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Main message: Random quantum circuits can protect qubits from
noise even when they are highly constrainted (1D log-depth Clifford
circuits).



Quantum computers

Figure: Current quantum computers: IBM’s Eagle (left) and Google’s Sycamore (right)

▶ For practical applications of quantum computers, we first need to overcome
noise.



Quantum error correction (QEC)

▶ Purpose: protect quantum information against noise.

▶ Quantum error correcting codes: A small number of protected qubits
(logical qubits) are encoded into the collective state of many quantum
particles (physical qubits).



Simple example: Repetition code

▶ Encode a single qubit into three physical qubits

α|0⟩+ β|1⟩ → α|000⟩+ β|111⟩ (1)

▶ A single X error on any qubit can be corrected. E.g. X error on first qubit:

α|000⟩+ β|111⟩ → α|100⟩+ β|011⟩ (2)

▶ Measure the parity of neighbouring qubits, M1 := Z1Z2, M2 := Z2Z3 to
identify the error.
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Simple picture of QEC

▶ What encoding gives us a good rate r = k/n with logical error probability
tending to 0 as n → ∞?

▶ Highest achievable rate for a given N as n → ∞ is called the capacity.



Random encoding

▶ Assume noise N is an i.i.d. Pauli channel:

N (ρ) = pIρ+ pXXρX + pYY ρY + pZZρZ , (3)

with pI + pX + pY + pZ = 1. We mainly consider the case of depolarising
noise pX = pY = pZ = p/3, pI = (1− p).

▶ It is known1 that using random Clifford Unitaries for encoding, a rate called
the hashing bound can be achieved

r = 1− H(p⃗) , (4)

with H(p⃗) the Shannon entropy of p⃗ = (pI , pX , pY , pZ ).

▶ No constraints on locality (all-to-all connectivity), no efficient decoding
procedure known.

1Gottesman 1997, Wilde 2013
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Low-depth random encoding
▶ Even low-depth Clifford circuits can protect quantum information.

▶ (Brown, Fawzi 2013) O(log3(n)) depth Clifford circuits can achieve nearly
the same as fully random Clifford unitary.
▶ Requires all-to-all connectivity, no efficient decoding.

▶ (Gullans et al. PRX 2021) O(log(n)) depth with 1D connectivity sufficient
for erasure noise.
▶ Erasure noise implies error locations known (unrealistic).

▶ Our result: Codes defined by O(log(n)) encoding circuits in 1D can be
decoded efficiently achieve a rate close to the hashing bound for stochastic
noise.
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Decoding

▶ For given encoding circuit U , measure Pauli check
operators of (weight ∼ d). Outcomes called the
syndrome s.

▶ Classical processing of the syndrome to determine
the most likely error. We do this using a tensor
network contraction, that is efficient for 1D
log-depth encoding circuits.



Numerics

▶ Fix the rate r = k/n and determine the maximum depolarising noise
strength p that can be tolerated with this method (the threshold).

▶ Below the hashing bound, error rate of each logical qubit appears to decay
exponentially with depth.
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Hashing bound

▶ Achievable rate for 1D log-depth is close to the hashing bound for
depolarising noise with a variety of noise strengths.

0.000 0.050 0.100 0.150 0.200
0

0.2

0.4

0.6

0.8

1

pc

r

1D log-depth, TN decoder

Capacity upper bound

Hashing bound



Potential applications

▶ These results show that random encoding may have practical applications:
▶ High rate (hashing bound)
▶ Locality in 1D
▶ Efficient decoding

▶ Has advantages over other error correction schemes:
▶ Much higher rate than the surface code.



Summary

▶ Quantum information can be protected against noise using quantum error
correction.

▶ We studied the performance of log-depth Clifford circuits for quantum error
correction against Pauli noise.

▶ We showed that with O(log(n))-depth Clifford circuits in 1D we can achieve
the same rate as fully random Clifford encodings with efficient decoding2.

▶ Future work:
▶ Realistic situation when encoding and decoding are also noisy.
▶ Generalisation to higher spatial dimensions.

2AD, Y. Nakata, S. Tamiya, H. Yamasaki, arXiv:2212.05071



Question: Can this be regarded as a physical model for

something?


