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Stochastic approach in computational physics

• “Our brains are just not wired to do probability problems very well” 

                                                                                    - Persi Diaconis 

• Markov chain Monte Carlo - Metropolis et al (1953) 

• can sample from an arbitrary probability distribution 

• perfect sampling (“coupling from the past") - Propp and Wilson (1996) 

• samples perfectly independent samples from Markov chain 

• extended ensemble method - Hukushima and Nemoto (1996), Wang and 

Landau (2001) 

• realizes equilibrium immediately after quench 

• samples extremely rare events ( ) 

•  method for long-range interacting system - Fukui and Todo (2009) 

• exact  sampling (and energy measurement) instead of  

• MCMC without detailed balance - Suwa and Todo (2010), Michel et al 

(2014) 

• diffusive dynamics → ballistic dynamics

∼ 10−100

O(N )
O(N ) O(N2)
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Advances in Markov chain Monte Carlo

• Representation (deinition of “conigurations” and “weighs”) 

• path integral representation for quantum Monte Carlo (1976), Bayesian 

inference (1990)... 

• Choice of ensemble 

• extended ensemble method: multicanonical MC (1991, 2001), 

exchange MC (1996), lifting (2000)... 

• Generation of set of candidate conigurations 

• non-local (cluster) updates: Swendsen-Wang (1987),                                         

Hamiltonian MC (1987), loop (1993), worm (1998)... 

• Choice of transition kernel (probabilities) 

• Metropolis, heat bath (Gibbs sampler), over-relaxation (1987), 

irreversible kernel (2010), event-chain (2013)... 

• Algorithm for generating a coniguration according to transition 

probabilities 

• -fold way (rejection free) (1975), Walker’s method (1977, 2019),                          

order-  algorithm (1995, 2009)...

N
N
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Negative sign problem

• In the path-integral representation for frustrated magnets, fermionic 

systems, real-time dynamics, the sample weights become negative 

(or even complex) 

• average sign becomes exponentially small by cancellation at lower 

temperatures, longer time, and/or larger system sizes 

• speciic heat of antiferromagnetic Heisenberg model on kagomé lattice
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Unitary dynamics in quantum circuits

•  
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Path sampling of quantum circuits

• State transition diagram 

• many states vanishes by interference ⇒ negative (complex) sign problem
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Statistical Error of MCMC Measurements

• There is autocorrelation between successive conigurations 

•  : population variance (determined by the ensemble) 

•  : number of Monte Carlo steps 

•  : autocorrelation time (determined by the MC dynamics) 

• effective number of independent samples →  

• For systems with negative sign problem 

•  : average sign (exponentially small for lower temperature, longer time, 

larger system)

σ2
0

M
τint

M/(1 + 2τint)

s
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Many-body wave function and tensor

• Wave function of -qubit (spin-1/2) system 

• linear combination of  states →   coeficients( ) should be 

speciied → memory cost 〜  

•  can be regarded as -leg (rank- ) tensor 

• Tensor = multi-dim array = generalization of vectors/matrices 

• 0-leg tensor → scalar 

• 1-leg tensor → vector 

• 2-leg tensor → matrix 

• ... 

• -leg tensor → memory/computational cost 〜 

N

2N 2N Cσ1,σ2,⋯,σN

2N

C N N

N exp(N )
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Tensor representation

• Tensor is ubiquitous 

• probability distribution function 

• multi-dim data 

• grid data, images 

•  and  are binary number rep. of  and  

• e.g) 256x256 image → 256x256 matrix or 2１６ (16-leg) tensor 

• neural network 

• weight matrix → tensor with many legs

(x1, x2, ⋯, xN) (y1, y2, ⋯, yN) x y
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correlations, it is still highly correlated in space because the fine grid 
dependence is repeated.

Truncating the Schmidt decomposition in equation (2) approxi-
mates ui in an orthonormal time-dependent basis that evolves with 
the fluid flow to optimally capture spatially correlated structures. 
This is in contrast to classical scientific computing techniques 
(implemented through, for example, finite-difference or spectral 
methods) where the bases are structure-agnostic; that is, they are 
chosen a priori and disregard any structure in the solution.

We first apply the decomposition in equation (2) to DNS solu-
tions of the INSE (equation (7)) for the TDJ shown in the top row of 
Fig. 2a. The TDJ comprises a central jet flow along the x direction, 
and Kelvin–Helmholtz instabilities in the boundary layer of the jet 
eventually cause it to collapse (see equations (9)–(15) for the initial 
flow conditions). We decompose each velocity component accord-
ing to equation (2), which is an exact representation if d(n) = Γ2D(n) 
with (for details, see Supplementary Section 2)

Γ
2D(n) = min(4n, 4N−n). (4)

Figure 1b shows the Schmidt numbers d99(n, t) such that equation 
(2) represents the DNS solutions for the velocity fields with 99% 

accuracy in the L2 norm (more details on the Schmidt coefficients 
are provided in Supplementary Section 1). We find that d99(n, t) are 
well below their maximal values Γ2D(n) for n > 1. More specifically, 
we define χ

99

= max d

99

(n, t) as the maximal value of d99 for all n 
and time steps. We obtain χ99 = 25, and the interscale correlations 
captured by equation (2) with 

d(n) = min

(
Γ

2D(n), 25
)
 are shown 

by the blue-shaded area M in Fig. 1b. d99(n, t) is entirely contained 
within this blue area. Note that the Schmidt numbers are shown on 
a logarithmic scale in Fig. 1b, and thus the area M is much smaller 
than the area D corresponding to DNS.

We obtain qualitatively similar results for the DNS solutions 
to the TGV in 3D, where vortex stretching causes a single, large, 
ordered fluctuation to collapse into a turbulent flurry of small-scale 
structures (see the top row in Fig. 3a for visualization and equation 
(16) in the Methods for the initial flow conditions). In three spatial 
dimensions, the representation in equation (2) is exact if d(n) equals 
(Supplementary Section 2)

Γ
3D(n) = min (8n, 8N−n). (5)

The Schmidt numbers d99(n, t) resulting in a 99% accurate represen-
tation of the DNS solutions are shown in Fig. 1c. We find χ99 = 207, 
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Fig. 2 | 2D temporally developing jet. Dynamical simulation of the INSE in 2D for a planar jet streaming along x with Re!=!1,000, as defined in the Set-up 
of numerical experiments section in the Methods. a, Snapshots of the vorticity and velocity fields taken at t/T0!=!0.25, 0.75, 1.25, 1.75 (left to right). 
Red corresponds to positive vorticity (counter-clockwise flow) and blue to negative vorticity (clockwise). The top row corresponds to DNS results on 
a quadratic 210!×!210 grid (cf. Fig. 1a). Rows 2–4 are MPS results with different maximal bond dimensions χ. The bottom three rows are for URDNS on 
quadratic grids, as indicated. b, Reynolds stress τ12 (equation (14)) between the streamwise and cross-stream directions as a function of time and y 
coordinate. Red (blue) corresponds to positive (negative) stress.
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Figure 1: Sample tensor networks: (a) simplified network

for a rectangular 7x7 qubit 1 + 40 + 1 depth random

quantum circuit with 742 rank-3 tensors; (b) a random

5-regular network with 100 tensors, arising in, e.g., SAT

problems; and (c) random planar network with 184 ten-

sors, arising in, e.g., the statistical-mechanical evaluation

of knot invariants.

dom quantum circuits, a fact that has recently
inspired proposals for quantum algorithms run-
ning on these circuits that aim towards a prac-
tically demonstrable quantum computational ad-
vantage over classical computers [11, 29–39]. The
key idea is that, unlike quantum algorithms (e.g.,
Shor or Grover) that require deep quantum cir-
cuits and high gate fidelities — inaccessible in
the near future — to become manifestly advanta-
geous, the task of sampling bit strings from the
output of random quantum circuits is expected
to be hard to simulate classically even for low-
depth circuits and low-fidelity gates. The precise
threshold for observing such a quantum advan-
tage is nonuniversal and ultimately depends on
the e�ciency of the classical simulation for each
particular combination of circuit model and quan-
tum chip architecture. This motivates the de-
velopment of high-performance simulation tech-
niques for these quantum systems, predominantly
based on finding good contraction paths for ten-
sor networks, that runs in parallel to the race for
the development of higher qubit count and qual-
ity devices [40–42].

Inspired by the classical simulation of quantum
circuits, here we introduce a new framework for
exact contraction of large tensor networks with
arbitrary structure (see examples in Fig. 1). The
first key idea of this framework is to explicitly
construct the contraction tree for a given tensor
network, combining agglomerative, divisive, and

optimal drivers for forming sub-trees at di↵erent
scales. The second key idea is to hyper-optimize
the generation of these trees, and to do this with
respect to the entire tree and thus the total con-
traction cost, rather than just the leading scal-
ing, given by the line-graph tree-width for exam-
ple. We also establish a powerful set of simpli-
fications for e�ciently pre-processing tensor net-
works prior to contraction.

Using this framework we are able to find
very high-quality contraction paths, achieving
speedups that scale exponentially with the num-
ber of tensors in the network compared to es-
tablished approaches, for a variety of problems.
The drivers we test include recently introduced
contraction algorithms based on graph parti-
tioning and community structure detection [43],
previously theorized [11] and recently imple-
mented [44] algorithms based on the tree decom-
position of graphs, as well as new heuristics that
we introduce in this work. Furthermore, observ-
ing that di↵erent graph structures favor di↵erent
algorithms, we implement a hyper-optimization
approach, where both the method applied and its
parameters are varied throughout the contraction
path search, leading to automatically customized
contraction algorithms that often achieve near-
optimal performance.

We demonstrate the new methodology intro-
duced here on a range of benchmarks. First, we
test on problems defined on random graph fam-
ilies, such as simulation of solving MAX-CUT
with quantum approximate optimization as well
as weighted model counting. We find substan-
tial improvements in performance compared to
previous methods reported in the literature. We
then simulate random quantum circuits recently
implemented by Google on the Bristlecone and
Sycamore architectures. We estimate a speed-up
of over 10,000◊ in the classical simulation of the
Sycamore ‘supremacy’ circuits compared to what
is given in [45]. In general, our algorithms out-
perform all others for the same task, by a wide
margin on general networks and by a narrower
margin on planar structures. These findings thus
illustrate that our methods can lead to significant
performance gains across a spectrum of tensor
network applications. This is the main result of
this paper.

The remainder of this paper is organized as
follows. In Sec. 2 we formalize the problem of

Accepted in Quantum 2021-03-06, click title to verify. Published under CC-BY 4.0. 2

Tensor decomposition

• Decomposition of a many-leg tensor into product of small tensors 

• taking summation of common indices (contraction) 

• tensor ⇒ tensor decomposition ⇒ tensor network 

• other representations: Boltzmann machine, path-integral, DNN, etc 

• Advantage of tensor network 

• data compression  

• freedom in contraction order 

• highly accurate approximation based on SVD 

• Tensor network representation 

• approximation of original tensor (e.g. variational w.f.) 

• exact representation 

• quantum states: GHZ state, AKLT state, etc 

• classical/quantum statistical model, quantum circuit, etc

O(exp(N )) → O(N )
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Tensor network representation of 
quantum circuit

• Tensor network representation of a quantum circuit 

• all bond dimensions are 2 

• Taking contraction from the initial state (left to right) 

• equivalent to Schrödinger (state-vector) simulation 

• Evaluating an amplitude 

• order of contraction does not change the inal result 

• freedom in contraction order → possibility to reduce the cost

12

→ →
contraction

10 >一国肆国

10 >-一国
↳一国𦥯-☒

1 。 >一国肆
10 >-e

1 0>一国𦥯-

⑧

一度← 。一
⑧-④- 一④- 一

10 >一国肆国

10 >-一国
↳一国𦥯-☒

1 。 >一国肆
10 >-e

1 0>一国𦥯-

⑧

一度← 。一
⑧-④- 一④- 一

|0⟩

|0⟩

|0⟩

H

H H 10 >一国 •

1.net
は>

10 >-朝 11 >

10 >一国學- 11〉

⑧ - ①

⑥- - ① は1 1は >○
⑧-④- 一④-①

10 >一国 •

1.net
は>

10 >-朝 11 >

10 >一国學- 11〉

⑧ - ①

⑥- - ① は1 1は >○
⑧-④- 一④-①

→ →
contraction

|0⟩

|0⟩

|0⟩

H

H H

|1⟩

|1⟩

|1⟩



Optimization of Contraction Order

• General guideline for better contraction order 

• avoid tensors with a large number of legs in the middle or at the end of 

computation 

• It is known that inding the optimal contraction order is (at least) 

#P-hard problem 

• can't ind the best solution in a realistic time 

• many heuristics have been proposed, c.f., 

• Schutski, R., Khakhulin, T., Oseledets, I., & Kolmakov, D., Simple 

heuristics for eficient parallel tensor contraction and quantum circuit 

simulation. Physical Review A, 102(6), 1–11 (2020). https://doi.org/

10.1103/PhysRevA.102.062614 

• Gray, J., & Kourtis, S., Hyper-optimized tensor network contraction. 

Quantum, 5, 1–22 (2021). https://doi.org/10.22331/Q-2021-03-15-410
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Slicing tensor network

• Slicing 

• for a subset of bonds in the tensor network 

• ix the bonds to some value 

• these bonds disappear from the tensor network 

• for each ixed value  

• perform contraction independently 

• take summation on ixed-value patterns at the outermost 

• Advantage 

• memory cost of contraction of sliced tensor network becomes smaller 

• contraction of each sliced network can be performed in parallel

14



State-of-the-art tensor network simulation

• Y. A. Liu et al., Closing the “quantum supremacy” gap: Achieving real-

Time simulation of a random quantum circuit using a new sunway 

supercomputer. International Conference for High Performance 

Computing, Networking, Storage and Analysis, SC (2021) 

• Gordon Bell Prize Winner in 2021
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Tensor network methods in statistical physics

• “Renormalization" (or “Lagrangian") approach 

• coarse graining of tensor network representation of the partition function 

• transfer matrix, tensor network renormalization (TRG), higher-order tensor 

network renormalization (HOTRG), etc 

• “Variational" (or “Hamiltonian") approach 

• tensor-network approximation of strongly correlated many-body quantum 

states 

• DMRG, PEPS, MERA, etc 

• “Exact" contraction of tensor network can not be done in two and 

higher dimensions 

• low-rank approximation based on eigenvalue/singular value decomposition 

• accuracy of approximation is controlled by “bond dimension":  ( or )D χ

16
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Tensor renormalization group

• Low-rank approximation based on SVD 

• Improvement of accuracy by considering the “environment" effects 

or removing local correlations 

• second order renormalization (SRG), mean-ield SRG, etc 

• tensor network renormalization (TNR), loop TNR, Gilt, etc 

• computational cost increases signiicantly

17

computational cost: 


memory cost: 

O(D5)
O(D3)

Levin & Nave (2007)



More advanced tensor-network methods

• Improving accuracy 

• including environment effect 

• SRG (2009), CTMRG (1996, 2009) 

• removing local correlations 

• TNR (2015), loop TNR (2017), Gilt 

(2018) 

• computational cost increases signiicantly 

• improve accuracy without increasing 

complexity 

• BTRG (2022) 

• Reducing complexity 

• TRG using few-leg tensors 

• ATRG (2020), CATN (2020) 

• Generalization to higher-dimensions 

• HOTRG (2012), ATRG (2020), CATN (2020) 

• Fermions 

• Grassmann tensor network (2010, 2021)
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FIG. 6. (a) Details of the projective truncation made at the
first step of the TNR iteration; here two copies of a projec-
tor Pu, which is composed of a product isometric and unitary
tensors, are applied to a 2× 2 block of A tensors. (b) Defini-
tion of four index tensor B. (c) Projector Pu is formed from
isometries vL, vR and disentangler u [and their conjugates].
(d) Details of the projective truncation made at the second
step of the TNR iteration. (e) Definition of matrix D. (f)
Details of the projective truncation made at the third step of
the TNR iteration. (g) Definition of new four-index tensor
A′, copies of which comprise the coarse-grained square-lattice
tensor network. (h) Delineation of the different dimensions
{χu,χv,χw,χy} of indices on tensors {u, vL, vR, yL, yR, w}.

networks with an open boundary or a defect line, can be
handled using similar methods as those developed in the
context of MERA28–32, and are discussed separately in
Ref.33]. We also assume that G is invariant under com-
plex conjugation plus reflection on the horizontal axis,
as discussed further in Appendix D. Again, this assump-
tion is not strictly necessary, but is useful in simplifying
the TNR algorithm. In the case that G represents a Eu-
clidean path integral of a quantum Hamiltonian H the
presence of this symmetry follows from H being Hermi-
tian, while in the case that G represents the partition
function of a classical system the symmetry is present if
the underlying 2D classical statistical model has an axis
with which it is invariant under spatial reflection. We
now describe the coarse-graining steps involved in an it-
eration of the binary TNR scheme, which maps network
G to the coarser network G′ whose linear dimension has
been reduced by a factor of 2, before discussing the op-
timization of the tensors involved and other algorithmic

components in more detail.
The first step of the iteration is to apply a particular

gauge change on the horizontal indices on every second
row of tensors in G, as discussed in Appendix D. Here
the gauge change is chosen such that it is equivalent to
flipping top-bottom indices of tensors A and taking the
complex conjugation, as such we denote the transformed
tensors A†. That such a gauge transformation exists fol-
lows from the assumed reflection symmetry. Next, Fig.5
depicts the remaining steps in transforming network G
into the coarser network G′. In Fig.5(a), a projective
truncation is enacted on 2× 2 blocks of tensors A [where
two of the tensors are have undergone the aforementioned
change of gauge as A†], the details of which are shown
in Fig.6(a). The projector Pu used at this step is rep-
resented as a product of two isometries vL and vR and
a unitary tensor u [and their conjugates] as shown in
Fig.6(c). The unitary tensors u, which we call disentan-
glers, act on two neighboring indices such that, if we re-
gard each index of the network as hosting a χ-dimensional
complex vector space Vχ, they describe a mapping be-
tween vector spaces,

u : Vχ ⊗ Vχ → Vχ ⊗ Vχ. (23)

By virtue of being unitary, the disentanglers satisfy
u†u = I⊗2 where I is the identity operator on Vχ. Con-
ceptually, the role of disentanglers is to remove short-
range correlations that would otherwise be missed, as dis-
cussed in greater detail in Ref.1, and they constitute the
key difference between TNR and previous tensor renor-
malization schemes. Isometries vL and vR each map two
indices in the network, one horizontal and one vertical,
to a new index of some chosen dimension χ′ ≤ χ2,

vL : Vχ′ → Vχ ⊗ Vχ, vR : Vχ′ → Vχ ⊗ Vχ, (24)

where the new index has been regarded as hosting a χ′-
dimensional complex vector space Vχ′ . By definition,

isometries satisfy v†LvL = v†RvR = I′, with I′ the iden-
tity operator on Vχ′ . After the coarse-graining step of
Fig.5(a), it is useful to define a new four index tensor B,
which is defined from the block of A tensors and from u,
vL and vR, as depicted in Fig.6(b).
After the projective truncation implemented by pro-

jector Pu is enacted on all 2 × 2 blocks of tensors, pairs
of disentanglers from neighboring blocks can annihilate
to identity, see Fig.5(b), leaving a network of B tensors
interspersed with groups of isometries vL and vR. Next,
as depicted in Fig.5(b) and further detailed in Fig.6(d-
e), a projective truncation is made on B tensors. Two
projectors PL and PR are used at this step, acting on the
left or right indices of B tensor respectively, each formed
as a product of isometries, PL ≡ yLy

†
L and PR ≡ yRy

†
R.

Isometries yL and yR, which satisfy y†LyL = y†RyR = I′,
each map two indices to a single index also assumed to
be of dimension χ′,

yL : Vχ′ → Vχ′ ⊗ Vχ′ , yR : Vχ′ → Vχ′ ⊗ Vχ′ . (25)

G. Evenbly (2015)



Higher-order tensor renormalization group

• Coarse graining in each direction using HOSVD instead of SVD 

• Squeeze tensors using “isometries" 

• More accurate than TRG in two dimensions 

• computational cost for 2D:  

• Works in higher dimensions 

• computational cost in -dimensions: 

O(D7)

d O(D4d−1)
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New tensor network algorithms: ATRG and BTRG

• Anisotropic Tensor Renormalization Group (ATRG) 

• D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 102 054432 (2020) 

• Works in any dimensions with smaller cost:  

• same cost as TRG in two dimensions 

• More accurate than TRG 

• Bond-weighted Tensor Renormalization Group (BTRG) 

• D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 105, L060402 (2022) 

• Works in two dimensions with the same cost as TRG 

• More accurate than TRG and HOTRG

O(D2d+1) ≪ O(D4d−1)

20



Central idea of ATRG

• Prevent contracting large tensors 

• in HOTRG 

• in ATRG 

• decompose the local tensor into small pieces and interchange the 

position before coarse graining
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One Renormalization Step of ATRG

• computational cost:  

• memory:  

• generalization to higher dimensions is straightforward

O(D5)
O(D3)
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FIG. 1. Renormalization step of ATRG in y direction for the two-
dimensional square lattice model.

and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G

054432-2

ADACHI, OKUBO, AND TODO PHYSICAL REVIEW B 102, 054432 (2020)

T

TT

T

α

β

MM

(a)

(b)

(c)

(d)

(e)

(f)

T T

G

H

G

H

E

F

α

β

y0

y0

y0

y1

y1

y1

y2

y2

y2

x0

x0

x1

x1

x2

x2

x3

x3

x0

x1

A A

A A

A A

A AB B

CC

DD

DD

DD

D D

X X

X X

Y Y

YY

FIG. 1. Renormalization step of ATRG in y direction for the two-
dimensional square lattice model.

and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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dimensional square lattice model.

and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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Benchmark Test of ATRG in 2D

• Free energy of square lattice Ising model 

• ATRG outperforms TRG at the same bond dimension 

• ATRG outperforms HOTRG at the same computational cost

23

10-9

10-8

10-7

10-6

10-5

 10  20  50  100

δ 
f

χ

TRG
ATRG

HOTRG

10-8

10-7

10-6

10-5

106 107 108 109 1010 1011 1012

δ 
f

τ

TRG
ATRG

HOTRG

comparison at same bond dimension comparison at same computational cost

D
<latexit sha1_base64="gtucZmzsqVUGxXRQ1mOyFbKRsEs="></latexit>

⌧ ⌘
(
D5 TRG and ATRG

D7 HOTRG
<latexit sha1_base64="pJxdtBZkOPLCnS7faCubKAJn2NA="></latexit>

D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 102 (2020) 054432



Contracting arbitrary tensor networks

• Combination of 

• contraction of tensor network with optimized order 

• low-rank approximation using SVD (if bond dimension exceeds ) 

• avoid many-leg tensors and keep MPS form of three-leg tensors

D

24

2

FIG. 1. Detailed process of contracting a tensor network with 5 nodes, each of which is a four-way tensor, as sketched in Fig. 2 of main
text. The scissor symbols in the figures indicate applying SVDs on the matrices unfolded from the tensors. The tensors in the step (1) are the
original four-way tensors connected to each other, forming a fully connected pentagon. The step (2) shows the MPS representation transformed
from (1); the arrow indicates contracting two MPSes, that is, annihilating one color. As an example, the green MPS and the purple MPS is
contracted to a longer purple MPS in (3). The steps (3) � (5) show the swap operation between two tensors in the purple MPS. To accomplish
swapping, we contract two purple tensors first, then apply the SVD on the contracted tensor as shown in (3) and (4). Note that in (5), we
keep the canonical form of the MPS. In steps (6) � (8), the swap operation is repeated until two tensors connecting the same pair of colors are
switched to adjacent positions. In steps (9) and (10), we finish the merge step by contracting two tensors indicated by the arrow, producing
a thick bond between red and purple MPSes. The steps (10) � (14) represent the merge between the purple-and-brown MPS pair and the
purple-and-blue MPS pair. The steps (14) � (22) depict the procedure mentioned above repeatedly until a scalar left in the end of the whole
contraction process.

The process is illustrated using tensor diagram notations in Fig. 2. To ensure that summing over the index i results to another
MPS, we first do swap onA to switch the indices i and k

ai jk =
X

↵

a(1)
j↵ a(23)
↵ik ⇡

X

↵,�

a(1)
j↵ba

(2)
↵k�ba

(3)
�i , (3)

where a(23)
↵ik are elements of the tensor created by contracting the index �; and the last step of the above equation requires the

singular value decomposition, which could introduce truncations in the singular values. Similarly, we apply the swap operation
also on tensor B, to switch indices of i and µ, giving

bµi⌫ =
X

�

b(12)
µi� b(3)

�⌫ ⇡
X

↵,�

bb(1)
i↵
bb(2)
↵µ�b

(3)
�⌫ . (4)

After performing the swap operations on both tensors, we can see that the index i locates at the tail position of the MPS
representation ofA and at the head position of B. Thus summing over index i results to a longer MPS C, as shown in the bottom
Fig. 2.

CANONICAL FORM OF THE MPS

When a tensor in dimension 2n is represented as an MPS composed of three-way tensors {A(1),A(2), · · · ,A(n)}, every element
of the tensor can be written as product of matrices

ai1,i2,··· ,in = A(1)
i1 ⇥ A(2)

i2 ⇥ · · · ⇥ A(n)
in .

F. Pan, P. Zhou, S. Li, P. Zhang, Phys. Rev. Lett. 125, 60503 (2020)



Markov-chain Monte Carlo

• Various update algorithms 

• local, cluster, worm, event-chain, hybrid (HMC), etc 

• extended ensemble methods 

• Pros 

• consistent in long-time limit (if balance condition and ergodicity are 

satisied) 

• computational cost increases only linearly (in many cases) 

• trivial parallelization 

• Cons 

• slow convergence of statistical error (  ) 

• effective number of samples decreases as auto-correlation increases 

• negative sign for frustrated quantum magnets, fermions, real-time 

dynamics

∼ 1/ M
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Tensor network renormalization group

• Many variants 

• tensor renormalization group (TRG) by Levin and Nave (2007) 

• higher-order tensor renormalization group (HOTRG) by Xie et al (2012) 

• tensor network renormalization (TNR) by Evenbly and Vidal (2015) 

• anisotropic tensor renormalization group (ATRG) by Adachi et al (2020) 

• bond-weighted tensor renormalization group (BTRG) by Adachi et al 

(2022) 

• Pros 

• (super-?)exponentially accurate for large bond dimension D 

• Cons 

• systematic error (bias) due to inite bond dimension D 

• computational cost increases rapidly as Dα 

• few methods for higher dimensions

26



Approximate contraction of tensor network

• “Exact" contraction of tensor network can not be done in two and 

higher dimensions 

• low-rank approximation based on singular value decomposition 

• systematic bias due to low-rank approximation 

• accuracy of approximation is controlled by cutoff (or bond dimension: ) 

• convergence is fast but not smooth (even not monotonic) in many 

cases 

• How can we eliminate the systematic bias in approximate 

contraction? 

• combination with Markov chain Monte Carlo?

D

27



Advances in Markov chain Monte Carlo

• Representation (deinition of “conigurations” and “weighs”) 

• path integral representation for quantum Monte Carlo (1976), Bayesian 

inference (1990), tensor network representation 

• Choice of ensemble 

• extended ensemble method: multicanonical MC (1991, 2001), 

exchange MC (1996), lifting (2000)... 

• Generation of set of candidate conigurations 

• non-local (cluster) updates: Swendsen-Wang (1987),                                         

Hamiltonian MC (1987), loop (1993), worm (1998)... 

• Choice of transition kernel (probabilities) 

• Metropolis, heat bath (Gibbs sampler), over-relaxation (1987), 

irreversible kernel (2010), event-chain (2013)... 

• Algorithm for generating a coniguration according to transition 

probabilities 

• -fold way (rejection free) (1975), Walker’s method (1977, 2019),                          

order-  algorithm (1995, 2009)...

N
N
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Agenda

• Introduction 

• Markov-chain Monte Carlo and negative sign problem 

• Tensor network representation and approximate contraction 

• Sampling approach in tensor network contraction 

• Projector formulation of tensor network method 

• Sampling projectors 

• Monte Carlo in tensor network representation 

• Sequential Monte Carlo in tensor network representation 

• Markov-chain Monte Carlo in tensor network representation 

• Results 

• Summary
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Projector formulation of tensor network 
methods

• HOTRG (Xie et al 2012)

30



Projector formulation of tensor network 
methods

• TRG (Levin-Nave 2007) 

• original truncation based on SVD 

• truncation based on projector

31
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Levin-Nave TRG in projector formulation

•  square lattice case ( ) 

• approximate partition function 

• contraction of tensor network of  initial tensors and  

projectors 

• contraction graph of depth

4 × 4 N = 16

2N (N − 4)

∼ log N
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Projector formulation of tensor network 
methods

• ATRG (Adachi et al 2020) and CATN (Pan et al 2020)
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FIG. 1. Renormalization step of ATRG in y direction for the two-
dimensional square lattice model.

and the vertical (y) directions alternately as in the same way
as HOTRG. The outline of one ATRG renormalization step
along y direction is shown in Fig. 1.

First, four-leg tensor T with bond dimension χ is approxi-
mated by a rank-χ matrix by using the partial SVD as

Ty0y1x0x1 ≈
χ∑

α=1

S{T }ααU{T }y0x0αV{T }y1x1α. (1)

The partial SVD (or the truncated SVD) is a method to obtain
largest singular values and corresponding isometries by using
the Arnoldi method or the low-rank approximation based on a
randomized technique [32,33]. By using the partial SVD, the
computation cost for calculating K largest singular values of
an M by N matrix (K " M, N) can be reduced to O(KMN ),
which is significantly smaller than O(min(M, N )MN ), the
computation cost of the standard full SVD. It has been shown
that by using this technique, one can perform the original TRG
with O(χ5) computation cost [11]. In the present calculation,
the decomposition of T [Eq. (1)] can also be done with O(χ5)
instead of O(χ6). Another advantage of the partial SVD is that
it does not require the full matrix, but only the multiplication
of the matrix to a vector. This significant property enables
us to reduce the total memory footprint of the algorithm in
addition to the reduction of the computation cost as shown in
the Appendix.

Then, we define four tensors, A, B, C, and D, as

Ay0x0α = U{T }y0x0α, (2)

By1x1α = S{T }ααV{T }y1x1α, (3)

Cy1x2β = S{T }ββU{T }y1x2β , (4)

Dy2x3β = V{T }y2x3β , (5)

[step (a) in Fig. 1]. Note that the accuracy of the final free
energy may depend on how to separate the singular value
matrix in the above step. Indeed, we observe that by including
the singular matrix S in B and C, the error of the final free
energy is minimized. Such a construction gives us better
free energy than the equal weight decomposition,

√
S, of

the singular matrix into A and B (or C and D). If we do
not introduce truncations in step (a), our splitting of singular
matrix S, together with step (b) and (c) below, gives an
identical singular value spectrum to the direct partial SVD of
T T = ABCD. In this sense, the present splitting gives the best
local approximation, and we think it remains optimal even if
there exist truncations in step (a).

Next, by using partial SVD, we swap the bond of B and C
[step (b) and (c) in Fig. 1]. In order to swap the x1 bond of B
and x2 bond of C, we define tensor M as

Mαβx1x2 =
∑

y1

By1x1αCy1x2β , (6)

and, by partial SVD of M and truncating the singular values
to χ , we define new X and Y as

Mαβx1x2 ≈
χ∑

y1

S{M}y1y1U{M}αx2y1V{M}βx1y1 , (7)

Xαx2y1 =
√

S{M}y1y1U{M}αx2y1 , (8)

Yβx1y1 =
√

S{M}y1y1V{M}βx1y1 . (9)

Then, we renormalize the horizontal two bonds into one
by using squeezersE and F [step (d) and (e) in Fig. 1]. We
call them squeezers since they are not necessarily isometries,
unlike conventional HOTRG. By applying squeezer E (F ) to
A and X (Y and D), we obtain new tensor G (H) as

Gy0y1x′
0
=

∑

α,x0,x2

Ay0x0αXαx2y1 Ex0x2x′
0
, (10)

Hy1y2x′
1
=

∑

β,x1,x3

Dy2x3βYβx1y1 Fx1x3x′
1
. (11)

Finally, a new renormalized tensor, T ′, is made from the
product of G and H as

T ′
y0y2x′

0x′
1
=

∑

y1

Gy0y1x′
0
Hy1y2x′

1
(12)

[step (f) in Fig. 1], which is used as an input to the next
renormalization step in x direction.

It should be noted that the explicit form of the squeezers is
not needed for calculating the free energy. One can obtain G
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FIG. 1. Detailed process of contracting a tensor network with 5 nodes, each of which is a four-way tensor, as sketched in Fig. 2 of main
text. The scissor symbols in the figures indicate applying SVDs on the matrices unfolded from the tensors. The tensors in the step (1) are the
original four-way tensors connected to each other, forming a fully connected pentagon. The step (2) shows the MPS representation transformed
from (1); the arrow indicates contracting two MPSes, that is, annihilating one color. As an example, the green MPS and the purple MPS is
contracted to a longer purple MPS in (3). The steps (3) � (5) show the swap operation between two tensors in the purple MPS. To accomplish
swapping, we contract two purple tensors first, then apply the SVD on the contracted tensor as shown in (3) and (4). Note that in (5), we
keep the canonical form of the MPS. In steps (6) � (8), the swap operation is repeated until two tensors connecting the same pair of colors are
switched to adjacent positions. In steps (9) and (10), we finish the merge step by contracting two tensors indicated by the arrow, producing
a thick bond between red and purple MPSes. The steps (10) � (14) represent the merge between the purple-and-brown MPS pair and the
purple-and-blue MPS pair. The steps (14) � (22) depict the procedure mentioned above repeatedly until a scalar left in the end of the whole
contraction process.

The process is illustrated using tensor diagram notations in Fig. 2. To ensure that summing over the index i results to another
MPS, we first do swap onA to switch the indices i and k

ai jk =
X

↵

a(1)
j↵ a(23)
↵ik ⇡

X

↵,�

a(1)
j↵ba

(2)
↵k�ba

(3)
�i , (3)

where a(23)
↵ik are elements of the tensor created by contracting the index �; and the last step of the above equation requires the

singular value decomposition, which could introduce truncations in the singular values. Similarly, we apply the swap operation
also on tensor B, to switch indices of i and µ, giving

bµi⌫ =
X

�

b(12)
µi� b(3)

�⌫ ⇡
X

↵,�

bb(1)
i↵
bb(2)
↵µ�b

(3)
�⌫ . (4)

After performing the swap operations on both tensors, we can see that the index i locates at the tail position of the MPS
representation ofA and at the head position of B. Thus summing over index i results to a longer MPS C, as shown in the bottom
Fig. 2.

CANONICAL FORM OF THE MPS

When a tensor in dimension 2n is represented as an MPS composed of three-way tensors {A(1),A(2), · · · ,A(n)}, every element
of the tensor can be written as product of matrices

ai1,i2,··· ,in = A(1)
i1 ⇥ A(2)

i2 ⇥ · · · ⇥ A(n)
in .



Projector formulation of tensor network 
methods

• ATRG (Adachi et al 2020) and CATN (Pan et al 2020) 

• leg swap based on SVD 

• leg swap based on projector 

• Any tensor network renormalization methods can be reformulated 

using projectors (?)
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Unbiased Monte Carlo for the age of tensor networks

Andrew J. Ferris
ICFO—Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain

(Dated: July 6, 2015)

A new unbiased Monte Carlo technique called Tensor Network Monte Carlo (TNMC) is introduced based
on sampling all possible renormalizations (or course-grainings) of tensor networks, in this case matrix-product
states. Tensor networks are a natural language for expressing a wide range of discrete physical and statistical
problems, such as classical and quantum systems on a lattice at thermal equilibrium. By simultaneously sam-
pling multiple degrees of freedom associated with each bond of the tensor network (and its renormalized form),
we can achieve unprecedented low levels of statistical fluctuations which simultaneously parallel the impressive
accuracy scaling of tensor networks while avoiding completely the variational bias inherent to those techniques,
even with small bond dimensions. The resulting technique is essentially an aggressive multi-sampling technique
that can account for the great majority of the partition function in a single sample. The method is quite general
and can be combined with a variety of tensor renormalization techniques appropriate to different geometries and
dimensionalities.

INTRODUCTION

From the mid-1900’s onwards, we have seen numerical
methods grow from a useful calculational tool into an en-
tirely new way of performing science, somewhere between
the traditional theoretical and experimental disciplines. Par-
ticularly within physics, chemistry, mathematics and related
fields, highly accurate numerical results derived from first
principles can now often be compared favourably to experi-
ment where (often perturbative) theoretical approaches fail —
or even used in lieu of experiment to simulate theories under
difficult to achieve conditions, such as modelling the internals
of subatomic particles.

Arguably one of the, if not the, most successful and
pervasive numerical techniques has been the Monte Carlo
method [1], which uses statistical sampling to approximate
complicated calculations. In their seminal 1953 paper [2],
Metropolis et al boldly claim to introduce “a general method...
of calculating the properties of any substance considered to be
composed of individual interacting” classical particles. Since
then, the Metropolis algorithm in particular and Monte Carlo
techniques in general have been applied with acclaimed suc-
cess to fields as far flung as finance, biology and engineering.

In the intervening years, many new Monte Carlo algorithms
have been introduced to extend the method and improve the
accuracy obtained for a given amount of computational effort.
Improvements in accuracy can roughly be separated into two
categories: improving the generation of independent statisti-
cal samples, and increasing the accuracy of a single sample.
In the former, Markov chain algorithms such as the Metropo-
lis algorithm generate new samples by incremental changes
to the earlier samples, introducing a degree of autocorrelation
between the samples. This is detrimental because the statisti-
cal error �E of a measured quantity E generically decreases
with the number of completely independent samples N as

�E =

s
Var

⇥
E
⇤

N
(1)

Autocorrelation decreases the number of effectively indepen-

dent samples, reducing the denominator. Important tech-
niques to reduce autocorrelation include cluster updates to
avoid the well-known slowing down in critical problems [3,
4], loop updates for quantum or topological problems [5, 6],
and worm algorithms to sample across off-diagonal quantum
observables [7].

The second class of improvements act to decrease the nu-
merator in Eq. (1) by decreasing the sample-to-sample vari-
ance of the observable E. Monte Carlo methods work to ap-
proximate a very large sum over many variables according to
their probabilities. Importance sampling, which modifies the
probability distribution, is an effective way to “flatten” the dis-
tribution of the summands so that each contribution has sim-
ilar values. In practice, importance sampling can only reduce
Var[E] only up until a point, for instance to the variance ob-
served in the ensemble of physical realizations of the system.

A second path to reducing the variance is by, within each
sample, explicitly summing a tractable fraction of the large
sum that Monte Carlo is attempting to estimate. Sometimes
this is achieved relatively trivially, by exploiting symmetries
such as translational invariance, or it may involve moderately
challenging calculations at each step to perform the partial
summation. In any case, a single sample may be said to
be effectively performing multiple samples of the sum — a
process (when implemented explicitly) referred to as multi-
sampling [8]. In this work, a new, generic multi-sampling
technique is introduced that can lead to massive reductions in
Var[E] for a wide range of classical and quantum statistical
problems on a lattice. In the best-case scenario, the error may

decrease exponentially with increasing computational effort,
as opposed to the slower N�1/2 scaling of traditional Monte
Carlo.

This new method is based on modern techniques for renor-
malizing (by which I mean ‘approximately summing’) tensor
networks. Tensor networks are an extremely powerful lan-
guage for expressing problems (such as the partition function
of classical or quantum systems) and methods for their con-
traction (which is, for all intents and purposes, a sum over
many terms). Tensor network calculations came to promi-
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Random choice of projectors (Ferris 2015)

• Choose  vectors from  (= ) basis vectors 

•  candidate projectors 

• basis vectors are generated by SVD and chosen randomly according to its 

singular value 

• Stochastic projector is generated as a linear combination of  

projectors 

• such that on average,

D R D2

Np = (R
D)

D

36

1
Np ∑

θ

WθW†
θ = E

5

FIG. 2: One of the approximately 7.05 ⇥ 1056 loop configurations
on a 16⇥ 16 lattice with open boundary conditions.

NUMERICAL RESULTS

Statistical error versus bond dimension

The model: We first study the partition function of a sim-
ple fully-packed loop model on a 2D lattice, which represents
the counting of all possible closed-loop configurations where
each vertex must have a single line entering and exiting, rep-
resented locally by these six configurations:

An example configuration on an open 16⇥ 16 lattice is de-
picted in Fig. 2. The model has one one-to-one correspon-
dence to the six-vertex model as well as the counting of al-
ternating sign matrices, and is integrable (solvable) via Bethe
ansatz techniques. The number of permissible loop configu-
rations can be deduced by creating a “partition function”, to
which the value 1 is added for every allowable configuration.
The partition function can be expressed as a two-dimensional
network of connected tensors. At each vertex, a 2⇥2⇥2⇥2 ten-
sor T is placed and connected to it’s nearest neighbours. The
value Tijkl = 0 unless it corresponds to one of the six con-
figurations depicted above, that is, T1100 = T1001 = T0110 =
T0011 = T1010 = T0101 = 1. The number of allowable con-
figurations grows very fast in the lattice size. This calculation
is selected because of its simplicity and accessibility to a wide
audience, and because its numerical evaluation is moderately
challenging.

Results: In Fig. 3, I plot the results for the calculation
of the partition function (or number of loop configurations),
compared to the quasi-exact result extracted from a boundary-
MPS with large bond dimension. Here I have studied a modest

FIG. 3: Calculations of the partition function of the six-vertex model
on a 16x16 lattice (where Zexact ⇡ 7.05 ⇥ 1056), using standard
MPS truncation and 104 tensor network Monte Carlo samples with
the given bond dimension D. The TNMC results are within one or
two standard deviations to the exact results, independent of bond di-
mension (the D = 1 result suffers from broad tails on the distribu-
tion, due to our perfect sampling approach). In both cases, the errors
are reduced with increasing bond dimension.

16 ⇥ 16 lattice with open boundary conditions, which allows
for appoximately 7.05⇥1056 configurations. While boundary-
MPS calculations using the standard truncation scheme con-
tinually underestimates the partition function, the Tensor Net-
work Monte Carlo estimates fluctuate about the exact result
(in this case, determined quasi-exactly by an MPS calculation
with large bond dimension) independently of bond dimension.

What does change with bond-dimension is the accuracy
or precision of both simulations, illustrated in Fig. 4. The
standard tensor network technique converges to the exact re-
sult extremely rapidly as the bond dimension is increased; in
fact, for D � 40 we have already saturated numerical pre-
cision (larger D may be required for bigger systems or peri-
odic boundary conditions). What we see clearly from Fig. 4
is that the TNMC method inherits similar behaviour — as
the bond dimension increases, the sample-to-sample varia-
tions decrease just as rapidly as the standard tensor network
approach (although the standard deviation may be a small
constant larger in magnitude than the variational error, which
is the cost paid to obtain an unbiased simulation). This is
an enormous improvement over standard, configuration-based
Monte Carlo, where the sample-to-sample variance is fixed by
the problem or physical system you are trying to solve.

The TNMC method now gives the user two avenues to de-
crease simulation error — increasing either bond dimension,
or the number of samples. While performing N samples de-
creases the overall error by a factor of 1/

p
N , increasing D

may result in a much more significant improvement (often
super-polynomial). Nonetheless, there are many situations
where there are insufficient computational resources to utilize

partition function of six-vertex model (16x16)

4

(a) (b) (c)

FIG. 1: (a) A two-dimensional partition function expressed as a tensor network. Boundary-MPS contraction proceeds by combining the top
row of tensors with the next (red circles), and then (b) projecting the combined horizontal bonds to a subspace of maximal dimension D
(triangular tensors). Typically, the projectors are chosen to maximize the fidelity of resulting effective state of the upper-half of the system,
outlined in blue. (c) After repetition, the end result is a tensor network that is contractible with cost linear in system size.

Graphically, this relation is:

1

|S|
X

s2S
= (5)

After sufficient sampling, the effect of the projectors is the
identity operations — in other words, there is no effect on the
calculated partition function. On average, Fig. 1 (a), (b) and
(c) will give the same result!

The choice of operators W (s)
L and W (s)

R that fulfils Eq. (4)
is not unique. The goal now is to take a selection which mini-
mizes the expectation value of the error, so that the sample-to-
sample variations are small. For instance, taking random pro-
jectors (with appropriate scaling) may be a solution of Eq. (4),
but it would be an extremely poor sampling scheme with un-
workably large statistical variance, requiring a huge number
of samples to achieve a reasonable accuracy.

To improve the statistical variance, importance sampling is
used. In analogy to the choice of optimal projectors above, I
use the Schmidt decomposition to fix the sampling basis and
use the Schmidt coefficients ci to define the weights related
to choosing D of the R possible basis vectors. Motivated
by minimizing the expected 2-norm error [Eq. (2)], I assign
weight c2i to the the probability of selecting the ith vector.
The weight of simultaneously choosing vectors i1, i2, . . . , iD
is given by their product,

w(i1, i2, . . . , iD) =
DY

j=1

S2
ij . (6)

The probability of a certain selection i = [i1, . . . , iD] is the
normalized form of these weights,

p(i) = w(i)/
X

i

w(i). (7)

This probability distribution is known in the literature as “Fis-
cher’s multivariate, non-central hypergeometric distribution”
where each element can be selected at most once. It is also
related to the canonical Fermi-Dirac distribution (i.e. with

fixed particle number, D). How to sample efficiently and di-
rectly from this distribution is not immediately obvious, but
it is possible to write the probability distribution itself as a
simple matrix-product state from which perfect sampling can
be performed [32, 35]. See the Appendix for details and the
freely available sampling code.

The advantage of this distribution is that the Schmidt coef-
ficients with largest weights are almost-always selected, while
the tails of the distribution are only selected occasionally. This
gives us most of the accuracy of the simple-truncation ap-
proach, while sampling removes the bias inherited from deter-
ministically throwing away part of the boundary state. How-
ever, to ensure the requirements of Eq. (4) are met, we must
scale each component k by the inverse of its appearance rate
1/r(k), where

r(k) =
X

k2i

p(i) (8)

The values of r(k) are readily extracted from the matrix-
product form of Fischer’s hypergeometric distribution. The
resulting WL and WR do not form a projector; nonetheless,
they are expected to lead to single-sample accuracies that are
comparable to the standard truncation approach. The entire
sampling cost scales linearly in the product DR and is not a
leading-order cost of the simulation.

It is essential that the projectors at different points in space
are chosen independently. Because of this, TNMC is limited
to simulations of finite systems, which is one drawback com-
pared to variational tensor network approaches which may di-
rectly address the thermodynamic limit.

At the end of the calculation, an estimate of the partition
function Zs is produced. To get an estimate of Z and of its
statistical uncertainty, multiple samples should be taken to de-
termine the mean and standard error.



Summary of arXiv:1507.00767

• “Perfect" sampling of tensor network contraction 

• can be applied to other tensor network renormalization variances (e.g. 

HOTRG, ATRG) 

• only works for inite systems 

• unbiased? → yes (for partition function) 

• NB: biased for free energy, expectation value of physical quantities 

• suffers from exponentially large variance 

• proposed method = sequential Monte Carlo without resampling 

• variance of weight of “walkers" is multiplicative and increases 

exponentially
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Agenda

• Introduction 

• Markov-chain Monte Carlo and negative sign problem 

• Tensor network representation and approximate contraction 

• Sampling approach in tensor network contraction 

• Projector formulation of tensor network method 

• Sampling projectors 

• Monte Carlo in tensor network representation 

• Sequential Monte Carlo in tensor network representation 

• Markov-chain Monte Carlo in tensor network representation 

• Results 

• Summary
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Sequential Monte Carlo

• aka 

• green's function Monte Carlo 

• transfer matrix Monte Carlo 

• population Monte Carlo 

• Monte Carlo ilter 

• particle ilter 

• bootstrap ilter 

• SISR (sequential importance                                                                                

sampling with resampling) 

• Central idea of SMC 

• approximate probability distribution by (weighted) ensemble of particles 

• by using Markov chain 

• control variance by resampling

39

https://www.researchgate.net/igure/Sequential-Monte-Carlo-scheme_ig2_322302619



A simple example

•  is sampled independently randomly from uniform distribution between 0 

and 2 

• expectation value:  

• variance increases rapidly for large 

ξk

⟨xn⟩ = 1
n

40

xk = ξkxk−1 (k = 1,2,⋯, n)

x0 = 1



Resampling

• Simple sequential importance sampling becomes unstable for large 

steps 

• weight of each walker is updated randomly by weight factors:  

• random walk diffusion in logarithmic scale 

• weight degeneracy: weight variance (discrepancy between weights) grows 

exponentially and only a few walkers dominate 

• Resampling is necessary to stabilize the algorithm 

• resampling:  

                ⇒   

• after resampling, all walkers share the same                                                        

weight: 

W = w1w2w3⋯

Pi ≃ ∑
k

Wkδi,ik ∑
k

δi,ĩk

∑
k

Wk /Nw

41

Li-Stattar-Sun (2012)



Effect of resampling

•  is sampled independently randomly from uniform distribution 

between 0 and 2

ξk

42

xk = ξkxk−1 (k = 1,2,⋯, n)

x0 = 1

0

0.5

1

1.5

2

10

<x
n>

n

without resampling
with resampling

0.001

0.01

0.1

1

10

10

σ
2

n

without resampling
with resampling



Tensor network sequential Monte Carlo

• Markov chain 

• sequential selection of projectors 

• Walker 

• each Markov chain sequence 

• a number of Markov chains run simultaneously 

• Weight 

• partition function with present projector coniguration 

• Resampling 

• necessary for controlling the variance between walkers 

• Systematic error in physical quantities 

•    ( : number of walkers) 

• Memory cost 

•  walkers should be simulated simultaneously

∼ 1/M M

M

43

p(θ1, θ2, ⋯, θn) = p(θ1)p(θ2)⋯p(θn)



Markov-chain Monte Carlo approach

• Determine projector candidates from SVD during the conventional 

(deterministic) TRG 

• projectors becomes independent with each other and can be sampled 

independently 

• (exact) tensor network representation of partition function 

• Sample projectors  using Markov-chain Monte Carlo 

• propose new  according to  

• Metropolis update with  

• update of weights is  and includes matmul only 

• SVDs are required during initialization stage only 

• Physical quantities 

• can be evaluated by using impurity tensor technique (without systematic 

bias)

{θi}
θi p(θi)

P = min(1,g(θ1, θ2, ⋯, θ′ i, ⋯, θn)/g(θ1, θ2, ⋯, θi, ⋯, θn))
O(log N )

44

p(θ1, θ2, ⋯, θn) = p(θ1)p(θ2)⋯p(θn)

Z = ∑
{θi}

g(θ1, θ2, ⋯, θn)p(θ1, θ2, ⋯, θn) = ∑
{θi}

g(θ1, θ2, ⋯θn)p(θ1)p(θ2)⋯p(θn)



Comparison with Levin-Nave TRG + impurity tensor

• Square-lattice Ising model ( )L = 8
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Comparison with Metropolis algorithm

• Square-lattice Ising model ( , , ) 

• statistical error is smaller by orders of magnitude 

• statistical error decreases exponentially as 

 is increased

L = 8 T = Tc Nmcs = 8192

D
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Ising model in imaginary external ield

• Square lattice Ising model 

• pure imaginary external ield 

• non-positive Boltzmann weight ( : total magnetization) 

• Standard Markov chain Monte Carlo suffers from severe negative 

sign problem 

m

2

accumulate in certain regions or curves of the complex plane, with their positive local density 
η(z) which changes by changing the temperature; if at a critical value Tc, the zeros accumulate 
and pinch a positive value of the real axis, this is what may mark the onset of a phase transition.

As we are going to discuss extensively through the rest of the paper, the pattern of zeros of 
grand-canonical partition functions can be generally quite interesting and this study alone is a 
source of many stimulating physical and mathematical questions. If the study of the patterns 
of Yang–Lee zeros is then the !rst topic of this paper, the Yang–Lee model (and its zeros!) is 
our second main topic. In order to introduce such a model and present the work of this paper 
in its proper perspective, we need to talk about the pattern of zeros of just one particular sta-
tistical system: the Ising model. In [3] Yang and Lee showed that for ferromagnetic Ising-like 
models, independently on the dimensionality and regularity of the lattice and also largely 
independently on the nature of the couplings, the zeros of the Ising model lie on the unit cir-
cle5 in the complex plane of the variable z = e−2βh (where β = 1/(kT) and h is the external 
magnetic !eld): posing z = eiθ, they have the following structure (see !gure 1):

 • for T > Tc the zeros are placed along a ‘C’, namely a symmetric arc around θ = π whose 
edges are at ±θ0(T); 

 • at T = Tc these edges move to the real axis and pinch it; 
 • for T < Tc the zeros densely cover the entire circle.

Kortman and Grif!ths [9] were the !rst to notice that the density of the Yang–Lee zeros of 
the Ising model nearby the edges ±θ0(T) gives rise to a problem which has its own interest 
since such a density presents an anomalous behaviour with a scaling law ruled by a critical 
exponent σ

η(θ, T) ∼ |θ − θ0(T)|σ , T > Tc . (1)

Such a behavior is closely analogous to the usual critical phenomena (although in this case 
triggered by a purely imaginary magnetic !eld ih) and therefore Fisher [10] posed the question 
about its effective quantum !eld theory and argued that, in suf!ciently high dimension d, this 
consists of a φ3 Landau–Ginzburg theory for the scalar !eld φ(x) with euclidean action given by

A =

∫
ddx
[

1
2
(∂φ)2 + i(h − h0)φ+ igφ3

]
. (2)

Figure 1. Distribution of the Yang–Lee zeros for the Ising model in the complex plane 
of the fugacity z.

5 This circle-theorem was later extended by many authors to ferromagnetic Ising model of arbitrarily high spin and 
with many-body spin interactions [4–8].

G Mussardo et alJ. Phys. A: Math. Theor. 50 (2017) 484003
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H = − ∑
⟨i, j⟩

σiσj − h∑
i

σi

      ( : total magnetization) W = eβ∑ σiσj × (−1)m/2 m

Yang-Lee zeros on complex plane of fugacity z

h = iπ/2β z = e−2βh = − 1⇒
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Ising model in imaginary external ield

• Our proposed method also has negative signs for small  

•  results are almost similar to the standard method 

• NB: negative signs can appear for small  even if the original model is free 

from negative sign 

• However, average sign is improved drastically as we increase 

D
D = 2

D

D
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Summary

• Markov chain Monte Carlo in tensor network representation 

• reducing statistical error using approximate tensor network contraction 

• removing systematic bias by sampling singular vectors (projectors) using 

MCMC 

→ avoid divergence of statistical error, negative signs and systematic bias 

• Computational complexity of one Monte Carlo update 

•  

• matmul only (no SVD) during MCMC sampling → ideal for modern GPGPU or 

HPC 

• Similar formulation is possible for sequential Monte Carlo with 

resampling 

• advantage in calculating free energy/partition function 

• Applications: HOTRG (2012), ATRG (2020), quantum spin models, 

fermions, lattice QCD, quantum circuits, etc

O(DαN log N )
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S. Todo (in preparation)


