

QUANTUM CIRCUIT COMPLEXITY

JENS EISERT, FUBERLIN

With J. Haferkamp, P. Faist, N. Kothakonda, A. Munson, N. Yunger Halpern

Nature Physics 18, 528 (2022), Phys Rev A 106, 062417 (2022), Phys Rev Lett 127, 020501 (2021), Commun Math Phys (2022)

High energy physics, holography and the wormhole growth paradox

Quantum computing

QUANTUM CIRCUIT COMPLEXITY

Statistical physics and thermodynamics High energy physics, holography and the wormhole growth paradox

Quantum computing

QUANTUM CIRCUIT SQMPLEXITY

Statistical physics and thermodynamics

This talk

CIRCUIT AND STATE COMPLEXITY

Complexity is studied to make sense of the enormity of Hilbert space...

CIRCUIT AND STATE COMPLEXITY

Circuit complexity of a computation captures the number of elementary steps it minimally takes to determine its outcome

> Separate computational tasks into 'easy' and 'hard'

CIRCUIT AND STATE COMPLEXITY

Circuit complexity of a computation captures the number of elementary steps it minimally takes to determine its outcome

- > Separate computational tasks into 'easy' and 'hard'
- In quantum setting relevant for phases of matter

CIRCUIT COMPLEXITY

Circuit complexity of a computation captures the number of elementary steps it minimally takes to determine its outcome

Definition 1 (Exact circuit complexities). Let $U \in SU(2^n)$ denote an n-qubit unitary. The (exact) circuit complexity $C_{\rm u}(U)$ is the least number of two-qubit gates in any circuit that implements U. Similarly, let $|\psi\rangle$ denote a pure quantum state vector. The (exact) state complexity $C_{\rm state}(|\psi\rangle)$ is the least number r of two-qubit gates U_1, U_2, \ldots, U_r , arranged in any architecture, such that $U_1U_2 \ldots U_r|0^n\rangle = |\psi\rangle$.

CIRCUIT COMPLEXITY

Circuit complexity of a computation captures the number of elementary steps it minimally takes to determine its outcome

CIRCUIT COMPLEXITY

Circuit complexity of a computation captures the number of elementary steps it minimally takes to determine its outcome

The run-time of the best known algorithms for the T-count—deciding whether the optimal gate decomposition of a circuit that is given as a sequence of Clifford and T gates on n qubits involves fewer than or equal to m T gates or more—is $O(N^m \text{poly}(m, N))$, with $N := 2^n$.

Gosset, Gosset, Kliuchnikov, Mosca, Russo, Quant Inf Comp 14, 1277 (2014)
Aaronson, Gottesman, Phys Rev A 70, 02328 (2004)

STATES AND UNITARIES THROUGH THE GLASSES OF COMPLEXITY

Circuit and state complexities organize unitaries and quantum states

Topological phases

Thermalization

O(1)

O(n)

poly(n)

Long time quantum chaotic dynamics

 $\exp(n)$

Quantum states

Product states

Matrix product states, GHZ states

Multi-scale renormalization

Unitaries

Variational quantum circuits, QAOA

Unitary k-designs

Polynomial random circuits

Haar-random unitaries

Circuits for classical shadows

- Random circuits: Proxies for quantum chaotic dynamics
- Bricklayer circuits

- **Random circuits:** Proxies for quantum chaotic dynamics
- Bricklayer circuits, random arrangements

- **Random circuits:** Proxies for quantum chaotic dynamics
- Bricklayer circuits, random arrangements

- Random circuits: Proxies for quantum chaotic dynamics
- Bricklayer circuits, random arrangements

▶ Holographic context: Complexity growth of thermofield doubles

Brown, Roberts, Susskind, Swingle, Zhao, Phys Rev Lett 116, 191301 (2016)
Brown, Roberts, Susskind, Swingle, Zhao, Phys Rev D 93, 086006 (2016)
Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers, SciPost Phys 6, 034 (2019)
Brown, Susskind, Phys Rev D 97, 086015 (2018)

HOLOGRAPHY

Holographic context: Wormhole-growth paradox

AdS: Volume grows for exponentially long time

CFT: Local observables equilibrating?

 $|\psi\rangle$

Brown, Roberts, Susskind, Swingle, Zhao, Phys Rev Lett 116, 191301 (2016)
Brown, Roberts, Susskind, Swingle, Zhao, Phys Rev D 93, 086006 (2016)
Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers, SciPost Phys 6, 034 (2019)
Brown, Susskind, Phys Rev D 97, 086015 (2018)

BROWN SUSSKIND CONJECTURE FOR RANDOM QUANTUM CIRCUITS

Brown-Susskind conjecture: Linear growth until exponential time

BROWN SUSSKIND CONJECTURE FOR RANDOM QUANTUM CIRCUITS

BUT HOW CAN THIS BE JUDGED?

Contraction map

$$F^A: \mathrm{SU}(4)^{\times R} \to \mathrm{SU}(2^n)$$

Accessible dimension

$$d_A = \dim(\mathcal{U}(A))$$

Contraction map

$$F^A: \mathrm{SU}(4)^{\times R} \to \mathrm{SU}(2^n)$$

Accessible dimension*

$$d_A = \dim(\mathcal{U}(A))$$

* $\mathcal{U}(A)$ is not a manifold, but a **semialgebraic set**, by virtue of Tarski-Seidenberg principle

$$F^A: \mathrm{SU}(4)^{\times R} \to \mathrm{SU}(2^n)$$

Accessible dimension*

$$d_A = \dim(\mathcal{U}(A))$$

- * $\mathcal{U}(A)$ is not a manifold, but a **semialgebraic set**, by virtue of Tarski-Seidenberg principle
- **Rank** of F^A in x important: Rank of a matrix that approximates F^A linearly around x
- Prove that F^A has the **same rank** throughout the domain, except on a measure-zero set

Contraction map

$$F^A: \mathrm{SU}(4)^{\times R} \to \mathrm{SU}(2^n)$$

Accessible dimension*

$$d_A = \dim(\mathcal{U}(A))$$

- * $\mathcal{U}(A)$ is not a manifold, but a **semialgebraic set**, by virtue of Tarski-Seidenberg principle
- **Rank** of F^A in x important: Rank of a matrix that approximates F^A linearly around x
- Prove that F^{A} has the **same rank** throughout the domain, except on a measure-zero set

$$F^A: \mathrm{SU}(4)^{\times R} \to \mathrm{SU}(2^n)$$

Accessible dimension*

$$d_A = \dim(\mathcal{U}(A))$$

• Identify an x where r grows linearly with R

Accessible dimension*

$$d_A = \dim(\mathcal{U}(A))$$

- Identify an x where r grows linearly with R
- Demonstrate the point's existence by perturbing **Clifford circuits**, 'appending infinitesimal unitaries', 'count independent directions'

Contraction map

$$F^A: \mathrm{SU}(4)^{\times R} \to \mathrm{SU}(2^n)$$

Accessible dimension*

$$d_A = \dim(\mathcal{U}(A))$$

$$d_{A_T} \ge T = \frac{R}{L} \ .$$

Elaborate counting

$$d_{A_T} \ge T = \frac{R}{L} \ .$$

$$d_A \leq 9R + 3n$$

- Let R' be less than a linear fraction of R:9R'+3n < T=R/L
- For every R' gate architecture A', $d_{A'} < d_{A_T}$ holds
- Almost every $U \in \mathcal{U}(A_T)$ has complexity greater than greatest possible R'
- Elaborate counting (last step has been much simplified) Li, arXiv:2205.05668

$$d_{A_T} \ge T = \frac{R}{L} \ .$$

SKETCH

Theorem 1 (Linear growth of complexity). Let U denote a unitary implemented by a random quantum circuit in an architecture formed from T = R/L causal slices of L gates each. The unitary's circuit complexity is lower-bounded as

$$C_{\rm u}(U) \ge \frac{R}{9L} - \frac{n}{3} ,$$

with unit probability, until the number of gates grows to $T = R/L \ge 4^n - 1$. The same bound holds for $C_{\text{state}}(U|0^n\rangle)$, until $T = R/L \ge 2^{n+1} - 1$.

Elaborate counting (last step has been much simplified) Li, arXiv:2205.05668

$$d_{A_T} \ge T = \frac{R}{L} \ .$$

SKETCH

Theorem 1 (Linear growth of complexity). Let U denote a unitary implemented by a random quantum circuit in an architecture formed from T = R/L causal slices of L gates each. The unitary's circuit complexity is lower-bounded as

$$C_{\rm u}(U) \ge \frac{R}{9L} - \frac{n}{3} ,$$

with unit probability, until the number of gates grows to $T = R/L \ge 4^n - 1$. The same bound holds for $C_{\text{state}}(U|0^n\rangle)$, until $T = R/L \ge 2^{n+1} - 1$.

SKETCH

Theorem 1 (Linear growth of complexity). Let U denote a unitary implemented by a random quantum circuit in an architecture formed from T = R/L causal slices of L gates each. The unitary's circuit complexity is lower-bounded as

$$C_{\rm u}(U) \ge \frac{R}{9L} - \frac{n}{3} ,$$

with unit probability, until the number of gates grows to $T = R/L \ge 4^n - 1$. The same bound holds for $C_{\text{state}}(U|0^n\rangle)$, until $T = R/L \ge 2^{n+1} - 1$.

SO THERE IS A LINEAR COMPLEXITY GROWTH

CONNECTION TO ENTANGLEMENT?

- Fair resolution of the Brown-Susskind conjecture
- Approximate notions desirable: Approximate in $\|.\|_{\infty}$ -norm

CONNECTION TO ENTANGLEMENT?

- Fair resolution of the Brown-Susskind conjecture
- Approximate notions desirable: Approximate in $||.||_{\infty}$ -norm
- Nielsen cost and entanglement
 - Write circuits as integral

$$U = \mathcal{P} \exp\left(-i \int_0^1 dt \sum_I y_I(t) M_I\right)$$

• Cost (common l_1 choice)

$$C := \inf \int_0^1 \sum_I |y_I(t)| ds$$

▶ Theorem 2:

$$C \ge cE, c > 0$$

Eisert, Phys Rev Lett 127, 020501 (2021)

UNITARY DESIGNS FROM CLIFFORD AND T-GATES

- Fair resolution of the Brown-Susskind conjecture
- Approximate notions desirable: Approximate in $||.||_{\infty}$ -norm
- **Unitary designs:** The generation of unitary t-designs at a depth O(nt) would imply the approximate Brown-Susskind conjecture

HOW CAN UNITARY DESIGNS BE IMPLEMENTED?

UNITARY DE

- Random Clifford circuits are unitary 3-designs
- Fair resoluti
- ightharpoonup T-gates uplift then to arbitrary order designs*
- **▶** Approxima
- **Unitary designs:** The generation of unitary t-designs at a depth O(nt) would imply the approximate Brown-Susskind conjecture

- UNITARY DE Random Clifford circuits are unitary 3-designs
- Fair resoluti
- ightharpoonup T-gates uplift then to arbitrary order designs*

- Approx
- Theorem 3: A constant (!) number of T-gates is sufficient
- **Unitary** would imply

HOW CAN COMPLEXITY CAPTURE WHAT WE CAN DO OPERATIONALLY TO A SYSTEM?

Complexity

Second law of complexity?

Brown, Susskind, Phys Rev D 97, 086015 (2018)

LANDAUER ERASURE

Landauer erasure resetting a collection of quantum systems

 $kT \log(2)$ per bit discarded in environment at temperature T

LANDAUER ERASURE

Landauer erasure resetting a collection of quantum systems

LANDAUER ERASURE

Start from high complexity pure state

SUGGESTS TRADE-OFF

COMPLEXITY-RESTRICTED ERASURE

Allow for at most *r* quantum gates

OPERATIONAL INTERPRETATION: AMOUNT OF WORK REQUIRED TO RESET A STATE FOR AN AGENT THAT CAN DO AT MOST R GATES

Theorem 4:
$$k_{\mathrm{opt}} = n - H_h^{r,1-\epsilon}(\rho)$$

Theorem 4:
$$k_{\mathrm{opt}} = n - H_h^{r,1-\epsilon}(\rho)$$

COMPLE

Allow for

A new entropy quantity that accounts for complexity

$$H_h^{r,\eta}(\rho) = \log \min_{\substack{\operatorname{tr}(Q\rho) \geq \eta \\ Q \in M_r}} \operatorname{tr}(Q) + \operatorname{How \ mixed \ must } Q \text{ be?}$$

- POVMs with at most complexity r captures most of ρ
- Variant of hypothesis testing entropy
- *Monotonous* in r, η

Appears highly mixed at this complexity scale - high Landauer cost $r \to \infty \quad H_h^\eta(\rho)$ Low Landauer cost

Not unitarily invariant

Theorem 4: $k_{\text{opt}} = n - H_h^{r,1-\epsilon}(\rho)$

STEPS TOWARDS A RESOURCE THEORY OF UNCOMPLEXITY

Uncomplexity extraction:

Distills pure qubits from a state

STEPS TOWARDS A RESOURCE THEORY OF UNCOMPLEXITY

- Uncomplexity extraction:
 Distills pure qubits from a state
 - r gates "Uncomplexity"

Uncomplexity expenditure: Imitates a state

STEPS TOWARDS A RESOURCE THEORY OF UNCOMPLEXITY

- Uncomplexity extraction: Distills pure qubits from a state

Uncomplexity expenditure:

Imitates a state

'ANOTHER BROWN-SUSSKIND CONJECTURE – WHETHER A RESOURCE THEORY OF UNCOMPLEXITY CAN BE FORMULATED - BE SHOWN?

It seems so: Governed by the complexity entropy

OPEN QUESTIONS

> Settled the linear growth conjecture due to Brown and Susskind

