvature, taking the locally AdSs space to a locally dS; one geometry. h y p Ot h e S i S |
Maldacena et al, 2007.16091




Conclusions

Quantum ergodicity (quantum chaos) and random matrix

behaviour seems to be distinctive features of quantum black
holes and SYK models

SYK models reproduce most, If not all, universality classes of
strongly Iinteracting systems

Both traversable and Euclidean wormhole have SYK duals which

facilitates the study or wormhole physics in condensed matter
systems

Wormhole physics seems to play a role in the process of

equilibration of strongly interacting quantum matter both
isolated or In contact with an environment.
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