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CIRCUIT AND STATE COMPLEXITY
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Complexity 1s studied to make sense
of the enormity of Hilbert space...
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CIRCUIT AND STATE COMPLEXITY

Circuit complexity of a computation captures the number of
elementary steps 1t minimally takes to determine 1ts outcome
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Separate computational tasks into ‘easy’ and ‘hard’



CIRCUIT AND STATE COMPLEXITY

Circuit complexity of a computation captures the number of
elementary steps 1t minimally takes to determine 1ts outcome
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Separate computational tasks into ‘easy’ and ‘hard’

In quantum setting relevant for phases of matter



CIRCUIT COMPLEXITY

Circuit complexity of a computation captures the number of
elementary steps 1t minimally takes to determine 1ts outcome
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ﬁDeﬁnition 1 (Exact circuit complexities). Let U & SU(Z”p
denote an n-qubit unitary. The (exact) circuit complexity
Cu(U) is the least number of two-qubit gates in any circuit
that implements U. Similarly, let |1) denote a pure quantum
state vector. The (exact) state complexity Ceate(|t))) is the
least number T of two-qubit gates U1,U, ..., U,, arranged
in any architecture, such that U Us ... U,|0™) = |¢). y
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CIRCUIT COMPLEXITY

» Circuit complexity of a computation captures the number of
elementary steps 1t minimally takes to determine 1ts outcome
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NOTORIOUSLY HARD TO COMPUTE




CIRCUIT COMPLEXITY

Circuit complexity of a computation captures the number of
elementary steps 1t minimally takes to determine 1ts outcome
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T i

The run-time of the best known algorithms for the T-count—
deciding whether the optimal gate decomposition of a cir-
cuit that 1s given as a sequence of Clifford and 1" gates on n
qubits 1involves fewer than or equal to m 1" gates or more—is
_ O(N™poly(m, N)), with N := 2". y

Gosset, Gosset, Kliuchnikov, Mosca, Russo, Quant Inf Comp 14, 1277 (2014)
Aaronson, Gottesman, Phys Rev A 70, 02328 (2004)
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Circuit lower bounds



STATES AND UNITARIES THROUGH THE GLASSES OF COMPLEXITY

»Circuit and state complexities organize unitaries and quantum states

Qe

Quantum states

Matrix product

Product states, GHZ states
states
Multi-scale
renormalization
Unitaries
Variational quantum : :
circuits, QAOA Unitary k-designs
Circuits for Polynomial

classical shadows random circuits

~

r
Long time quantum
Topological phases Thermalization chaotic dynamics
O(1) O(n) poly(n) exp(n)

—

Haar-random
unitaries




RANDOM QUANTUM CIRCUITS

»Random circuits: Proxies for quantum chaotic dynamics

» Bricklayer circuits
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Haar random gates |
Causal slice



RANDOM QUANTUM CIRCUITS

»Random circuits: Proxies for quantum chaotic dynamics

» Bricklayer circuits, random arrangements
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RANDOM QUANTUM CIRCUITS

»Random circuits: Proxies for quantum chaotic dynamics

» Bricklayer circuits, random arrangements
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RANDOM QUANTUM CIRCUITS

»Random circuits: Proxies for quantum chaotic dynamics

» Bricklayer circuits, random arrangements

—

-

-

—)

—/

—

=

-

J —

— -

-

(—

oo

) (
) (

G

—

(How

DOES THE COMPLEXITY GROW?

Haar random gates

Causal slice
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Holographic context: Complexity growth of thermofield doubles
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HOLOGRAPHY

Holographic context: Wormhole-growth paradox

~

AdS: Volume grows for
exponentially long time

) (

-
CF'T: Local observables
equilibrating?
)
D

Brown, Roberts, Susskind, Swingle, Zhao, Phys Rev Lett 116, 191301 (2016

Brown, Roberts, Susskind, Swingle, Zhao, Phys Rev D 93, 086006 (2016

Chapman, Eisert, Hackl, Heller, Jefferson, Marrochio, Myers, SciPost Phys 6, 034 (2019
(

Brown, Susskind, Phys Rev D 97, 086015 (2018
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BROWN SUSSKIND CONJECTURE FOR RANDOM QUANTUM CIRCUITS

» Brown-Susskind conjecture: Linear growth until exponential time

-

Complexity, Cu

%

exp(Q(n)) /

(ACTUALLY HARDLY MATTER

THIS WOULD MEAN THAT ‘CANCELLATIONS”

Brown, Susskind, Phys Rev D 97, 086015 (2018)



BROWN SUSSKIND CONJECTURE FOR RANDOM QUANTUM CIRCUITS

ZBUT HOW CAN THIS BE JUDGED?j
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SKETCH OF THE PROOF

(Contraction map h (Accessible dimension h
———*
FA . L)X R on da = dim(U(A
. SU(4)*® — sU@2"). o da (U(A)) )

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)



SKETCH OF THE PROOF

(Contraction map h (Accessible dimension h
——-——*
FA . L)X R on da = dim(U(A
. SU(4)*® — sU@2"). o da (U(A)) )

SU(4)] R Contraction map

U5 UR I L
) ) _Q:@:\;_
Choices of U
unitary gates s

Architecture A Image U(A)

/

“Reachable set”

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)



SKETCH OF THE PROOF

(. :
Contraction map

\—

FA . SU4)*E - SU(2"

A " Accessible dimension* |
—-ﬁ
ds = dim(U(A
) i = dimU(4)

* U(A)is not a manifold, but a semialgebraic set,
by virtue of Tarski-Seidenberg principle

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)
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rContrac:tion map rA(:cessible dimension*\

FA : SUM4)*E - SU(2") o das dim(U(A))

-

* U(A)is not a manifold, but a semialgebraic set,
by virtue of Tarski-Seidenberg principle

Rank of ' in = important; Rank of a matrix that
approximates F** linearly around x

Prove that F“*has the same rank throughout the
domain, except on a measure-zero set

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)



SKETCH OF THE PROOF

rContra(:tion map R rAccessible dimension>x<1
—b .
FA :SUM4)E — SU(Z")J . da = dim(U(A)) )

_

v

Lemma 1 (Low-rank locus). The low-rank locus E ,___isan
algebraic set of measure 0 and so is closed (in the Lie-group
topology). Equivalently, E is an open set of measure 1.

'r'm ax

LConsequently, d4a = Tmax- )

4 )

* U(A)is not a manifold, but a semialgebraic set,
by virtue of Tarski-Seidenberg principle

Rank of ' in = important; Rank of a matrix that
approximates F** linearly around x

Prove that F“*has the same rank throughout the
domain, except on a measure-zero set

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)



SKETCH OF THE PROOF
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(. :
Contraction map
F4 :SU(4

~

—

)X SU(Z")J

Accessible dimension™

. dya = dim(U(A)) )

v

-

Lemma 1 (Low-rank locus). The low-rank locus E ,___is anx
algebraic set of measure 0 and so is closed (in the Lie-group

topology). Equivalently, E
LConsequently, d4a = Tmax-

max

is an open set of measure 1.

J

Identify an z where r grows linearly with R

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)



SKETCH OF THE PROOF

rContraction map R rAccessible dimensiom*j
—-ﬁ
A . ot n dy = dim(U(A
| FA:SU@) R - su@n) | da im(U(A)) )

v

Lemma 1 (Low-rank locus). The low-rank locus E ,___isan
algebraic set of measure 0 and so is closed (in the Lie-group
topology). Equivalently, E is an open set of measure 1.

max

LConsequently, da = Tmax- )

4 A

Identity an « where r grows linearly with R

Demonstrate the point’s existence by perturbing Clifford circuits,
‘appending infinitesimal unitaries’, ‘count independent directions’

E;ﬁtﬁ _ E = 9@%}(

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)




SKETCH OF THE PROOF

fContraction map R fAccessible dimension*\
—ﬁ
FA4 : SU4)*E SU(2™ dy = dim(U(A
_ (4)"" = SU( )J . (¢(4)) J

v

Lemma 1 (Low-rank locus). The low-rank locus E ,___is anw
algebraic set of measure 0 and so is closed (in the Lie-group
topology). Equivalently, E is an open set of measure 1.

max

LConsequently, da = Tmax- )

.

Proposition 1 (Lower bound of accessible dimension). Let
At denote an architecture with R = T'L gates. Assume that
A consists of causal slices of < L gates each. The architec-
ture’s accessible dimension is lower-bounded as

day >T ="

\_ - L Yy

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)
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SKETCH OF THE PROOF

Elaborate counting

Proposition 1 (Lower bound of accessible dimension). Let
At denote an architecture with R = T'L gates. Assume that
A consists of causal slices of < L gates each. The architec-
ture’s accessible dimension is lower-bounded as

day >T ="

\_ - L Yy

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)




SKETCH OF THE PROOF

da <9R + 3n
Let R be less than a linear fraction of R:9R' +3n < T = R/L

For every ?'gate architecture A',d 4 < d 4..holds

Almost every U € U/(Ar)has complexity greater than greatest
possible R’

Elaborate counting (last step has been much simplified) v aov:2205 05668

Proposition 1 (Lower bound of accessible dimension). Let
At denote an architecture with R = T'L gates. Assume that
A consists of causal slices of < L gates each. The architec-
ture’s accessible dimension is lower-bounded as

day >T ="

\_ - L Y,

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)




SKETCH ( Theorem 1 (Linear growth of complexity). Let U denote a\
unitary implemented by a random quantum circuit in an ar-
chitecture formed from T' = R/L causal slices of L gates
each. The unitary’s circuit complexity is lower-bounded as

R n
>
CulU) 2 9L 3

with unit probability, until the number of gates grows to T’ =
R/L > 4™ —1. The same bound holds for Cg; 41 (U|0™)), until
\T:R/LEZ”H—L y

Elaborate counting (last step has been much simplified) v aov:2205 05668

Proposition 1 (Lower bound of accessible dimension). Let
At denote an architecture with R = T'L gates. Assume that
A consists of causal slices of < L gates each. The architec-
ture’s accessible dimension is lower-bounded as

day >T ="

\_ - L Yy

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)




SKETCH ( Theorem 1 (Linear growth of complexity). Let U denote a\
unitary implemented by a random quantum circuit in an ar-
chitecture formed from T' = R/L causal slices of L gates
each. The unitary’s circuit complexity is lower-bounded as

R n
>
CulU) 2 9L, 3’

with unit probability, until the number of gates grows to I’ =

- R/L > 4™ —1. The same bound holds for Cg; 1 (U|0™)), until
_ n+1 __

T'= R/L > 2 1. y

Complexity, Cu

exp(§2(n))

; » Time, T’

exp(§2(n))
\_ Y,

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)




SKETCH ( Theorem 1 (Linear growth of complexity). Let U denote a\

unitary implemented by a random quantum circuit in an ar- |-
chitecture formed from T' = R/L causal slices of L gates
each. The unitary’s circuit complexity is lower-bounded as

R n
>
CulU) 2 9L, 3’

with unit probability, until the number of gates grows to I’ =

R/L > 4™ —1. The same bound holds for Cg; 41 (U|0™)), until
( T=R/[L>92"1 1 y

SU THERE IS A LINEAR COMPLEXITY GROWTH

exp(§2(n))

; » Time, T’

exp(£2(n))
\_ Y,

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)




e | : ol 3 N
) . TR -
. / R o
' o\\ . » - : “‘ - ) -
. : e = i (it . ‘t@. ¥ . |
~ ~ \ A >
R Pl R e T

INTERLUDE: APPROXIMATE NOTIONS? CONNECTIONS
TO ENTANGLEMENT? TO UNITARY DESIGNS?




CONNECTION TO ENTANGLEMENT?

Fair resolution of the Brown-Susskind conjecture

Approximate notions desirable: Approximate in||.|| o, -norm

Haferkamp, Faist, Kothakonda, Eisert, Yunger-Halpern, Nature Physics 18, 528 (2022)
Bouland, Fefferman, Vazirani, arXiv:1910.14646

Brandao, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Quantum 2, 030316 (2021)
Dowling, Nielsen, Quant Inf Comp 8, 861-899 (2008)



CONNECTION TO ENTANGLEMENT?

Fair resolution of the Brown-Susskind conjecture

Approximate notions desirable: Approximate in||.|| o, -norm

Nielsen cost and entanglement

Write circuits as integral

U ="Pexp (z /1 dtZyI(t)M{)

Cost (common/; choice)

e inf/o S lurlds | (T

Theorem 2: [.:{;
C>ckE,c>0

k Eisert, Phys Rev Lett 127, 020501 (2021)

Compare Balasubramanian, DeCross, Kar, Parrikar, arXiv:1811.04085 (2018)
Susskind, arXiv:1411.0690 (2014)



UNITARY DESIGNS FROM CLIFFORD AND T-GATES

Fair resolution of the Brown-Susskind conjecture

Approximate notions desirable: Approximate in ||. || -norm

Unitary designs: The generation of unitary #-designs at a depthO(nt)
would 1mply the approximate Brown-Susskind conjecture

[HUW CAN UNITARY DESIGNS BE IMPLEMENTED?}

Brandao, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Quantum 2, 030316 (2021)
Brandao, Harrow, Horodecki, Phys Rev Lett 116, 170502 (2016)
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Random Clifford circuits are unitary 3-designs

Fair resoluti ” 1 -gates uplift then to arbitrary order designs®

Approxima\_ Y,

Unitary designs: The generation of unitary 7-designs at a depthO(nt)
would imply the approximate Brown-Susskind conjecture

*In approximate sense

Brandao, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Quantum 2, 030316 (2021)
Brandao, Harrow, Horodecki, Phys Rev Lett 116, 170502 (2016)



UNITARY DE

4 . C)
»Random Clifford circuits are unitary 3-designs

»Fair resoluti

»T'-gates uplift then to arbitrary order designs™

»Appro

»Theorem 3: A constant (!) number of T-gates is sufficient

»Unitary o

would imp]v arXiv:2002.09524 (2022)

O/ \ I UU/
Haferkamp, Montaelegre-Mora, Heinrich, Eisert, Gross, Roth, Comm Math Phys (2022)

Compare also Zhou, Yang, Hamma, Chamon, arXiv:1906.01079

LI ...I.A -

Brandao, Chemissany, Hunter-Jones, Kueng, Preskill, PRX Quantum 2, 030316 (2021)
Brandao, Harrow, Horodecki, Phys Rev Lett 116, 170502 (2016)




WHAT ARE THERMODYNAMIC IMPLICATIONS? CAN A
RESOURCE THEORY OF UNCOMPLEXITY BE DEFINED?




THINKING IN OPERATIONAL TERMS

"HOW CAN COMPLEXITY CAPTURE WHAT WE
CAN DO OPERATIONALLY TO A SYSTEM?

J

Yunger Halpern, Kothakonda, Haferkamp, Munson, Eisert, Faist, Phys Rev A 106, 062417 (2022) (2021)
Munson, Kothakonda, Haferkamp, Yunger-Halpern, Eisert, Faist, in preparation (2023)



THINKING IN OPERATIONAL TERMS

)

Low complexity Complexity
pure states



THINKING IN OPERATIONAL TERMS

»Second law of
Low complexity compleXIty? Complexity

pure states Brown, Susskind, Phys Rev D 97,
086015 (2018)




THINKING IN OPERATIONAL TERMS

Entropy

f?

»Second law of
Low complexity compleXIty? Complexity

pure states Brown, Susskind, Phys Rev D 97,
086015 (2018)




THINKING IN OPERATIONAL TERMS

Entropy by a macroscopic observer?

CWhat processes can be performed]

»Second law of
thermodynamics r?

»Second law of
Low complexity compleXIty? Complexity

pure states Brown, Susskind, Phys Rev D 97,
086015 (2018)




THINKING IN OPERATIONAL TERMS

CWhat processes can be performed]

Entropy by a macroscopic observer?
»Second law of
thermodynamics r? ,
. » How can computational resources
to carry out a process be captured?

» Second law of

Low complexity complemty?

pure states

Complexity

Brown, Susskind, Phys Rev D 97,
086015 (2018)



LANDAUER ERASURE

Landauer erasure resetting a collection of quantum systems

- ~—0)
L —10) Reset register
7 — —|0)
9 — —|0)
)

? .=

Erasure requires
thermodynamic work

S

kT log(2) per bit discarded in environment at temperature T

Landauer, IBM J Res Dev 5, 183 (2015)
Bennett, Stud Hist Phil Mod Phys 34, 501 (2003)
Reeb, Wolf, New J Phys 16, 103011 (2014)



LANDAUER ERASURE

Landauer erasure resetting a collection of quantum systems

S

— A

—1 Schumacher |- L

P compression

S

Reset register

|

S

kT log(2)H"'~¢(p)total work cost

Brandao, Horodecki, Oppenheim, Renes, Spekkens, Phys Rev Lett 111, 250404 (2013)
Faist, Dupuis, Oppenheim Renner, Nature Comm 6, 7669 (2015)



LANDAUER ERASURE

»Start from high complexity pure state

S

— -

|
|
-

Reset register

<

~~—"
||
|

S

Reset using Landauer

erasure at little complexity Uncompute at no work

cost, but at high complexity

( SUGGESTS TRADE-OFF |

Brandao, Horodecki, Oppenheim, Renes, Spekkens, Phys Rev Lett 111, 250404 (2013)
Faist, Dupuis, Oppenheim Renner, Nature Comm 6, 7669 (2015)




COMPLEXITY-RESTRICTED ERASURE

» Allow for at most » quantum gates

JUqUAL

e

J

ﬁ\_

S

r gates

Reset using
[Landauer erasure

O}l
0) \ k to be maximized

0

 OPERATIONAL INTERPRETATION: AMOUNT OF WORK REQUIRED TO
_RESET A STATE FOR AN AGENT THAT CAN DO AT MOST R GATES

J

(»Theorem 4: kopt =M — Hg’l_e(pD

Yunger Halpern, Kothakonda, Haferkamp, Munson, Eisert, Faist, Phys Rev A 106, 062417 (2022) (2021)

Munson, Kothakonda, Haferkamp, Yunger-Halpern, Eisert, Faist, in preparation (2023)
Brandao, Datta, |IEEE Trans Inf Th 57,1754 (2011)



COM PLE)( A new entropy quantity that accounts for complexity

Allow fo H;"(p) =log min tr(Q) €~ How mixed
| tr(Qp)2m must O be?
QEM,
e — POVMs with at
] most complexity r
0 ) captures most of p
S | (]
— U\ J
U L]
—— ———
r gates
C Theorem 4: k,,c =n — H;;’l_e(pD

Yunger Halpern, Kothakonda, Haferkamp, Munson, Eisert, Faist, Phys Rev A 106, 062417 (2022) (2021)
Munson, Kothakonda, Haferkamp, Yunger-Halpern, Eisert, Faist, in preparation (2023)
Brandao, Datta, |IEEE Trans Inf Th 57,1754 (2011)
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COM PLE)( A new entropy quantity that accounts for complexity
Allow fo. H;""(p) =log min tr(Q) €¢——— How mixed
tr(Qp)2n must O be?
QeM,
e A POVMs with at
| most complexity r
0 ) captures most of p
| (]
Variant of hypothesis testing entropy
) Monotonous mr,n
—_ Appears highly mixed at this
< . complexity scale - high Landauer cost
E r— oo Hp(p)
! Low Land»auer cost
Not unitarily invariant
N ' Y

C Theorem 4: k,,c =n — H;;’l_e(pD

Yunger Halpern, Kothakonda, Haferkamp, Munson, Eisert, Faist, Phys Rev A 106, 062417 (2022) (2021)
Munson, Kothakonda, Haferkamp, Yunger-Halpern, Eisert, Faist, in preparation (2023)
Brandao, Datta, |IEEE Trans Inf Th 57,1754 (2011)




STEPS TOWARDS A RESOURCE THEORY OF UNCOMPLEXITY

»Uncomplexity extraction:
Distills pure qubits from a state

— D B
1000 Lny
G

e /)

r gates

“Uncomplexity”

Yunger Halpern, Kothakonda, Haferkamp, Munson, Eisert, Faist, Phys Rev A 106, 062417 (2022) (2021)
Munson, Kothakonda, Haferkamp, Yunger-Halpern, Eisert, Faist, in preparation (2023)



STEPS TOWARDS A RESOURCE THEORY OF UNCOMPLEXITY

»Uncomplexity extraction: »Uncomplexity expenditure:
Distills pure qubits from a state Imitates a state

100 0F =T10-0-0T
» 1 AU —o>l [o>— ~U-UA L p?
O 4 O i | O

r gates V r gates Agent

“Uncomplexity”

Yunger Halpern, Kothakonda, Haferkamp, Munson, Eisert, Faist, Phys Rev A 106, 062417 (2022) (2021)
Munson, Kothakonda, Haferkamp, Yunger-Halpern, Eisert, Faist, in preparation (2023)



STEPS TOWARDS A RESOURCE THEORY OF UNCOMPLEXITY

»Uncomplexity extraction: »Uncomplexity expenditure:
Distills pure qubits from a state Imitates a state

70,00F  ={T0.007)
1 e 1= rHE
10U o) (o g ) o 0 P I O
0 Ou,i_gij lgiau DUJJ

r gates V r gates Agent

“Uncomplexity”

( CAN YET ANOTHER BROWN-SUSSKIND CONJECTURE - WHETHER A
kRES[]URCE THEORY OF UNCOMPLEXITY CAN BE FORMULATED - BE SHOWN?)

It seems so: Governed by the complexity entropy

~

Yunger Halpern, Kothakonda, Haferkamp, Munson, Eisert, Faist, Phys Rev A 106, 062417 (2022) (2021)
Munson, Kothakonda, Haferkamp, Yunger-Halpern, Eisert, Faist, in preparation (2023)









OPEN QUESTIONS

» Settled the linear growth conjecture due to Brown and Susskind

( COMPLEXITY WITH MEASUREMENTS )
( ENTANGLEMENT? )

( APPROXIMATE NOTIONS?)

N\
N\

(HOLOGRAPHIC SETTING? )

‘CONNECTIONS TO
QUANTUM CHAOS?




OPEN QUESTIONS

THANKS FOR YUUR ATTENTION!

CUMPLEXIW WITH MEASUREMENTS)
( ENTANGLEMENT? )

( APPROXIMATE NOTIONS?)

N\
N\

(HOLOGRAPHIC SETTING?) 4

/¢ \

CUNNECTIUNS TU NIELSEN'S COST? |
QUANTUM CHAUS'? 3

(QUANTUM ERROR CORRECTION? )




