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What do these have in common?

Quantum spins
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Black holes
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rodynamics, construed broadly
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Are these two widespread phenomena related?
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Random matrix theory (RMT) in physics

Level spacings of different nuclei with the same spin/parity:
* Many complex quantum systems 10 : , S
have an “unstructured” energy NDE
: 1726 spacings
spectrum, especially far away from
the ground state

* Wigner’s idea: we can model the s
spectrum of such “unstructured”
systems using random™ Hermitian
matrices | ]

*Many types of random matrices, but we’ll consider primarily Gaussian ensembles



Spectrum and statistics

H = —JZafa,fH —h$ZJf—hzZJf

n=8 spins, 256 energy levels
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Ensemble of Hamiltonians with random fields: ol

AH =) 6h,o; .
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[chaos-RMT conjecture: Bohigas-Giannoni-Schmit]
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o @ S &b o o O In a conventional liquid, we probe the particle
positions using scattering, e.g. of neutrons

o POSITION /f MOMENTUM
o | In our eigenvalue liquid, we can also probe the
” energies by “scattering” (Fourier transform)
o ENERGY / TIME
v L

p(E)

—

SFF(T) = f dEf dee™€T/p (E + f) D (E _ E)
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RMT and SFF

Disorder Averaged SFF for N=50 GUE Random Matrix Theory

aP oc | [ dijexp (= Te[V(H)]) o [SFF(T f) = /dEf( )TJ
’ b

%]
\ Plateau

10° 10* 10¢

’L<]

IR

101 -
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SFF(T, f) = |Tr[f(H)etHT \2—Zf E;)ei(BimEy)T

f = filter function [review: Haake]



For fun ... liquid Argon vs liguid eigenvalues

,_

| i ] L ]
6

Q (A7)
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Disorder Averaged SFF for N=50 GUE Random Matrix Theory
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Quantum rules

4

S
The SFF can be written as a sum over return amplitudes,
so let us recall the quantum rules for such amplitudes
14 A(s » s") = A(y) c (s|exp(—iHt/h)|s’)

P(s = s") =|A(s = s")|?

Probabilities are squares of amplitudes



SFF = ) AMIAG)]’ ( ) 0
V,y!

Terms in the SFF sum tend to destructlvely
interfere unless the paths y,y’ are the same A(]/) A()/ )

— or or .
S t=0 S t=1 S

This residual freedom is responsible for the linear-in-T ramp






Toy example: coupled billiards

SFF =2 x RMT

Short time:
SFF =2 x RMT

Long time:
SFF = RMT
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Energy diffusion  8,e = DV?e +¢

* Imagine breaking all other symmetries: all that remains is energy
diffusion = minimal slow dynamics in a local Hamiltonian system

e At time T, there are an extensive number of almost conserved modes:

1 dk VS, k&
~ N ~ O(k+ — k| ~ — L
N3 g zk: (br = |&]) V/(Qw)d (2m)d d

* If each sector is random matrix like, then the SFF should correspond
to a sum of many almost-independent ramps = sectors are labelled
by amplitudes of nearly-conserved energy fluctuations

€0 =, 1 /NS 4 NS 4
k/ k&




(ek,final_e_fykTekz)Q )

Linear diffusion exP (_ 202 (T)

p(€k final, T') =

\/2mo?(T)
0 = DV<e+ & /dEkp(sz,ﬁnal = e, 1) = p—

exclude zero mode,

d/2
1 1 : :
a—a )= | | — = V 14+ d/2 guasi-continuous
[a Paval ﬂ L1 — e DRT eXp( (47TDT> oL+ /))

wavevector regime

TRP(T) [
T =1 L7 log % e Z (T) =14 2de + 0(62) periodic box
Th (27T)2D Pa—a



Comparison with numerical data

4.0

* Consistent with numerical
data from | ], .l
which derives the previous 30}
formula (in the context of
U(1) conservation) in d=1
with large onsite dimension

o
&

In(SFF/t)

e We show that it arises

generally from linearized Lol
diffusion; and we can
compute corrections
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Theorist’s corner

U1
Tr[U(T)pUs(T)] .
VS Us

_-___—————————————————————_
— = _— e
b

—

SFF effective theory should be related to an effective
. theory on a Schwinger-Keldysh contour = hydro!




Theorist’s corner  SFF = /Denga exp(4Shydro)

T/At—1
de(z,t = LAt)dg,(x,t = LAL)
DeDd, =
Do 1;[ gl_[O 2T

Shydro = /dth(—éa(at — DA)e + iﬁzli(V¢a)2>

eigenvalues of dt0,: T /At complex numbers iw obeying (iw + 1)7/4 = 1

_ 1 _ 1 _ 2
SFF_];[giw—AkAt_Hl—eAkT Ak = — DR

k
exactly reproduces prior calculation
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Spectral form factor (SFF)

SFF(T) = SFF
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SFF(T)

But there is a twist ...

Slow Block-Diagonal Matrices
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SFF(T) = SFF

RMT
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We first observed this suppression in SFFs
in a “block Rosenzweig-Porter” model
[Barney-Winer-Baldwin-Galitski-S]



00)

Detour: Zeta zeros ((s) = Z

. - . 1, . .
* Riemann zeta has zeros on the “critical” line s = 5 + it; amazingly,

these critical line zeros are distributed like the eigenvalues of a
random Hermitian matrix! [ ]

) ) ) , and others’ inspiring idea: what if the
zeta zeros are secretly the energies of a quantum chaotic system?

e Still incomplete ... but one fruit is the Riemann-Siegel lookalike
formula — a resummation formula for the trace formula
inspired by the Riemann-Siegel formula for zeta, a relationship
between the contributions of short and long periodic orbits






e
SFF “sum rule” SFF(T) — L] dT =0
— 00

* Valid for any system with enough level repulsion = early time
enhancements must be “paid for” with a late time suppression

* We conjecture a specific formula for GUE-type problems (derivation
in special cases from the Riemann-Siegel lookalike | 1)

SFF(T) — SFFshort time (T) + SFFlong time (T)

T
SFFShort time — ’ ’ (1 + Ze nT)

Ne MITE N e—r2lT )\;a,e_)‘?’|T|
k

SFFlong time (T) — 9 * 9

- K SFFlong time (T)

0 if |T| < 2mp

SFF? T) =
long tlme( ) {pA B % if ’T| > Qﬂﬁ [



But there is a twist ...

Slow Block-Diagonal Matrices

160 A RS Prediction
o Numerics

1409 ___ GUE Prediction
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Convolution with
“hydro” modes
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SFF(T) = SFF..._(T) x TRP(T)

RMT



summary

 Random-matrix-like energies are common to many quantum systems

* But real systems are not literally random matrices, and deviations
from RMT are controlled by hydro, construed broadly

 We didn’t emphasize it, but there is even a sense in which this hydro-
based “effective theory of spectral correlations” yields the ramp itself

 So far, we’ve applied this theory to spin chains and simple block
models; what about nuclei and elsewhere?

* Quantum information has provided many new inspirations, e.g. the
growth of complexity, scrambling and thermalization, and more ...



Outlook — chaos and quantum information

Quantum physics of
classically chaotic
systems



Today — linking hydro and RMT

Quantum physics of
classically chaotic
systems



Thanks and references

. Mostly based on results with my student Mike Winer -

* Hydrodynamic theory of the connected spectral form factor, 2012.01436
L * Reappearance of Thermalization Dynamics in the Late-Time Spectral Form Factor, 2307.14415 )

* Quantum chaos, e.g. Altshuler-Shklovskii "86, D'Alessio-Kafri-Polkovnikov-Rigol, ...

* Analytic results: Bertini-Kos-Prosen, Dubertrand-Muller, Chan-De Luca-Chalker,
Saad-Shenker-Stanford, Garcia-Garcia-Verbaarschot, Altland-Sonner, ...

* RMT Onset: Schiulaz-Torres-Herrera-Santos, Gharibyan-Hanada-Shenker-Tezuka,
Friedman-Chan-De Luca-Chalker, Altland-Bagrets, ...

* Fluctuating hydro: Dubovsky-Hui-Nicolis-Son, Grozdanov-Polonyi, Haehl-

Loganayagam-Rangamani, Crossley-Glorioso-Liu, Jensen-Pinkani-Fokeeva-Yarom,
Chen-Lin-Delacretaz-Hartnoll, ...
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