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Stochastic approach in computational physics

- “Our brains are just not wired to do probability problems very well”
- Persi Diaconis

- Markov chain Monte Carlo - Metropolis et al (1953)
- can sample from an arbitrary probability distribution

- perfect sampling (“coupling from the past”) - Propp and Wilson (1996)
- samples perfectly independent samples from Markov chain
- extended ensemble method - Hukushima and Nemoto (1996), Wang and
Landau (2001)

* realizes equilibrium immediately after quench
- samples extremely rare events ( ~ 1071%)
* O(N) method for long-range interacting system - Fukui and Todo (2009)
- exact O(N) sampling (and energy measurement) instead of O(N?)
- MCMC without detailed balance - Suwa and Todo (2010), Michel et al
(2014)
- diffusive dynamics — ballistic dynamics



Advances in Markov chain Monte Carlo

- Representation (definition of “configurations” and “weighs”)
- path integral representation for quantum Monte Carlo (1976), Bayesian
inference (1990)...
- Choice of ensemble
- extended ensemble method: multicanonical MC (1991, 2001),
exchange MC (1996), lifting (2000)...
- Generation of set of candidate configurations
- non-local (cluster) updates: Swendsen-Wang (1987),
Hamiltonian MC (1987), loop (1993), worm (1998)...
- Choice of transition kernel (probabilities)
- Metropolis, heat bath (Gibbs sampler), over-relaxation (1987),
irreversible kernel (2010), event-chain (2013)...

- Algorithm for generating a configuration according to transition
probabilities

* N-fold way (rejection free) (1975), Walker’ s method (1977, 2019),
order-N algorithm (1995, 2009)...



Negative signh problem

- In the path-integral representation for frustrated magnets, fermionic
systems, real-time dynamics, the sample weights become negative

(or even complex)
- average sign becomes exponentially small by cancellation at lower

temperatures, longer time, and/or larger system sizes

- specific heat of antiferromagnetic Heisenberg model on kagomé lattice
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Unitary dynamics in quantum circuits
|0) — H l A
0) A

0) — H I HH—|~A

. |000) =>%(|o>+|1>)|0>(|o>+|1>)=%<|000>+ 1001) + | 100) + [ 101))
:%(|ooo>+ 1001) + [ 110) + | 111)) =>%(|ooo>+ 1001) + [110) — | 111))

1
= ——=(100) + [11)(0) + [1)+(]00) — [11))(10) —[1))
2¢/2

=;(|OOO) +1001) +|110) +|111) +]000) — |001) — | 110) + | 111))
2y/2

—L(|000>+|111>)
V2



Path sampling of quantum circuits
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- State transition diagram
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- many states vanishes by interference = negative (complex) sign problem



Statistical Error of MCMC Measurements

- There is autocorrelation between successive configurations

02

_op(1+27;,)
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+ 65 : population variance (determined by the ensemble)

* M : number of Monte Carlo steps

* 7, - autocorrelation time (determined by the MC dynamics)
- effective number of independent samples - M/(1 + 2z,,,)

- For systems with negative sign problem

2 ag(l + 27,.)
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* 5 : average sign (exponentially small for lower temperature, longer time,
larger system)



Many-body wave function and tensor

* Wave function of N-qubit (spin-1/2) system
| \P> — Z Cal,az,---,aNl 0-10-2”°O-N>
01,02,"**,0N

- linear combination of 2V states - 2" coefficients(C, , .., ) should be
specified = memory cost ~ 2V
* C can be regarded as N-leg (rank-N) tensor

T . —T

O3 OnN

- Tensor = multi-dim array = generalization of vectors/matrices
- O-leg tensor - scalar @ .
- 1-leg tensor - vector ‘l _ .
- 2-leg tensor - matrix i‘i

* N-leg tensor > memory/computational cost ~ exp(/NV)
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Tensor representation

- Tensor is ubiquitous
- probability distribution function

P(sy,8, *+, 8y)
- multi-dim data

- grid data, images

g(x,y) = g(xy, Xo, ==+, X Y15 Y25 =25 V)

* (x1, X9, =+, xy) and (v, yo, *++, yy) @re binary number rep. of x and y
- e.9) 256x256 image = 256x256 matrix or 276 (16-leg) tensor

- heural network
- weight matrix = tensor with many legs



11

Tensor decomposition

- Decomposition of a many-leg tensor into product of small tensors

TT T 17777
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o

- taking summation of common indices (contraction)
- tensor = tensor decomposition = tensor network
- other representations: Boltzmann machine, path-integral, DNN, etc
- Advantage of tensor network p—
- data compression O(exp(V)) = O(N) : °O O_
- freedom in contraction order f 1”} B
- highly accurate approximation based on SVD t‘ AGr e RN g el
- Tensor network representation
- approximation of original tensor (e.g. variational w.f.)
- exact representation SRS TR g e
- quantum states: GHZ state, AKLT state, etc TR T,}';: 7
- classical/quantum statistical model, quantum circuit, etc J




Tensor network representation of 12
quantum circuit

- Tensor network representation of a quantum circuit

- all bond dimensions are 2
d% contraction
T
(B
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- Taking contraction from the initial state (left to right)
- equivalent to Schrédinger (state-vector) simulation

- Evaluating an amplitude
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- order of contraction does not change the final result
- freedom in contraction order = possibility to reduce the cost
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Optimization of Contraction Order

- General guideline for better contraction order
- avoid tensors with a large number of legs in the middle or at the end of

computation

- It is known that finding the optimal contraction order is (at least)

#P-hard problem
- can’t find the best solution in a realistic time

- many heuristics have been proposed, c.f.,

- Schutski, R., Khakhulin, T., Oseledets, I., & Kolmakov, D., Simple
heuristics for efficient parallel tensor contraction and quantum circuit
simulation. Physical Review A, 102(6), 1-11 (2020). https://doi.org/
10.1103/PhysRevA.102.062614

- Gray, J., & Kourtis, S., Hyper-optimized tensor network contraction.
Quantum, 5, 1-22 (2021). https://doi.org/10.22331/Q-2021-03-15-410



Slicing tensor network

- Slicing
- for a subset of bonds in the tensor network
- fix the bonds to some value
- these bonds disappear from the tensor network
- for each fixed value
- perform contraction independently
- take summation on fixed-value patterns at the outermost
- Advantage
- memory cost of contraction of sliced tensor network becomes smaller
- contraction of each sliced network can be performed in parallel

14
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State-of-the-art tensor network simulation

- Y. A. Liu et al., Closing the “guantum supremacy” gap: Achieving real-

Time simulation of a random quantum circuit using a new sunway
supercomputer. International Conference for High Performance
Computing, Networking, Storage and Analysis, SC (2021)

- Gordon Bell Prize Winner in 2021

https://awards.acm.org/bell

& awards.acm.org

Real-Time Simulation of Random Quantum Circuit

ACM, the Association for Computing Machinery, named a 14-member team, drawn
from Chinese institutions, recipients of the 2021 ACM Gordon Bell Prize for their
project, Closing the "Quantum Supremacy” Gap: Achieving Real-Time Simulation of a
Random Quantum Circuit Using a New Sunway Supercomputer(Z.

The members of the winning team are: Yong (Alexander) Liu, Xin (Lucy) Liu, Fang
(Nancy) Li, Yuling Yang, Jiawel Song, Pengpeng Zhao, Zhen Wang, Dajia Peng, and
Huarong Chen of Zhejiang Lab, Hangzhou and the National Supercomputing Center in
Wuxi; Hachuan Fu and Dexun Chen of Tsinghua University, Beijing, and the National
Supercomputing Center in Wuxi; Wenzhao Wu of the National Supercomputing Center
in Wuxi; and Heliang Huang and Chu Guo of the Shanghai Research Center for
Quantum Sciences.

Quantum supremacy is a term used to denote the point at which a quantum device
can solve a problem that no classical computer can solve in a reasonable amount of
time. Teams at Google and the University of Science and Technology of China in Hefei
both claim to have developed devices that have achieved quantum supremacy.

According to the Gordon Bell Prize recipients, determining whether a device has
achieved quantum supremacy for a given task (in a specific scenario) begins with
sampling the interactions of the different quantum bits (qubits) in a random quantum
circuit (RQC). As the number of possible interactions among qubits in a random
quantum circuit is staggeringly large, simulating their interactions is 2 problem well-
suited for a high-performance computer. However, the quantum physics behind the
entangled qubits requires that the classical binary bits used in a supercomputer store
and compute the information with exponentially-increasing complexity.

In their Gordon Bell Prize-winning work, the Chinese researchers introduced a
systematic design process that covers the algorithm, parallelization, and architecture
required for the simulation. Using a new Sunway Supercomputer, the Chinese team
effectively simulated a 10x10x (1+40+1) random quantum circuit (2 new milestone
for classical simulation of RQC). Their simulation achieved a performance of 1.2 Eflops
(one quintillion floating-point operations per secand) single-precision, or 4.4 Eflops
mixed-precisien, using over 41.9 million Sunway cores (processors).

The project far outpaced state-of-the-art approaches to simulating an RQC. For
example, the most recent effort, using the Summit supercomputer to simulate a
random quantum circuit of the Google Sycamore quantum processor (which has 53
qubits), was estimated to take 10,000 years to perform. By contrast, the Chinese

The 2021 ACM Gordon Bell Special
Prize for High Performance
Cemputing-Based COVID-19
Research was presented to a six-
member team for their project
Digital transformation of
droplet/aerosol infection risk
assessment realized on “Fugaku” for
the fight against COVID-19(Z. The
Prize is being awarded in 2020 and
2021 to recognize outstanding
research achievement toward the
understanding of the COVID-19
pandemic through the use of high
performance computing. The award
was presented at the hybrid SC21 (7
conference.

View the full list of ACM
Awards

ACM Awards by Category

[+) Career-Long
Contributions

[+ Early-to-Mid-Career
Contributions

[+ Specific Types of
Contributions
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Tensor network methods in statistical physics

- “Renormalization” (or “Lagrangian”) approach
- coarse graining of tensor network representation of the partition function

- transfer matrix, tensor network renormalization (TRG), higher-order tensor
network renormalization (HOTRG), etc
- “Variational” (or “Hamiltonian”) approach
- tensor-network approximation of strongly correlated many-body quantum
states
- DMRG, PEPS, MERA, etc

- “Exact” contraction of tensor network can not be done in two and

higher dimensions
- low-rank approximation based on eigenvalue/singular value decomposition

 accuracy of approximation is controlled by “bond dimension”: D ( or y)

»&‘&\?»
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Tensor renormalization group

..‘3%&..

- Low-rank approximation based on SVD
_+_ — & - computational cost: O(D?)
-{ memory cost: O(D?)

- Improvement of accuracy by considering the “environment” effects

or removing local correlations
- second order renormalization (SRG), mean-field SRG, etc

- tensor network renormalization (TNR), loop TNR, Gilt, etc
- computational cost increases significantly

Levin & Nave (2007)
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More advanced tensor-network methods

- including environment effect

- Improving accuracy (b)

+ SRG (2009), CTMRG (1996, 2009)

- removing local correlations (C)” i
- TNR (2015), loop TNR (2017), Gilt
(2018) (d) Yy YR A v . Dy;r (e) 4,

(= = P || L=+

- computational cost increases significantly

- improve accuracy without increasing

(f) wt
vky rA S ol
complexity z |l
. BTRG (2022) il 2 E -0

- Reducing complexity

- TRG using few-leg tensors H % % A, B
+ ATRG (2020), CATN (2020) - o
- Generalization to higher-dimensions G. Evenbly (2015)
- HOTRG (2012), ATRG (2020), CATN (2020)
* Fermions

- Grassmann tensor network (2010, 2021)
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Higher-order tensor renormalization group

- Coarse graining in each direction using HOSVD instead of SVD
$404.04 04 0004

644
Q00000 — -

Y Y Y \V ¥ \¥

- Sgueeze tensors using “isometries”

-

- More accurate than TRG in two dimensions
- computational cost for 2D: O(D")

- Works in higher dimensions
- computational cost in d-dimensions: O(D* 1)

Xie et al (2012)
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New tensor network algorithms: ATRG and BTRG

- Anisotropic Tensor Renormalization Group (ATRG)
- D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 102 054432 (2020)

* Works in any dimensions with smaller cost: O(D*?*!) «< O(D* 1)
- same cost as TRG in two dimensions
* More accurate than TRG
- Bond-weighted Tensor Renormalization Group (BTRG)
- D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 105, L060402 (2022)
* Works in two dimensions with the same cost as TRG

- More accurate than TRG and HOTRG
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Central idea of ATRG

- Prevent contracting large tensors

- in HOTRG

—+— = O(D?)

- decompose the local tensor into small pieces and interchange the
position before coarse graining

- in ATRG

D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 102 (2020) 054432
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One Renormalization Step of ATRG

Zo A
“B
I Y1 11
i) lC
8l p A
Y2 3 X
Y
o—
?ll

- computational cost: O(D?)

- memory: O(D?)
- generalization to higher dimensions is straightforward

D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 102 (2020) 054432
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Benchmark Test of ATRG in 2D

- Free energy of square lattice Ising model

comparison at same bond dimension comparison at same computational cost
107 = ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
& et TRG O TRG O
e eTm ATRG & s ATRG #
107" N 5 Rt

10 20 50 100

D®> TRG and ATRG
D" HOTRG

- ATRG outperforms TRG at the same bond dimension
- ATRG outperforms HOTRG at the same computational cost

D. Adachi, T. Okubo, S. Todo, Phys. Rev. B 102 (2020) 054432
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Contracting arbitrary tensor networks

- Combination of
- contraction of tensor network with optimized order

* low-rank approximation using SVD (if bond dimension exceeds D)
- avoid many-leg tensors and keep MPS form of three-leg tensors

us !
(5)

pr us v -~
(8) (12) 13)

(15) (19) (20) (21) (22)

F. Pan, P. Zhou, S. Li, P. Zhang, Phys. Rev. Lett. 125, 60503 (2020)



Markov-chain Monte Carlo

- Various update algorithms
- local, cluster, worm, event-chain, hybrid (HMC), etc

- extended ensemble methods
* Pros
- consistent in long-time limit (if balance condition and ergodicity are
satisfied)
- computational cost increases only linearly (in many cases)
- trivial parallelization
- Cons
- slow convergence of statistical error ( ~ I/W )
- effective number of samples decreases as auto-correlation increases
oo(1 +27,)
T M
- negative sign for frustrated quantum magnets, fermions, real-time
dynamics

0_2




Tensor network renormalization group

- Many variants

- tensor renormalization group (TRG) by Levin and Nave (2007)

- higher-order tensor renormalization group (HOTRG) by Xie et al (2012)

- tensor network renormalization (TNR) by Evenbly and Vidal (2015)

* anisotropic tensor renormalization group (ATRG) by Adachi et al (2020)

- bond-weighted tensor renormalization group (BTRG) by Adachi et al
(2022)

* Pros

- (super-?)exponentially accurate for large bond dimension D

- Cons

- systematic error (bias) due to finite bond dimension D

- computational cost increases rapidly as D«

- few methods for higher dimensions

26



2'7

Approximate contraction of tensor network

- “Exact” contraction of tensor network can not be done in two and
higher dimensions

- low-rank approximation based on singular value decomposition
- systematic bias due to low-rank approximation
- accuracy of approximation is controlled by cutoff (or bond dimension: D)

- convergence is fast but not smooth (even not monotonic) in many
cases

- How can we eliminate the systematic bias in approximate
contraction?

- combination with Markov chain Monte Carlo?
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Advances in Markov chain Monte Carlo

- Representation (definition of “configurations” and “weighs”)
- path integral representation for quantum Monte Carlo (1976), Bayesian
inference (1990), tensor network representation
- Choice of ensemble
- extended ensemble method: multicanonical MC (1991, 2001),
exchange MC (1996), lifting (2000)...
- Generation of set of candidate configurations
- non-local (cluster) updates: Swendsen-Wang (1987),
Hamiltonian MC (198%7), loop (1993), worm (1998)...
- Choice of transition kernel (probabilities)
- Metropolis, heat bath (Gibbs sampler), over-relaxation (1987),
irreversible kernel (2010), event-chain (2013)...

- Algorithm for generating a configuration according to transition
probabilities

* N-fold way (rejection free) (1975), Walker’ s method (1977, 2019),
order-N algorithm (1995, 2009)...
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- Sampling approach in tensor network contraction
- Projector formulation of tensor network method
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- Results

- Summary
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Projector formulation of tensor network *°
methods

- HOTRG (Xie et al 2012)

(d)



Projector formulation of tensor network °'
methods

+ TRG (Levin-Nave 2007)
- original truncation based on SVD

4+ =\

Hre - et - ‘0@ - T - e
- truncation based on projector
@ - TR OREY
— = 2 _R_ D R R  RNpAUR
" . BB~ = —-B-®—
D
@R = EFRO -



Levin-Nave TRG in projector formulation

*4 x 4 square lattice case (N = 16)

- approximate partition function

- contraction of tensor network of 2N initial tensors and (N —4)
projectors

- contraction graph of depth ~ log N

32



Projector formulation of tensor network *°
methods

- ATRG (Adachi et al 2020) and CATN (Pan et al 2020)

SR OIIUD
@@@¢@@@

St DO G




Projector formulation of tensor network **
methods

- ATRG (Adachi et al 2020) and CATN (Pan et al 2020)
- leg swap based on SVD

D D' ﬁz} =,
M — —5-’ — 3 2 ~~ *

- leg swap based on projector

5 . T

- Any tensor network renormalization methods can be reformulated
using projectors (?)



arXiv:1507.00767

Unbiased Monte Carlo for the age of tensor networks

Andrew J. Ferris

ICFO—Institut de Ciencies Fotoniques, Parc Mediterrani de la Tecnologia, 08860 Barcelona, Spain
(Dated: July 6, 2015)

A new unbiased Monte Carlo technique called Tensor Network Monte Carlo (TNMC) is introduced based
on sampling all possible renormalizations (or course-grainings) of tensor networks, in this case matrix-product
states. Tensor networks are a natural language for expressing a wide range of discrete physical and statistical
problems, such as classical and quantum systems on a lattice at thermal equilibrium. By simultaneously sam-
pling multiple degrees of freedom associated with each bond of the tensor network (and its renormalized form),
we can achieve unprecedented low levels of statistical fluctuations which simultaneously parallel the impressive
accuracy scaling of tensor networks while avoiding completely the variational bias inherent to those techniques,
even with small bond dimensions. The resulting technique is essentially an aggressive multi-sampling technique
that can account for the great majority of the partition function in a single sample. The method is quite general
and can be combined with a variety of tensor renormalization techniques appropriate to different geometries and
dimensionalities.


https://arxiv.org/abs/1507.00767
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Random choice of projectors (Ferris 2015)

- Choose D vectors from R (=D?) basis vectors

N, = (g) candidate projectors

- basis vectors are generated by SVD and chosen randomly according to its

singular value

« Stochastic projector is generated as a linear combination of D

projectors
- such that on average,

i
I

LJ

=
L1
Lo g

FIG. 1: (a) A two-dimensional partition function

outlined in blue. (c) After repetition, the end result is a tensor network that is contractible with cost linear in system size.

ensor network. Boundary-MPS contraction proceeds by combining the top
row of tensors with the next (red circles), and then (b) projecting the combined horizontal bonds to a subspace of maximal dimension D 0.0 '2 21 6 8 10 1'2
(triangular tensors). Typically, the projectors are chosen to maximize the fidelity of resulting effective state of the upper-half of the system,

1.2 X Truncation |
Monte Carlo
1_0_. ....... g ****xxxxxx~
.08 X '
N f
N 06* 10,:{ ..... = ... g .. 1
:{ « X X X X
0.4+
0.9999998( X
0'27 1 1 1 1 1 1
13 14 15 16 17 18

Bond dimension D

partition function of six-vertex model (16x16)



37

Summary of arXiv:1507.00767

- “Perfect” sampling of tensor network contraction
- can be applied to other tensor network renormalization variances (e.g.
HOTRG, ATRG)
- only works for finite systems
- unbiased? — yes (for partition function)
- NB: biased for free energy, expectation value of physical quantities
- suffers from exponentially large variance
- proposed method = sequential Monte Carlo without resampling
- variance of weight of “walkers” is multiplicative and increases
exponentially



Agenda

- Monte Carlo in tensor network representation
- Sequential Monte Carlo in tensor network representation

- Markov-chain Monte Carlo in tensor network representation
- Results

- Summary
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Sequential Monte Carlo

- aka
) green’s funCtlon Monte Carlo initialising weighting resampling perturbing weighting
- transfer matrix Monte Carlo —
- population Monte Carlo |
- Monte Carlo filter
- particle filter
- bootstrap filter
- SISR (sequential importance

sampling with resampling)

- @ - - - -

- 90000 - -

poo o

& P

t=0 t=1 t=1 t=1 t=2

https://www.researchgate.net/figure/Sequential-Monte-Carlo-scheme fig2 322302619

- Central idea of SMC
- approximate probability distribution by (weighted) ensemble of particles

- by using Markov chain
- control variance by resampling



A simple example

.xk — kak_l (k - 1,2,'

- £ 1s sampled independently randomly from uniform distribution between O

and 2

..,n)

- expectation value: (x,) = 1
- variance increases rapidly for large n
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Resampling

- Simple sequential importance sampling becomes unstable for large
steps
- weight of each walker is updated randomly by weight factors: W = w,w,ws--
- random walk diffusion in logarithmic scale
- weight degeneracy: weight variance (discrepancy between weights) grows
exponentially and only a few walkers dominate

- Resampling is necessary to stabilize the algorithm
- resampling:

(o R e A
k k , |

- after resampling, all walkers share the same
weight: " W,/N,
k

Li-Stattar-Sun (2012)



Effect of resampling

XO=1

X = Sy (k= 1,2, 1)

- £, is sampled independently randomly from uniform distribution
between 0 and 2

2 - 10 - -
without resampling —=— - without resampling —=—
with resampling —— with resampling

<Xp>
—
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H—yi—
=5 2 il A—
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Tensor network sequential Monte Carlo

- Markov chain
- sequential selection of projectors p(8,,6,,---,0,) = p(6,)p(6,)---p(6,)

- Walker
- each Markov chain sequence

« a humber of Markov chains run simultaneously

- Weight
- partition function with present projector configuration

- Resampling
- hecessary for controlling the variance between walkers

- Systematic error in physical quantities
* ~1/M (M: number of walkers)
- Memory cost
* M walkers should be simulated simultaneously

43
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Markov-chain Monte Carlo approach

- Determine projector candidates from SVD during the conventional

(deterministic) TRG
- projectors becomes independent with each other and can be sampled

independently
p0,,0,,---,6,) = p(0)p6,)---p(6,)

- (exact) tensor network representation of partition function

Z= Z g(0,,0,,---,0)p0,0,,---,0) = Z g(0,,0,,---0,)p(0)p(0,)---p(6,)
{0, {0}
- Sample projectors {6;} using Markov-chain Monte Carlo
* propose new 60; according to p(6,)
* Metropolis update with P = min(1,g(0,,6,, -+, 6;, ---,0,)/g(6,,60,, -+, 6;, -+-,0,))
- update of weights is O(log N) and includes matmul only
- SVDs are required during initialization stage only
- Physical quantities
- can be evaluated by using impurity tensor technique (without systematic
bias)
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Impurity tensor

Comparison with Levin-Nave TRG +

* Square-lattice Ising model (L = 8)
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Comparison with Metropolis algorithm

- Square-lattice Ising model (L =8, T=T,, N,., = 8192)

- statistical error is smaller by orders of magnitude
- statistical error decreases exponentially as

statistical error

D is increased

O'g(l + 2Tint)
M

104

[ Metropolis
TNMC (D=6)

U e |

-2.00 -1.75 -150 -1.25 -1.00 -0.75 -0.50 -0.25
Energy

[ Metropolis

TNMC (D=6)
i '—1
y—\‘_l_,—\_l_b#_h'_h J
0.0 0.2 0.4 0.6 0.8 1.0

Magnetization”™2
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Ising model in imaginary external field

- Square lattice Ising model Yang-Lee zeros on complex plane of fugacity z

== am=he (Do () (D
) i NN L/

- pure imaginary external field

h=inl2f = z=e Prh=-1 T>T T=T T<T

C C C

* non-positive Boltzmann weight (m: total magnetization)

W=el2o% x (=12 (m: total magnetization)

- Standard Markov chain Monte Carlo suffers from severe negative
sign problem

1 gt
0.8

0.6
0.1 -

average sign

04

0.2

0

| ! ! &—o
1 1.5 2 2.5 3 1
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Ising model in imaginary external field

average sign

* OQur proposed method also has negative signs for small D
* D = 2 results are almost similar to the standard method

NB: negative signs can appear for small D even if the original model is free
from negative sign

* However, average sign is improved drastically as we increase D
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Summary

- Markov chain Monte Carlo in tensor network representation
- reducing statistical error using approximate tensor network contraction

- removing systematic bias by sampling singular vectors (projectors) using

MCMC
— avoid divergence of statistical error, negative signs and systematic bias

- Computational complexity of one Monte Carlo update
*O(D*N logN)
- matmul only (no SVD) during MCMC sampling = ideal for modern GPGPU or
HPC
- Similar formulation is possible for sequential Monte Carlo with

resampling
- advantage in calculating free energy/partition function

- Applications: HOTRG (2012), ATRG (2020), quantum spin models,
fermions, lattice QCD, quantum circuits, etc

S. Todo (in preparation)



