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Main message: Random quantum circuits can protect qubits from
noise even when they are highly constrainted (1D log-depth Clifford
circuits).



Quantum computers
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Figure: Current quantum computers: IBM's Eagle (left) and Google's Sycamore (right)

» For practical applications of quantum computers, we first need to overcome
noise.



Quantum error correction (QEC)

» Purpose: protect quantum information against noise.

» Quantum error correcting codes: A small number of protected qubits
(logical qubits) are encoded into the collective state of many quantum
particles (physical qubits).
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Simple example: Repetition code
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» Encode a single qubit into three physical qubits

a|0) + B|1) — «|000) + 3|111)



Simple example: Repetition code
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» Encode a single qubit into three physical qubits

al0) + 5|1) — «|000) + 5|111) (1)

» A single X error on any qubit can be corrected. E.g. X error on first qubit:
«|000) + $|111) — «|100) + 3|011) (2)

» Measure the parity of neighbouring qubits, My := Z1Z,, M, := Z,Z3 to
identify the error.



Simple picture of QEC
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» What encoding gives us a good rate r = k/n with logical error probability

tending to 0 as n — o0?

» Highest achievable rate for a given A as n — oo is called the capacity.



Random encoding
» Assume noise N is an i.i.d. Pauli channel:
N(p) = pip+ pxXpX + pyYpY + pzZpZ , (3)

with p; + px + py + pz = 1. We mainly consider the case of depolarising
noise px = py = pz = p/3, pr = (1 — p).

LGottesman 1997, Wilde 2013



Random encoding

» Assume noise N is an i.i.d. Pauli channel:
N(p) = pip+ pxXpX + py YpY + pzZpZ, (3)

with p; + px + py + pz = 1. We mainly consider the case of depolarising
noise px = py = pz = p/3, pr = (1 — p).

» It is known! that using random Clifford Unitaries for encoding, a rate called
the hashing bound can be achieved

r:].—H(ﬁ)v (4)

with H(p) the Shannon entropy of p = (p/, px, Py, Pz).

» No constraints on locality (all-to-all connectivity), no efficient decoding
procedure known.

LGottesman 1997, Wilde 2013



Low-depth random encoding

» Even low-depth Clifford circuits can protect quantum information.
> (Brown, Fawzi 2013) O(log(n)) depth Clifford circuits can achieve nearly
the same as fully random Clifford unitary.
» Requires all-to-all connectivity, no efficient decoding.
» (Gullans et al. PRX 2021) O(log(n)) depth with 1D connectivity sufficient
for erasure noise.
» Erasure noise implies error locations known (unrealistic).
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Low-depth random encoding

» Even low-depth Clifford circuits can protect quantum information.
> (Brown, Fawzi 2013) O(log(n)) depth Clifford circuits can achieve nearly
the same as fully random Clifford unitary.
» Requires all-to-all connectivity, no efficient decoding.
» (Gullans et al. PRX 2021) O(log(n)) depth with 1D connectivity sufficient
for erasure noise.
» Erasure noise implies error locations known (unrealistic).
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» Our result: Codes defined by O(log(n)) encoding circuits in 1D can be
decoded efficiently achieve a rate close to the hashing bound for stochastic
noise.



Decoding

» For given encoding circuit U, measure Pauli check
operators of (weight ~ d). Outcomes called the
syndrome s.

» Classical processing of the syndrome to determine
the most likely error. We do this using a tensor
network contraction, that is efficient for 1D
log-depth encoding circuits.




Numerics

» Fix the rate r = k/n and determine the maximum depolarising noise
strength p that can be tolerated with this method (the threshold).

» Below the hashing bound, error rate of each logical qubit appears to decay
exponentially with depth.
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Hashing bound

» Achievable rate for 1D log-depth is close to the hashing bound for
depolarising noise with a variety of noise strengths.
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Potential applications

» These results show that random encoding may have practical applications:
» High rate (hashing bound)
» Locality in 1D
» Efficient decoding
» Has advantages over other error correction schemes:
» Much higher rate than the surface code.
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Summary

» Quantum information can be protected against noise using quantum error
correction.

» We studied the performance of log-depth Clifford circuits for quantum error
correction against Pauli noise.

» We showed that with O(log(n))-depth Clifford circuits in 1D we can achieve
the same rate as fully random Clifford encodings with efficient decoding?.

» Future work:

» Realistic situation when encoding and decoding are also noisy.
» Generalisation to higher spatial dimensions.

2AD, Y. Nakata, S. Tamiya, H. Yamasaki, arXiv:2212.05071



Question: Can this be regarded as a physical model for

something?
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