Superconducting circuits for quantum technologies

Yasunobu Nakamura

RIKEN Center for Quantum Computing

Department of Applied Physics, Graduate School of Engineering, The University of Tokyo

RIKEN Center for Quantum Computing (RQC)

since April 2021

RQC PIs

Tomotaka Kuwahara

Eisuke Abe

Bartosz Regula

JawShen Tsai

Seigo Tarucha

Shintaro Sato

Shinichi Yorozu

Yutaka Tabuchi

Seiji Yunoki

Atsushi Noguchi

Keisuke Fujii

Daniel Loss

RQC research topics

Superconducting quantum computers

Optical quantum computers

Silicon quantum computers

Other quantum platforms

Quantum computing theory

20th century: Century of quantum mechanics

1900 Blackbody radiation (Planck)1905 Photoelectric effect (Einstein)1913 Bohr model of atoms

1925 Matrix mechanics (Heisenberg) 1925 Wave mechanics (Schrödinger)

1928 Band theory in solids (Bloch)

Moore's law 1965~

20th century: Century of Quantum Mechanics 21st century: Century of Quantum Information Science

Our challenge: How far can we control quantum systems in terms of the number of degrees of freedom, time, speed, precision, etc.?

Schrödinger's paradox

Macro-realism vs. Quantum mechanics

Schrödinger 1935

Dead and Alive

Macroscopic quantum coherence

Leggett 1980

Superconducting loop with a Josephson junction

$$H = -\frac{E_J}{2} \sum_{n} \left\{ |n\rangle \langle n+1| + |n+1\rangle \langle n| \right\} = -\int_0^{2\pi} d\theta E_J \cos \theta |\theta\rangle \langle \theta|$$

1D tight-binding model \Rightarrow Bloch band

$$|\theta\rangle = \sum_{n} e^{in\theta} |n\rangle$$

Macroscopic quantum tunneling

Energy level quantization

J. M. Martinis, M. H. Devoret, et al. PRB 35, 4682 (1987). R.F. Voss and R.A. Webb (IBM), PRL 47, 265 (1981); D.B. Schwarz et al. (SUNY), PRL 55, 1547 (1985).

Single-electron devices

Superposition of charge-number states in Cooper-pair box

Spectroscopy of Energy-Level Splitting between Two Macroscopic Quantum States of Charge Coherently Superposed by Josephson Coupling

> Y. Nakamura, C. D. Chen, and J. S. Tsai NEC Fundamental Research Laboratories, Tsukuba, Ibaraki 305, Japan (Received 16 April 1997) PRL 1997

Superposition of charge-number states in Cooper-pair box

V. Bouchiat et al. Phys. Scr. T76, 165 (1998) Saclay

Superconducting quantum bits

Charge qubit

Flux qubit

Chiorescu, YN, Harmans, Mooij, Science (2003)

Artificial two-level system in circuits Coherent control of macroscopic system

YN, Pashkin, Tsai, Nature (1999)

Superconducting qubit – nonlinear resonator

inductive energy = confinement potential charging energy = kinetic energy ⇒ quantized states

- Josephson effect ⇒ Strong nonlinearity
- Macroscopic size \Rightarrow Strong coupling

Possible decoherence sources

Coherence time of superconducting qubits

W. D. Oliver and P. Welander, MRS BULLETIN 38, 816 (2013) MIT-LL

Scaling-up superconducting quantum computers

54 qubits

Google AI Quantum Nature 574, 505 (2019)

127 qubits

IBM

https://www.ibm.com/blogs/think/jp-ja/wpcontent/uploads/sites/21/2021/11/IBM_ChipO pen_BLK_1000x1000.jpg

66 qubits

USTC Phys. Rev. Lett. 127, 180501 (2021)

Scaling-up superconducting quantum computers

72 qubits

Google AI Quantum arXiv:2207.06431

433 qubits

IBM

https://www.ibm.com/quantum/roadmap https://www.youtube.com/watch?v=Szw0KwbKowI

121 qubits

Zhejiang Univ. arXiv:2211.09802

Quantum error correctiion and fault-tolerant quantum computing

Fault-tolerant quantum computing: Surface code

A. Fowler et al. PRA 86, 032324 (2012) UCSB

Towards quantum error correction

Not yet break-even

Surface code d=3

ETH Zurich Nature 605, 669 (2022)

USTC Phys. Rev. Lett. 129, 030501 (2022)

IBM arXiv:2203.07205

Surface code d=5

Google AI Quantum arXiv:2207.06431

Braiding operation

Zhejiang Univ. arXiv:2211.09802

2D integration with 3D wiring

64-qubit chip

5 mm

Single-qubit gate

$$\frac{H}{\hbar} = \frac{\omega_{q}}{2}\sigma_{z} + \Omega_{R}\cos\omega_{q}t\sigma_{x}$$

Qubit readout

 $H_{\rm JC} = \frac{\hbar\omega_{\rm q}}{2}\hat{\sigma}_z + \hbar\omega_{\rm c}\hat{a}^{\dagger}\hat{a} + \hbar g(\hat{\sigma}_+\hat{a} + \hat{\sigma}_-\hat{a}^{\dagger})$

Packaging with vertical access

Cryostat for 64Q system

- Input 96 lines*
 Output 16 lines
 Total 112 lines
- 16 low-temperature HEMT amplifier
- 16 Impedance-matched Josephson parametric amplifier (JPA)
- Magnetic shield
- Radiation shield at 10 mK

* Qubit control	64
Readout signal input	16
JPA pump	16

Custom-made control system for 64Q system

Control and readout fidelities

Coherence time	: Τ ₁ ~ 40 μs, Τ _{2E} ~ 60 μs	
Single-shot readout	: 0.990 (~350 ns)	
Initialization	: 0.997	
Single-qubit gate	: 0.9996 (~17 ns)	
Two-qubit gate	: 0.991 (~170 ns)	Best values

Single-shot readout

Single-qubit gate

Tentatively operable qubits

Estimation from measured qubit parameters

Broken qubit

Grounded transmon with floated coupling buses

Frequency-collision qubit pair

Coherence times: $T_1 \sim 10-20 \ \mu s$ $T_{2E} \sim 20-40 \ \mu s$

Microwave quantum optics: Cavity QED and waveguide QED

Atom + 0D mode (discrete)

Strong coupling

 $g\gg\kappa,\,\gamma,\gamma_arphi$

Waveguide QED

Atom + 1D mode (continuum) Mode matching, interference

"Strong coupling"

O. Astafiev et al. Science 327, 840 (2010)

Quantum nondemolition detection of microwave photons

- Dark count probability Pdc = 0.0147
 Quantum efficiency η = 0.84
 - Internal loss of the cavity
 - Dephasing
 - Mismatch of κ and 2χ

Conditional Wigner tomography

S. Kono et al. Nature Phys. 14, 546 (2018)

Qubit readout with intrinsic Purcell filter

2D implementation Readout time 36 ns •Readout fidelity 99.62% QND fidelity 99.63%

Acquired signal (mV) Acquired signal (mV) 100 |g>— **|g**) 5 ₅₀ µe⟩— -le 0 0 -50 F -5 JPA off JPA on 0-0---10020 40 20 40 0 n Time (ns) Time (ns) 10⁴ 10⁴ Count Count 10^{2} 10² "e" "a" "e" "q" 0.32% 99.68% 99.56% 10⁰ 10⁰ 0.44% -1 n 0 -1 Integrated signal for |e> Integrated signal for $|q\rangle$ (arb. unit) (arb. unit)

 $\lambda/2$ resonator + intrinsic Purcell filter $\omega_a/2\pi = 8.09 \text{ GHz}$ 0.5 mm $\omega_r/2\pi = 9.25 \text{ GHz}$ Transmon qubit $\kappa/2\pi = 66 \text{ MHz}$ $\chi/2\pi = -5.5$ MHz Conventional band-pass Purcell filter

 $T_1 = 40 \ \mu s$

Y. Sunada

Hybrid quantum systems using collective modes

Superconducting quantum electronics

Nonlinearity

Quantum magnonics

Quantum nanomechanics + acoustics

0.1 mm

Quantum magnonics

Coupling with a superconducting qubit

Y. Tabuchi et al. Science 349, 405 (2015)

Magnon-number-resolving spectroscopy

D. Lachance-Quirion et al. Sci. Adv. 3, e1603150 (2017).

Magnon-number-resolving spectroscopy

Magnon number resolving via Ramsey interferometry

D. Lachance-Quirion et al. Applied Physics Express 12, 070101 (2019); See also D. Lachance-Quirion et al. Sci. Adv. 3, e1603150 (2017)

Single-shot detection of a magnon

D. Lachance-Quirion et al. Science 367, 425 (2020)

Quantum electromechanics

Ground-state cooling

 $\langle n_m \rangle = 0.51 \pm 0.12$

displacement ~ fm

Summary

Superconducting qubits

- = Nonlinear resonator circuits using Josephson effect
- = Artificial atoms realized in electric circuits

Superconducting quantum computing

- High-fidelity control of a quantum system with a large Hilbert space
- Challenges against decoherence, for scaling-up, and toward fault tolerance
- Microwave quantum optics
 - Circuit (cavity) QED & waveguide QED
 - Control and measurement of confined/itinerant microwave photons
- Hybrid quantum systems
 - Extending quantum technology to other degrees of freedom