Quantum simulation -Engineering quantum systems atom-by-atom

Monika Aidelsburger

Ludwig-Maximilians Universität München Munich Center for Quantum Science & Technology

www.sqm.physik.lmu.de

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

European

- Research
- Council

Motivation

Quantum simulation with ultracold atoms in optical lattices:

• Atoms confined in periodic potentials

- Quantum simulation of Hubbard models
- Access to local observables using quantum gas microscopes

I. Bloch et al. Rev. Mod. Phys. 80, 885 (2008); C. Gross and I. Bloch, Science 357 (2017)

Quantum simulation with neutral atoms

Anti-ferromagnetic correlations in the Fermi-Hubbard model:

A. MARUZENKO, ... M. GREINER, NATURE (2017)

Direct implementation of Hamiltonian

Thermalization of isolated quantum-many body systems:

Disorder strength $\Delta/J = 13$

J. Y. Choi, ..., I. Bloch, Science **352**, 1547 (2016)

$$|\psi(t)\rangle = \mathrm{e}^{-i\hat{H}t/\hbar}|\psi_0\rangle$$

High-NA objective

W. S. Bakr et al., Nature **462**, 74 (2009); J. F. Sherson et al. Nature **467**, 68 (2010) L. Cheuk et al. PRL **114**, 193001 (2015); E. Haller et al. Nat. Phys. **11**, 738 (2015); M. F. Parsons et al., PRL **114**, 213002 (2015), ...

Fluorescence imaging in deep lattices

- Single-site resolved observables (correlations, full counting statistics, ...)
- Site-selective addressing

Selected examples:

Rb atoms, Greiner

Rb atoms, Bloch

K atoms, Zwierlein

Yb atoms, Kozuma

Li atoms, Choi

Review: C. Gross and W. Bakr, Nature Phys. (2021)

K atoms, Kuhr

K atoms, Thywissen

LI ATOMS, SCHAUSS

- Large homogeneous systems
- High fidelity preparation & detection
- Novel model Hamiltonians
- Large energy scales

Realization of large homogeneous systems

A. Impertro, J. F. Wienand, S. Häfele, H. von Raven, S. Hubele, T. Klostermann, C. R. Cabrera, I. Bloch, MA, arXiv:2212.11974 T. Klostermann et al, Phys. Rev. A 105, 2022; PhD Theses Klostermann & von Raven; Master thesis Hubele

Potential shaping using a digital micromirror device

Benchmarking via thermalization dynamics

Hard-core bosons in 1D

Ballistic spreading of density-density correlations over large distances!

Selected examples:

Rb atoms, Greiner

Rb atoms, Bloch

K atoms, Zwierlein

Yb atoms, Kozuma

Li atoms, Choi

Review: C. Gross and W. Bakr, Nature Phys. (2021)

K atoms, Kuhr

K atoms, Thywissen

LI ATOMS, SCHAUSS

- Repetition rate
- Local control

Repetition rate ~20s

Science cell: ~10⁻¹¹mbar / ~nK degenerate quantum gas

Bose-Einstein condensate

Transport

Degenerate Fermi Gas

Magneto-optical trap & Raman cooling: $\sim \mu K$

Atom source

Tweezer programmable quantum walks

Young,..., Kaufman, Science **377**, 885 (2022)

see also work by C. Regal and W. Bakr

Tweezer-assisted preparation

- Fast cycle times by direct laser cooling in deep optical traps
- Initial states require rearrangement of atoms

Ebadi, ..., Lukin, Nature **595**, 227 (2021)

What can we simulate?

Topological phases of matter

K. Klitzing, Rev. Mod. Phys. (1986) STORMER ET AL., REV. MOD. PHYS. (1999)

REVIEW: X.-L. QI & S.-C. ZHANG, REV. MOD. PHYS. (2011)

L. LU ET AL., SCIENCE (2015) S.-Y. XU ET AL., SCIENCE (2015)

Weyl semimetals

Realizing artificial magnetic fields

Phase around closed loop:

$$-\sum_{\langle i,j\rangle} J_{ij}\hat{a}_i^{\dagger}\hat{a}_j + \text{h.c.}$$

- Charged particles in magnetic field→ acquire geometric phase

ierls substitution:
$$J_{ij}
ightarrow J_{ij} {
m e}^{i \phi_j}$$

$$_{j} = rac{q}{\hbar} \int_{x_{j}}^{x_{i}} \mathrm{Adl}, \quad \mathrm{B} = \nabla imes \mathrm{Adl},$$

$$=2\pi\frac{\Phi_B}{\Phi_0}$$

 Φ_B : magn. flux $\Phi_0 = h/q$: magn. flux quantum

Realizing artificial magnetic fields

Phase around closed loop:

$$\hat{H} = -\sum_{\langle i,j \rangle} J_{ij} \hat{a}_i^{\dagger} \hat{a}_j + \text{h.c.}$$

 \Rightarrow Large magnetic fields on the order of

$$=2\pi\frac{\Phi_B}{\Phi_0}$$

 Φ_B : magn. flux $\Phi_0 = h/q$: magn. flux quantum

- Time-periodic driven Hamiltonian $\hat{H}(t) = \hat{H}(t+T)$
- Stroboscopic time evolution governed by effective Floquet Hamiltonian \hat{H}^F

$$\hat{U}(T,0) = \exp\left(-\frac{i}{\hbar}T\hat{H}^{F}\right)$$

Engineer \hat{H}_F with topological properties!

N. GOLDMAN ET AL. PRX (2014); M. BUKOV ET AL. ADV. IN PHYS. (2015); A. ECKARDT, REV. MOD. PHYS. (2017)

Floquet engineering

Lattice 'cyclotron' orbits

MA, ..., Bloch, Phys. Rev. Lett. 107, 255301 (2011)

Topological lattice models

Hofstadter model

HARPER, PROC. PHYS. SOC., SECT.A **68**, 874 (1955) AZBEL, ZH. EKSP. TEOR. FIZ. 46, 929 (1964) HOFSTADTER, PRB **14**, 2239 (1976)

REVIEW: N. COOPER ET AL. REV. MOD. PHYS. 91, 015005 (2019)

Haldane model

HALDANE, PRL 61, 2015 (1988)

 $\hat{H} = \sum_{\langle ij \rangle} t_{ij} \hat{c}_i^{\dagger} \hat{c}_j + \sum_{\langle \langle ij \rangle \rangle} e^{i\Phi_{ij}} t_{ij}' \hat{c}_i^{\dagger} \hat{c}_j + \Delta_{AB} \sum_{i \in A} \hat{c}_i^{\dagger} \hat{c}_i$

MA ET AL., PRL (2013); H. MIYAKE ET AL., PRL (2013) E. M. TAI ET AL., NATURE (2017)

G. Jotzu et al., Nature (2014) ;Tarnowski et al., Nat. Comm. (2019)

Topological invariants

Chern number:

Berry curvature: $\Omega_{\mu} = i \left(\langle \partial_{q_x} u_{\mu} \rangle \right)$

Weitenberg/Sengstock

M. Atala, et al., Nat. Phys. (2013); L. Duca et al., Science (2015)
G. Jotzu et al., Nature (2014); M. A. et al., Nature Phys. (2015)
N. Fläschner, Science (2016); T. Li, Science (2016)
Tarnowski et al., Nat. Comm. (2019);
L. Asteria et al., Nat. Phys. (2019);
B. Rem et al., Nat. Phys. (2019);

 $|u_{\mu}(\mathbf{q})\rangle$: periodic Bloch function μ : band index

$$\langle |\partial_{q_y} u_\mu \rangle - \langle \partial_{q_y} u_\mu | \partial_{q_x} u_\mu \rangle$$

(selected) experimental results

Atala, MA, ..., Bloch, Nat. Phys. (2014)

REVIEWS: N. COOPER ET AL. REV. MOD. PHYS. 91, 015005 (2019); MA ET AL. C. R. PHYSIQUE 19, 394-432 (2018),

MA, ..., Bloch, Nat. Phys. (2015)

Léonard, ..., Greiner, arXiv:2210.10919

How to generate topological edge modes?

Synthetic dimensions

Mancini, ..., Fallani, Science **349** (2015) Stuhl, ..., Spielman, Science **349** (2015)

See also: Chalopin, ..., Nascimbène, Nature Physics (2020)

Realizing a sharp edge:

Width of the edge: 2-3 lattice sites!

Edge dynamics

638nm light (repulsive)

=

loc. wavepacket

Edge dynamics in anomalous regime

f=7kHz, m=0.25

Edge dynamics in anomalous regime

f=7kHz, m=0.25

Application: Quantum Simulation of gauge theories

Engineering novel Hamiltonians

Topological phases / artificial magnetic fields:

Hofstadter/Haldane model

Zurich, Harvard, MIT, Hamburg, NIST, LENS, Chicago,

Engineered field depends on site occupation

But: No Gauss's law!

Gauge theories

Gauge theories

Challenges for Quantum simulation:

- Implement matter and gauge fields
- Realize local symmetries (Gauss's law)

U.-J. WIESE ET AL. ANN. PHYS. 525, 777-796 (2013); E. ZOHAR ET AL. REP. PROG. PHYS. 79, 014401 (2015); M. Dalmonte et al. Contemp. Phys. 57, 388-412 (2016); M. Banuls et al. Eur. Phys. J. D 74, 165 (2020)

K. G. WILSON

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}$$

Quantum electrodynamics in 1D lattice Schwinger model

$$H_{\text{LGT}} = -w \sum_{j} \left(\psi_j^{\dagger} U_{j,j+1} \psi_{j+1} + \text{h.c.} \right)$$
$$+m \sum_{j} (-1)^j \psi_j^{\dagger} \psi_j + g \sum_{j} E_{j,j+1}^2$$

Kogut & Susskind, PRD 11, 395 (1975) Chandrasekharan & Wiese, Nucl. Phys. B 492, 455 (1997)

gauge-invariant matter-gauge coupling

- w : nearest-neighbor
 tunneling
- *m* : mass of "positrons" and "electrons"
- $E_{j,j+1}$: electric field operator

$$[E_{i,i+1}, U_{j,j+1}] = \delta_{i,j} U_{j,j+1}$$

Quantum electrodynamics in 1D lattice Schwinger model

$$H_{\text{LGT}} = -w \sum_{j} \left(\psi_{j}^{\dagger} U_{j,j+1} \psi_{j+1} + \text{h.c.} \right)$$
$$+m \sum_{j} (-1)^{j} \psi_{j}^{\dagger} \psi_{j} + g \sum_{j} E_{j}^{\dagger} E_{j}^{\dagger}$$

Kogut & Susskind, PRD 11, 395 (1975) Chandrasekharan & Wiese, Nucl. Phys. B 492, 455 (1997)

Quantum electrodynamics in 1D lattice Schwinger model

$$H_{\text{LGT}} = -w \sum_{j} \left(\psi_j^{\dagger} U_{j,j+1} \psi_{j+1} + \text{h.c.} \right)$$
$$+m \sum_{j} (-1)^j \psi_j^{\dagger} \psi_j + g \sum_{j} E_{j,j+1}^2$$

Kogut & Susskind, PRD 11, 395 (1975) Chandrasekharan & Wiese, Nucl. Phys. B 492, 455 (1997)

Local charge:

$$q_{j} = \psi_{j}^{\dagger} \psi_{j} - \frac{1 - (-1)^{j}}{2}$$

Gauss's law:

$$G_j = E_{j,j+1} - E_{j-1,j} - q_j$$

Physical states: $G_j |\Psi\rangle = 0$

Quantum electrodynamics in 1D lattice Schwinger model

$$H_{\text{LGT}} = -w \sum_{j} \left(\psi_{j}^{\dagger} U_{j,j+1} \psi_{j+1} + \text{h.c.} \right)$$
$$+m \sum_{j} (-1)^{j} \psi_{j}^{\dagger} \psi_{j} + g \sum_{j} E_{j}^{\dagger} E_{j}^{\dagger}$$

Kogut & Susskind, PRD 11, 395 (1975) Chandrasekharan & Wiese, Nucl. Phys. B 492, 455 (1997)

Spin-1/2 quantum link model (QLM):

$$E_{j,j+1} \to S^z$$
$$U_{j,j+1} \to S^+$$

reduced Hilbert-space for link operators

Basic dynamics:

pair creation/annihilation

Kogut & Susskind, PRD 11, 395 (1975) Chandrasekharan & Wiese, Nucl. Phys. B 492, 455 (1997)

Spin-1/2 quantum link model (QLM):

$$E_{j,j+1} \to S^z$$
$$U_{j,j+1} \to S^+$$

reduced Hilbert-space for link operators

State-of-the-art

Few-ion quantum simulation

particle-antiparticle creation processes

E. A. Martinez et al. Nature **534**, 516-519 (2016); N. H. Nguyen et al. PRX Quantum **3**, 020324 (2022)

Gauge-fields are eliminated \leftrightarrow exotic long-range interactions

Rydberg atom arrays

H. BERNIEN ET AL. NATURE **551**, 579 (2017); F. M. SURACE ET AL. PHYS. REV. X 10, 021041 (2020)

Matter-fields are eliminated

Building block

Z₂ LGT:

C. Schweizer,..., MA, NAT. Phys. **15**, 1168-1173 (2019)

U(1) LGT:

A. MIL ET AL. SCIENCE **367**, 1128-1130 (2020)

Bosonic atoms in tilted optical superlattices

B. YANG ET AL. NATURE 587, 392-396 (2020) Z.-Y. ZHOU ET AL., SCIENCE 377, 311 (2022) H.-Y. WANG ET AL., ARXIV:2210.17032 (2022)

> Our goal:

• Simulate gauge field & fermionic matter • Simulation of 2D QLMs • Extension to non-Abelian

Proposed experimental scheme

• State-dependent triplewell lattice

• Building block: correlated hopping of fermions

The scheme

S=1/2 quantum link model

• State-dependent triplewell lattice

• Ab initio calculations:

N. Darwah Oppong

F. Surace

F. M. Surace, P. Promholz, N. Darkwah Oppong, M. Dalmonte, MA, arXiv:2301.03474

The scheme

S=1/2 quantum link model

P. Fromholz

M. Dalmonte

Experimental platform & current status

Novel hybrid tweezer-lattice platform

Optical lattices:

large-scale systems, defect free

Optical tweezers:

local dynamical control

M. Endres, Science (2016)

D. BARREDO, SCIENCE (2016)

Implementation

ground- and excited clock state of Yb

Why Alkaline-earth(-like) atoms

State-dependent potentials

V. A. Dzuba and A. Derevianko, J. Phys. B: At. Mol. Opt. Phys. 43 074011 (2010)

State-dependent potentials

V. A. DZUBA AND A. DEREVIANKO, J. PHYS. B: AT. MOL. OPT. PHYS. 43 074011 (2010)

Experimental setup

Goal: Direct loading of lattice & rearrangement using optical tweezer

A. Young,..., A. Kaufman, arXiv:2202.01204

Optical clock spectroscopy

1D lattice:

759nm, ~600Er, ~10⁵ atoms @ 15μ K

Summary & Outlook

Loading atoms into tweezer

Optical Test Setup, Strehl Ratio >0.85

Recent Update

¹⁷⁴Yb atoms in tweezer array

- Short cycle times < 0.5s
- Good imaging fidelity

U(1) lattice gauge theories with fermionic Yb in 1D and 2D

Etienne Staub, Tim Höhn, Clara Bachorz Bharath Hebbe Madhusudhana Dalila Robledo, Guillaume Brochier

F. M. Surace, P. Promholz, N. Darkwah Oppong, M. Dalmonte, MA, arXiv:2301.03474

Europea

Simon

Karch

Ignacio Perez

Christian Schweizer

Scott Hubele

T. Klostermann, ..., MA, Phys. Rev. A 105, 043319 (2022); Alexander Impertro, ..., MA, arXiv:2212.11974

Cs quantum gas microscope

Sophie Häfele

Alexander Impertro,

Cesar Cabrera Hendrik von Raven, Julian Wienand Till Klostermann, MA, Immanuel Bloch

Cs atoms

Thank you