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Quantum computing long-term vision



A system of 𝑛 qubits can be initialized in a basis state |𝑥⟩  for any 𝑥 ∈ 0,1 𝑛

𝑛-bit input
“converted” to 
computational 

basis state

| ⟩𝑥

Quantum computing 101: Starting the computation
𝑛-qubit state space   ℂ2 ⊗𝑛 = ℂ2 ⊗ ⋯ ⊗ ℂ2 (Hilbert space)

computational basis element    |𝑥⟩ = 𝑥1 ⊗ ⋯ ⊗ 𝑥𝑛  𝑥 = 𝑥1, … , 𝑥𝑛 ∈ {0,1}𝑛

                                                    (tensor product) orthonormal basis element



Gates are norm-preserving linear maps (unitary matrices). 

Quantum Computing 101: Quantum gates

Phase shift Controlled-NOTHadamard

𝐻

0 →
1

2
0 + |1⟩

1 →
1

2
0 − |1⟩

𝑆

0 → |0⟩

1 → 𝑖|1⟩
𝑎, 𝑏 → |𝑎, 𝑎 ⊕ 𝑏⟩

𝑎

𝑏

00 ↦ 00
01 ↦ 01
10 ↦ 11
11 ↦ |10⟩

𝑛-qubit evolution/gate 𝑈: ℂ2 ⊗𝑛 → ℂ2 ⊗𝑛 linear unitary

     ∥ 𝑈Ψ ∥=∥ Ψ ∥ for all Ψ ∈ ℂ2 ⊗𝑛



Gates can be applied (simultaneously) to (disjoint) subsets of qubits

Quantum Computing 101: Quantum gates

𝑆

𝐻

𝑆

𝐻

S-gate applied to qubit 1

(simultaneously applied)
S-gate on qubit 1
CNOT on qubits 2 & 3
H on qubit 4

H-gate applied to qubit 3

unitary
map



𝜓 = ෍

𝑥∈ 0,1 𝑛

𝜓𝑥 𝑥

Measurement allows one to sample 𝑥 ∈ 0,1 𝑛 from the probability distribution 𝑝𝑥

𝑝𝑥 = 𝜓𝑥
2

𝑥 ∈ 0,1 𝑛
𝜓

Quantum computing 101: Measurements

൛states on ൟℂ2 ⊗𝑛   → {probability distributions on }{0,1}𝑛

↦



𝑛-bit input

| ⟩𝑥 𝑛-bit output 𝑧

Quantum Computing 101: Quantum circuits

The behavior of the circuit is 
completely described by the 
conditional distribution

𝑆

𝐻

𝐻

time



𝑛-bit input

| ⟩𝑥 𝑛-bit output 𝑧

Quantum Computing 101: Quantum circuits

𝑆

𝐻

𝐻

time

A depth-𝒅 quantum circuit consists of 𝑑 time steps.

Each time step contains one- and two-qubit gates acting on disjoint subsets of qubits.



Universal gate sets and the Solovay-Kitaev Theorem

Basic question: What is needed to apply a general unitary 𝑈 on ℂ2 ⊗𝑛 ?

Phase shift Controlled-NOTHadamard

𝐻

0 →
1

2
0 + |1⟩

1 →
1

2
0 − |1⟩

𝑆

0 → |0⟩

1 → 𝑖|1⟩
𝑎, 𝑏 → |𝑎, 𝑎 ⊕ 𝑏⟩

𝑎

𝑏

00 ↦ 00
01 ↦ 01
10 ↦ 11
11 ↦ |10⟩

Which gates should we be using?



Universal gate sets and the Solovay-Kitaev Theorem

Basic question: What is needed to apply a general unitary 𝑈 on ℂ2 ⊗𝑛 ?

Definition:  A family 𝒢 = ቄ𝑈𝑗 ∣ 𝑈𝑗 unitary on ൟℂ2 ⊗𝑛 is universal if

        ⟨𝒢⟩ = 𝑈𝑗1

𝑥1 ⋯ 𝑈𝑗𝑀

𝑥𝑀 | 𝑀 ∈ ℕ, 𝑥𝑗 ∈ {±1} 

is dense in the unitary group U 2𝑛 .

Answer: It suffices to be able to apply any gate from a (possibly finite) universal gate set. 

Theorem (Solovay & Kitaev): 

Let 𝒢 be a universal gate set for 𝑆𝑈 2  closed under taking 
inverses. There is an algorithm which, given 𝜀 > 0 and any 
input unitary 𝑈 ∈ 𝑆𝑈(2), outputs a sequence 𝑔1, … , 𝑔𝐿 ∈ 𝒢 
of length

 𝐿 = 𝑂 log𝛼 1/𝜀

where 𝛼 ≈ 2.7, such that 𝑈 − 𝑔1 ⋯ 𝑔𝐿 < 𝜀

Furthermore, this algorithm runs in polynomial time in 𝐿.

𝑈 ≈

with 𝒢 ≔ { ,  ,  ,  }𝐻 𝑇 𝑇† 



Universal gate sets and the Solovay-Kitaev Theorem

Definition:  A family 𝒢 = ቄ𝑈𝑗 ∣ 𝑈𝑗 unitary on ൟℂ2 ⊗𝑛 is universal if

        ⟨𝒢⟩ = 𝑈𝑗1

𝑥1 ⋯ 𝑈𝑗𝑀

𝑥𝑀 | 𝑀 ∈ ℕ, 𝑥𝑗 ∈ {±1} 

is dense in the unitary group U 2𝑛 .

Examples for 𝑛 = 1 (a qubit)

Universal gate sets:

• 𝑅𝑋 𝛼 𝛼∈[0,2𝜋) ∪ 𝑅𝑍 𝛽 𝛽∈[0,2𝜋)

𝑅𝑍 𝜃 = 𝑒−𝑖𝜃𝑍 
𝑅𝑋 𝜃 = 𝑒−𝑖𝜃𝑋

• {𝑇, 𝐻} 𝐻 =
1

2

1 1
1 −1

 𝑇 = 𝑒𝑖𝜋/8 0
0 𝑒−𝑖𝜋/8

 

Basic question: What is needed to apply a general unitary 𝑈 on ℂ2 ⊗𝑛 ?

Answer: It suffices to be able to apply any gate from a (possibly finite) universal gate set. 



Universal gate sets and the Solovay-Kitaev Theorem

Definition:  A family 𝒢 = ቄ𝑈𝑗 ∣ 𝑈𝑗 unitary on ൟℂ2 ⊗𝑛 is universal if

        ⟨𝒢⟩ = 𝑈𝑗1

𝑥1 ⋯ 𝑈𝑗𝑀

𝑥𝑀 | 𝑀 ∈ ℕ, 𝑥𝑗 ∈ {±1} 

is dense in the unitary group U 2𝑛 .

NOT universal :

Basic question: What is needed to apply a general unitary 𝑈 on ℂ2 ⊗𝑛 ?

Answer: It suffices to be able to apply any gate from a (possibly finite) universal gate set. 

Pauli group 𝒞1 = 𝑋𝑗 , 𝑌𝑗 , 𝑍𝑗 𝑗=1

𝑛

where 𝑋𝑗 = 𝐼 ⊗ ⋯ 𝐼 ⊗ 𝑋
 𝑗

⊗ 𝐼 ⋯ 𝐼

𝑋 =
0 1
1 0

, 𝑌 =
0 −𝑖
𝑖 0

, 𝑍 =
1 0
0 −1

Clifford group 𝒞2 = 𝑈 ∈ U 2𝑛 ∣ 𝑈𝒞1𝑈† ⊂ 𝒞1 𝐻 =
1

2

1 1
1 −1

, 𝑆 =
1 0
0 𝑖



Magic state injection: useful gates from resource states

Idea: Implement certain gates by using 

• “magic” resource states 

• (computational basis) measurements and

• adaptive (but simple) operations (e.g., Clifford 
unitaries/Paulis) 

Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A, 71:022316, Feb 2005.

𝑆 =
1 0
0 𝑖

 

         
 

|𝐴⟩ = 2−1/2 |0⟩ + 𝑒𝑖𝜋/4|1⟩

𝑇

|𝐴⟩

𝑆=

𝑇 = 𝑒𝑖𝜋/8 0
0 𝑒−𝑖𝜋/8

The following set of one- and two-
qubit operations give computational 
universality:

• State preparation of a single-qubit 

state |0⟩ or 
1

2
|0⟩ + 𝑒𝑖𝜋/4|1⟩

• Application of a single- or two-
qubit Clifford unitary (possibly the 
identity)

• Measurement of any qubit in the 
computational basis



Definition of adaptive circuits and (quantum) circuit depth

| ⟩𝐴

| ⟩0

| ⟩𝐴

| ⟩0

| ⟩0

| ⟩𝐴

| ⟩0

𝑚1

𝑚2

𝑚r

H

H

H

H 𝑍 Ƹ𝑧𝑛

𝑋 Ƹ𝑧1

𝑌 Ƹ𝑧2

Classical 
computation

| ⟩0

| ⟩𝐴

ZX

S

H
Classical 

computation

| ⟩0

| ⟩0

X

X

S

S

(Quantum) circuit depth of 𝓠: = number 𝑇 of layers.

Z

Z S
H

H

S S

Adaptivity:  Each two-qubit operation may depend (in an efficiently computable manner) 
                      on previous measurement outcomes.
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| ⟩0

| ⟩0

X

X

S
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(Quantum) circuit depth of 𝓠: = number 𝑇 of layers.

Z

Z S
H

H

S S

Adaptivity:  Each two-qubit operation may depend (in an efficiently computable manner) 
                      on previous measurement outcomes.

Each layer ℳ(𝑇) consists in the 
parallel application of the following 
one- and two-qubit operations:

• State preparation of a single-qubit 

state |0⟩ or 
1

2
|0⟩ + 𝑒𝑖𝜋/4|1⟩

• Application of a single- or two-
qubit Clifford unitary (possibly the 
identity)

• Measurement of any qubit in the 
computational basis
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Each layer ℳ(𝑇) consists in the 
parallel application of the following 
one- and two-qubit operations:

• State preparation of a single-qubit 

state |0⟩ or 
1

2
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• Application of a single- or two-
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identity)
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Definition of adaptive circuits and (quantum) circuit depth
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Adaptivity:  Each two-qubit operation may depend (in an efficiently computable 
        manner) on previous measurement outcomes.

(Quantum) circuit depth of 𝓠: = number 𝑇 of layers.

Z

Z S
H

H

S S

Pairing of qubits in each layer 
(support of two-qubit operations)



Definition of adaptive circuits and (quantum) circuit depth
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Pairing of qubits in each layer 
(support of two-qubit operations)



Consider a 𝑛-qubit circuit 𝒬 = ℳ(𝑇) ∘ ⋯ ∘ ℳ 1  

composed of 𝑇 layers ℳ(1), … , ℳ(𝑇)

Definition of adaptive circuits and (quantum) circuit depth

Adaptivity:  Each two-qubit operation may depend (in an efficiently computable 
        manner) on previous measurement outcomes.

(Quantum) circuit depth of 𝓠: = number 𝑇 of layers.

Classical 
computation

| ⟩0

| ⟩0

X

X

S

S

S

Each layer ℳ(𝑇) consists in the 
parallel application of the following 
one- and two-qubit operations:

• State preparation of a single-qubit 

state |0⟩ or 
1

2
|0⟩ + 𝑒𝑖𝜋/4|1⟩

• Application of a single- or two-
qubit Clifford unitary (possibly the 
identity)

• Measurement of any qubit in the 
computational basis

(i) a pairing 𝑖𝑟
(𝑡)

, 𝑗𝑟
(𝑡)

𝑟=1

𝑘
 of the set of qubits 𝑛 : = 1, … , 𝑛

That is, there are for each 𝑡 ∈ [𝑇]:

(ii) two-qubit operations ℳ(𝑡,𝑟)
𝑟=1

𝑘
 such that ℳ(𝑡) =⊗𝑟=1

𝑘 ℳ
𝑄𝑖𝑟

(𝑡)
𝑄𝑗𝑟

(𝑡)
(𝑡,𝑟)



Main problem addressed in this talk:

How to deal with real-world constraints

Src: people.math.sc.edu/Burkardt/c_src/image_denoise/image_denoise.htmlSrc: wikipedia



Real-world obstacle I: 
Hardware architectures and geometric locality

Two-qubit operations 
applicable only to neighboring 
pairs of qubits on a graph!



Real-world obstacle I:
Geometric locality: (gate) connectivity

full connectivity

2-qubit operations
between….

limited connectivity

…… any pair of qubits
…… e.g., nearest and
 next-to-nearest neighboring qubits



Real-world obstacle II: Noisy building blocks

Errors can affect all involved operations: preparation, storage, gates and readout. 



This talk: How to use
noisy, local operations

How to use a limited-connectivity, noisy device to 
simulate an ideal, fully-connected device?

Low-connectivity
noisy device

Fully connected
ideal device

ideal qubits/
operations

noisy qubits/
operations

• How many (additional) qubits are needed?

• What is the time required/blow-up in 
quantum circuit depth?



Fault-tolerance 
construction

Fully connected
noisy device

ideal qubits/
operations

noisy qubits/
operations

Fully connected
ideal device

How to use noisy
operations

ignoring locality considerations



How to use noisy, local
operations instead of

noisy, (general) operations

noise-robust 
localizer

Low-connectivity
noisy device

Fully connected
noisy device

noisy qubits/
operations

ignoring the problem of simulating 
an ideal (noise-free) device



ideal qubits/
operations

noisy qubits/
operations

Main conceptual consequence:

Fault-tolerance (threshold) considerations and locality restrictions 
can be analyzed separately.

Fault-tolerance 
construction

Fully connected
noisy device

Fully connected
ideal device

Low-connectivity
noisy device

This talk: How to use
noisy, local operations

noise-robust 
localizer



ideal qubits/
operations

noisy qubits/
operations

Main consequence:
Overhead-efficient fault-tolerance constructions incorporating locality constraints.

Fault-tolerance 
construction

Fully connected
noisy device

Fully connected
ideal device

Low-connectivity
noisy device

This talk: How to use
noisy, local operations

noise-robust 
localizer



Fault-tolerance construction of Yamasaki and Koashi

Can the (ideal) circuit 𝒬ideal be 
simulated using noisy 

operations?

Theorem [1] There is a threshold error strength 𝑝0 > 0 such that for large 𝑛 and 𝜀 ∈ 0,1 : 

such that a noisy implementation of 𝒬FT with local stochastic noise of strength 𝑝 ≤ 𝑝0 has an 
output distribution whose 𝐿1-distance to the output distribution of 𝒬ideal bounded by 𝜀.

There is a circuit 𝒬FT with

𝑛 ⋅ 𝑂(1) qubits 

𝑇(𝑛) ⋅ exp 𝑂 log2(log(𝑛/𝜀))   depth

Let 𝒬ideal be a circuit with

   𝑛 qubits  

  𝑇(𝑛) = 𝑂 poly 𝑛  depth

[1] Yamasaki and Koashi, Nat. Phys. no. 20, Feb 2024

Then:



Main result: Fault-tolerance with local operations in 3D

Can the (ideal) circuit 𝒬ideal be 

simulated using noisy, local 

operations?

Theorem [1] There is a threshold error strength 𝑝0 > 0 such that for large 𝑛 and 𝜀 ∈ 0,1 : 

such that a noisy implementation of 𝒬FT with local stochastic noise of strength 𝑝 ≤ 𝑝0 has an 
output distribution whose 𝐿1-distance to the output distribution of 𝒬ideal bounded by 𝜀.

There is a 3D-local circuit 𝒬FT with

𝑛 ⋅ 𝑂 𝑛1/2log3 𝑛  qubits 

𝑇(𝑛) ⋅ exp(𝑂(log2(log(𝑛/𝜀)) ) depth   

Let 𝒬ideal be a circuit with

   𝑛 qubits  

  𝑇(𝑛) = 𝑂 poly 𝑛  depth

[1] RK and Shin Ho Choe, arXiv:2402.13863 

Then:
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ideal qubits/
operations

noisy qubits/
operations

Main consequence:
Overhead-efficient fault-tolerance constructions incorporating locality constraints.

Fault-tolerance 
construction

Fully connected
noisy device

Fully connected
ideal device

Low-connectivity
noisy device

This talk: How to use
noisy, local operations

noise-robust 
localizer



noise-robust 
localizer

Low-connectivity
noisy device

Fully connected
noisy device

noisy qubits/
operations

How to use noisy, local
operations instead of

noisy, (general) operations



How to use local
operations

localizer

Low-connectivity
ideal device

Fully connected
ideal device

ideal qubits/
operations

ignoring noise



Routing of qubits in graphs

Given:

• A graph 𝐺 = (𝑉, 𝐸) with a qubit 𝑄𝑣 at each vertex 𝑣.

• A special subset 𝑆 = 𝑣1, … , 𝑣𝑘  of vertices.
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• A graph 𝐺 = (𝑉, 𝐸) with a qubit 𝑄𝑣 at each vertex 𝑣.

• A special subset 𝑆 = 𝑣1, … , 𝑣𝑘  of vertices.

Capabilities: Can apply circuits composed of local and nearest-neighbor operations. 
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Routing of qubits in graphs

Given:

• A graph 𝐺 = (𝑉, 𝐸) with a qubit 𝑄𝑣 at each vertex 𝑣.

• A special subset 𝑆 = 𝑣1, … , 𝑣𝑘  of vertices.

Capabilities: Can apply circuits composed of local and nearest-neighbor operations. 

Problem input: A pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘
 of the vertices of 𝑆

Goal: Apply a tensor product ⨂𝑟=1
𝑘 ℳ𝑄𝑣𝑖𝑟

𝑄𝑣𝑗𝑟

(𝑟)
 of two-qubit operations. 



Routing of qubits in graphs: SWAP-based protocols

ti
m

e

The number of SWAP-gate layers needed may scale linearly (in 1D)!



Entanglement swapping 

𝑠1, 𝑡1

𝑅1 𝑅2 𝑅3 𝑅𝐷⋯ 𝑅𝐷−1

𝑠2, 𝑡2 𝑠𝐷−2, 𝑡𝐷−2

Start with 𝐷 − 1 EPR pairs arranged on a line

The state after the Bell measurements is equivalent to a 
“Pauli-corrupted” long-range entangled Bell state

|Φ 𝑠,𝑡 ⟩

Φ 𝑠,𝑡 = 𝐼 ⊗ 𝑍𝑠𝑋𝑡 |Φ⟩ with Bell state determined by 
𝑠 = σ𝑗=1

𝐷−2 𝑠𝑗  (mod 2),

𝑡 = σ𝑗=1
𝐷−2 𝑡𝑗  (mod 2).

Perform Bell measurements between neighboring pairs

|Φ⟩ |Φ⟩ |Φ⟩ |Φ⟩



From qubit routing to parallel routing 
(using entanglement-swapping)

Original graph

Entanglement structure

Each edge is replaced by a Bell state |Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩



From qubit routing to parallel routing 
(using entanglement-swapping)

Original graph

Entanglement structure

Each edge is replaced by a Bell state |Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

|Φ⟩

pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘



From qubit routing to parallel routing 
(using entanglement-swapping)

Original graph

Entanglement structure

Edge-disjoint family 𝜋𝑟 𝑟=1
𝑘   of paths whose endpoints 

𝜕𝜋𝑟 = 𝑣𝑖𝑟
, 𝑣𝑗𝑟

 correspond to pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘

pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘

Entanglement swapping along each path 𝜋𝑟

(executed in parallel)



A combinatorial problem: Parallel routing in a graph

Given: A graph 𝐺 = (𝑉, 𝐸)

Definition: A subset 𝑆 = 𝑣1, … , 𝑣2𝑘  of vertices is called parallel-routable :⇔

For any pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘
 of 𝑆, there is collection 𝜋𝑟 𝑟=1

𝑘  of paths such that

• 𝜋𝑟 𝑟=1
𝑘  are pairwise edge-disjoint

• 𝜕𝜋𝑟 = 𝑣𝑖𝑟
, 𝑣𝑗𝑟

 for each 𝑟 = 1, … , 𝑘.

Problem: Find a parallel-routable set 𝑆 of maximal size. 



Parallel routing in 2D grid graphs
Definition: A subset 𝑆 = 𝑣1, … , 𝑣2𝑘  of vertices is called parallel-routable

Theorem: The 2D grid graph  𝑃𝐿 × 𝑃𝐿  contains a parallel-routable set 𝑆 of size 𝑆 = 𝐿.

:⇔

For any pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘
 of 𝑆, there is collection 𝜋𝑟 𝑟=1

𝑘  of paths such that

• 𝜋𝑟 𝑟=1
𝑘  are pairwise edge-disjoint

• 𝜕𝜋𝑟 = 𝑣𝑖𝑟
, 𝑣𝑗𝑟

 for each 𝑟 = 1, … , 𝑘.

Proof: Consider the set 𝑆 = 𝑣𝑟 = (𝑟, 𝑟) ∣ 𝑟 = 1, … , 𝐿 .

The length of each path 𝜋𝑟  is ≤ 2𝐿, and the paths can be efficiently computed from the pairing.
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Parallel routing in 2D grid graphs
Definition: A subset 𝑆 = 𝑣1, … , 𝑣2𝑘  of vertices is called parallel-routable

Theorem: The 2D grid graph  𝑃𝐿 × 𝑃𝐿  contains a parallel-routable set 𝑆 of size 𝑆 = 𝐿.

:⇔
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𝑘
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Parallel routing in 2D grid graphs
Definition: A subset 𝑆 = 𝑣1, … , 𝑣2𝑘  of vertices is called parallel-routable

Theorem: The 2D grid graph  𝑃𝐿 × 𝑃𝐿  contains a parallel-routable set 𝑆 of size 𝑆 = 𝐿.

:⇔

For any pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘
 of 𝑆, there is collection 𝜋𝑟 𝑟=1

𝑘  of paths such that

• 𝜋𝑟 𝑟=1
𝑘  are pairwise edge-disjoint

• 𝜕𝜋𝑟 = 𝑣𝑖𝑟
, 𝑣𝑗𝑟

 for each 𝑟 = 1, … , 𝑘.

Proof: Consider the set 𝑆 = 𝑣𝑟 = (𝑟, 𝑟) ∣ 𝑟 = 1, … , 𝐿 .

The length of each path 𝜋𝑟  is ≤ 2𝐿, and the paths can be efficiently computed from the pairing.

Lemma A sufficient condition for the existence of 𝜋𝑟 𝑟=1
𝑘  is

𝑥 𝑣𝑖𝑟
, 𝑥 𝑣𝑗𝑟

∩ 𝑥 𝑣𝑖𝑠
, 𝑥 𝑣𝑗𝑠

= ∅ for 𝑟 ≠ 𝑠

𝑦 𝑣𝑖𝑟
, 𝑦 𝑣𝑗𝑟

∩ 𝑦 𝑣𝑖𝑠
, 𝑦 𝑣𝑗𝑠

= ∅ for 𝑟 ≠ 𝑠

“Projections of endpoints onto coordinate axes do 
not intersect for different pairs.”

(*)



Parallel routing in 3D grid graphs

Proof: Consider the set 𝑆 = { 𝑥, 𝑦, 1  | 𝑥, 𝑦 ∈ {1, … , 𝐿}}  =: ℱ1

Theorem: The 3D grid graph 𝑃𝐿 × 𝑃𝐿 × 𝑃4𝐿 contains a parallel-routable set 𝑆 
                   of size 𝑆 = 𝐿2. Corresponding paths have length at most 10L.



Parallel routing in 3D grid graphs

Proof: Consider the set 𝑆 = { 𝑥, 𝑦, 1  | 𝑥, 𝑦 ∈ {1, … , 𝐿}}  =: ℱ1

We use a greedy algorithm that given a pairing 𝑣𝑖𝑟
, 𝑣𝑗𝑟 𝑟=1

𝑘
constructs a 

collection 𝜋𝑟 𝑟=1
𝑘  of paths as follows:

For 𝑟 = 1, … , 𝑘:

    1. Find the minimal floor level z such that adding Π𝑧𝑣𝑖𝑟
, Π𝑧𝑣𝑗𝑟

 (where 

)𝜋𝑧(𝑥, 𝑦, 1) = (𝑥, 𝑦, 𝑧)  to the floor
ℱ𝑧: = { 𝑥, 𝑦, 𝑧  | 𝑥, 𝑦 ∈ {1, … , 𝐿}}

          does not violate (*)

     2. Then use “vertical” elevators and the Lemma to construct 𝜋𝑟

Theorem: The 3D grid graph 𝑃𝐿 × 𝑃𝐿 × 𝑃4𝐿 contains a parallel-routable set 𝑆 
                   of size 𝑆 = 𝐿2. Corresponding paths have length at most 10L.



Parallel routing in 3D grid graphs

Proof: Consider the set 𝑆 = { 𝑥, 𝑦, 1  | 𝑥, 𝑦 ∈ {1, … , 𝐿}}  =: ℱ1

Theorem: The 3D grid graph 𝑃𝐿 × 𝑃𝐿 × 𝑃4𝐿 contains a parallel-routable set 𝑆 
                   of size 𝑆 = 𝐿2. Corresponding paths have length at most 10L.



Theorem:

There is an adaptive circuit 𝒬′ with

 the following properties:

1. 𝒬′ uses 𝒏 ⋅ 𝑶 𝒏𝟏/𝟐  qubits

      and is local when these are arranged 

      on a 3D grid graph.

2. 𝒬′ has quantum depth of order 𝑶(𝑻).

3. 𝒬′ simulates 𝒬 exactly

(Ideal) localization

localizer

Given: adaptive quantum circuit 𝒬

            on 𝒏 qubits 

            of depth 𝑻

           involving non-local operations



ideal qubits/
operations

noisy qubits/
operations

Main consequence:
Overhead-efficient fault-tolerance constructions incorporating locality constraints.

Fault-tolerance 
construction

Fully connected
noisy device

Fully connected
ideal device

Low-connectivity
noisy device

This talk: How to use
noisy, local operations

noise-robust 
localizer



How to realize simulate an (ideal, i.e., noise-free general) circuit by a  noisy 
(general) circuit.

(Standard) Fault-tolerance constructions

(ignoring locality)

(other researchers’ fantastic achievements!)

Fault-tolerance 
construction

Fully connected
noisy device

Fully connected
ideal device



Noise in quantum circuits: basic properties

Errors can affect all involved operations: preparation, storage, gates and readout. 

faulty

operation

preparation gate memory/

wait location
measurement

model:



Local stochastic noise
Assumption Justification

Errors are 
(randomly 
chosen)
Pauli errors.

Probabilistic Pauli noise is 
no more detrimental than 
general coherent noise.

High weight 
errors are 
exponentially 
suppressed 
(unlikely).

Physical processes are 
typically local/two-body.

Ekert, Macchiavello, Phys. Rev. Lett. 77, 2585 (1996)

Bravyi, Englbrecht, K, Peard npj Quant. Inf., vol. 4, no. 55 (2018)

Def. A random n-qubit Pauli error 𝐸 is called 
         local stochastic noise of strength 𝑝 ∈ [0,1] if 

                        Pr[𝐹 ⊆ Supp(𝐸)] ≤ 𝑝|𝐹| for all 𝐹 ⊂ {1, … , 𝑛}

         Notation: 𝐸~𝒩(𝑝).                 

Such Pauli errors  can be arbitrarily 
correlated: no locality constraints

argument based on linearity/operator bases:

evidence from numerical simulation for surface codes:

can be achieved by Pauli twirling
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Local stochastic noise
Assumption Justification

Errors are 
(randomly 
chosen)
Pauli errors.

Probabilistic Pauli noise is 
no more detrimental than 
general coherent noise.

High weight 
errors are 
exponentially 
suppressed 
(unlikely).

Physical processes are 
typically local/two-body.

argument based on linearity/operator bases:
Ekert, Macchiavello, Phys. Rev. Lett. 77, 2585 (1996)

Bravyi, Englbrecht, K, Peard npj Quant. Inf., vol. 4, no. 55 (2018)
evidence from numerical simulation for surface codes:

Def. A random n-qubit Pauli error 𝐸 is called 
         local stochastic noise of strength 𝑝 ∈ [0,1] if 

                        Pr[𝐹 ⊆ Supp(𝐸)] ≤ 𝑝|𝐹| for all 𝐹 ⊆ {1, … , 𝑛}

         Notation: 𝐸~𝒩(𝑝).                 

Such Pauli errors  can be arbitrarily 
correlated: no locality constraints

probability of occurence

Gottesman, Quant.Info. Comp., vol. 14, no. 15–16, 2014
Fawzi, Grospellier & Leverrier, FOCS 2018

can be achieved by Pauli twirling



Such Pauli errors  can be arbitrarily 
correlated: no locality constraints

=

Error accumulation:

=

Error propagation:

Lemma:

• 𝐸~𝒩 𝑝 , 𝐸′~𝒩(𝑞) 
   (possibly dependent)
              ⟹ 

𝐸′𝐸~𝒩(2 max{ 𝑝, 𝑞})

• 𝐸~𝒩 𝑝  and 𝐶 depth-1 
Clifford circuit      

            ⟹ 

𝐶†𝐸𝐶~𝒩( 2𝑝)

Error transformation rules for probabilistic Pauli noise

Def. A random n-qubit Pauli error 𝐸 is called 
         local stochastic noise of strength 𝑝 ∈ [0,1] if 

                        Pr[𝐹 ⊆ Supp(𝐸)] ≤ 𝑝|𝐹| for all 𝐹 ⊆ {1, … , 𝑛}

         Notation: 𝐸~𝒩(𝑝).                 

Gottesman, Quant.Info. Comp., vol. 14, no. 15–16, 2014
Fawzi, Grospellier & Leverrier, FOCS 2018



Local stochastic noise in quantum circuits

Def. A noisy implementation of 𝑈 with error strength gives a sample 𝑧out ∈ {0,1}𝑛  from  
 

 𝑃 𝑧out ∣ 𝐸in , 𝐸1, … , 𝐸𝐷 , 𝐸out = 𝑧out 𝐸out 𝐸𝐷𝑈𝐷 ⋯ 𝐸1𝑈1𝐸in 0𝑛 2

      
 where          𝐸𝑗  ~ 𝒩 𝑝        (qubit/gate noise)         𝐸𝑖𝑛 ~ 𝒩 𝑝      (preparation noise)

                  𝐸𝑜𝑢𝑡~ 𝒩 𝑝      (measurement noise)

𝑈1 𝑈2 𝑈𝐷

…

𝐸𝑖𝑛 𝐸1 𝐸2 𝐸𝐷 𝐸𝑜𝑢𝑡

noisy implementation

𝑈1 𝑈2

…

𝑈𝐷

ideal circuit

Let 𝑈 = 𝑈𝐷𝑈𝐷−1 ⋅⋅⋅ 𝑈1 be a quantum circuit with layers of 1- and 2-qubit gates 𝑈𝑗



Universal quantum computation: Fault-tolerance constructions

Given: (adaptive) quantum circuit 
𝒬ideal on 𝑛 qubits of depth 𝑇

Larger circuit 𝒬FT whose 
noisy implementation 
simulates 𝒬ideal 

Can the (ideal) circuit 𝒬ideal be 
simulated using noisy components?

Fault-tolerance 
construction



Fault-tolerance construction of Yamasaki and Koashi

Can the (ideal) circuit 𝒬ideal be 
simulated using noisy components?

Theorem [1] There is a threshold error strength 𝑝0 > 0 such that for large 𝑛 and 𝜀 ∈ 0,1 : 

such that a noisy implementation of 𝒬FT with local stochastic noise of strength 𝑝 ≤ 𝑝0 has an 
output distribution whose 𝐿1-distance to the output distribution of 𝒬ideal bounded by 𝜀.

There is a circuit 𝒬FT with

𝑛 ⋅ 𝑂(1) qubits 

𝑇(𝑛) ⋅ exp 𝑂 log2(log(𝑛/𝜀))   depth

Let 𝒬ideal be a circuit with

   𝑛 qubits  

  𝑇(𝑛) = 𝑂 poly 𝑛  depth

[1] Yamasaki and Koashi, Nat. Phys. no. 20, Feb 2024

Then:



Quantum memories: protecting information against noise

How to protect against noise given by a CPTP map ?

𝒩: ℬ ℂ2 ⊗𝑛 → ℬ ℂ2 ⊗𝑛  noise channel 

ℇ
encoding

map

𝒩
noise

channel

ℛ
recovery

map

Recovery map: A CPTP map

ℛ: ℬ ℂ2 ⊗𝑛 → ℬ ℂ2 ⊗𝑛

Encoding map: A CPTP map

ℰ: ℬ ℂ2 ⊗𝑘 → ℬ ℂ2 ⊗𝑛  ℛ ∘ 𝒩 ∘ ℰ = ℰ

ideally want

“perfect recovery”

ℇ
encoding

map

=



Stabilizer codes

ℇ
encoding

map

Encoding map: A CPTP map

ℰ: ℬ ℂ2 ⊗𝑘 → ℬ ℂ2 ⊗𝑛  

The encoded state ℰ(𝜌)
has support  on a certain 
subspace ℒ ⊂ ℂ2 ⊗𝑛,
the code space of a quantum
error-correcting code.

𝒮 stabilizer group, i.e., an abelian 
subgroup of the 𝑛-qubit Pauli 
group 𝒫𝑛 such that −𝐼 ∉ 𝒮.

ℒ𝒮 = Ψ ∈ ℂ2 ⊗𝑛 ∣ 𝑆Ψ = Ψ for all 𝑆 ∈ 𝒮  

code space of stabilizer code

𝒮 = 𝑆1, … , 𝑆𝑛−𝑘   
generated by 𝑛 − 𝑘 
linearly independent 

generators 𝑆𝑗 𝑗=1

𝑛−𝑘
. 



recovery map ℛ

Recovery in a stabilizer code

ℇ
encoding

map

𝒩
noise

channel

1. measure the eigenvalue (−1)𝑠𝑗  of 𝑆𝑗

      generating a syndrome 𝑠 ∈ {0,1}𝑛−𝑘 

Let     Π(𝑠) = Π𝑗=1
𝑛−𝑘 1

2
𝐼 + (−1)𝑠𝑗𝑆𝑗     

be the corresponding projection.

2. Compute a Pauli correction  
𝐶(𝑠) ∈ 𝒫𝑛,  i.e., evaluate a 
function 𝐶 : {0,1}𝑛−𝑘 → 𝒫𝑛. 

Apply 𝐶(𝑠).

Recovery 
procedure ℛ

Syndrome 
measurement

{Π 𝑠 }𝑠 PVM

Correction
 

𝐶(𝑠)

syndrome 𝑠 𝒮 = 𝑆1, … , 𝑆𝑛−𝑘   
generated by 𝑛 − 𝑘 
linearly independent 

generators 𝑆𝑗 𝑗=1

𝑛−𝑘
. 



bitflip noise
(error E)

recovery map ℛ

3-qubit repetition code
𝒮 = ⟨𝑍1𝑍2, 𝑍2𝑍3⟩Example: 3-qubit repetition code

᪄𝑋 = 𝑋1𝑋2𝑋3, ᪄𝑍 = 𝑍1Logical operators

encoding
(isometry)

𝛼 0 + 𝛽|1⟩ 𝛼 000 + 𝛽|111⟩

Syndrome measurement

𝑋1
𝑒1

0
𝑠1

0
𝑠2

Correction
 

𝐶(𝑠)
𝑋

𝑒2

𝑋
𝑒3

𝒔 = 𝒔𝟏, 𝒔𝟐 𝑪(𝒔)

(𝟎, 𝟎) 𝐼

(𝟏, 𝟎) 𝑋1

(𝟎, 𝟏) 𝑋3

(𝟏, 𝟏) 𝑋2

ℒ𝒮 = span  000 , |111⟩}

If recovery fails, we must have (𝑒1, 𝑒2) = (1,1) or (𝑒1, 𝑒3) = (1,1) or (𝑒2, 𝑒3) = (1,1) 



bitflip noise
(error E)

recovery map ℛ

3-qubit repetition code
𝒮 = ⟨𝑍1𝑍2, 𝑍2𝑍3⟩Example: 3-qubit repetition code

᪄𝑋 = 𝑋1𝑋2𝑋3, ᪄𝑍 = 𝑍1Logical operators

encoding
(isometry)

𝛼 0 + 𝛽|1⟩ 𝛼 000 + 𝛽|111⟩

Syndrome measurement

𝑋1
𝑒1

0
𝑠1

0
𝑠2

Correction
 

𝐶(𝑠)
𝑋

𝑒2

𝑋
𝑒3

𝒔 = 𝒔𝟏, 𝒔𝟐 𝑪(𝒔)

(𝟎, 𝟎) 𝐼

(𝟏, 𝟎) 𝑋1

(𝟎, 𝟏) 𝑋3

(𝟏, 𝟏) 𝑋2

ℒ𝒮 = span  000 , |111⟩}

Pr[ recovery fails ] ≤  Pr𝐸 1,2 ⊆ supp 𝐸 + Pr𝐸 1,3 ⊆ supp 𝐸 + Pr𝐸 2,3 ⊆ supp 𝐸

≤ 3 𝑝2 =: 𝑓(𝑝) if 𝐸 ∼ 𝑁(𝑝) is local stochastic



𝑑

𝑑

one qubit on each edge

• encodes 1 qubit into 𝑛 = 𝑑2+ (𝑑 − 1)2 physical qubits 

• Code space is ground space of gapped local 
Hamiltonians with 4-qubit interactions

• Code has distance 𝑑  : no operator with support of size 
O(1) can distinguish ground states 

𝑋

𝑋

𝑋 𝑋

𝑍

𝑍
𝑍 𝑍

Logical operators
᪄𝑋  = ෑ

𝑒∈𝑃

𝑋𝑒

᪄𝑍  = ෑ

𝑒∈𝑃′

𝑍𝑒

where 𝑃 (resp. )𝑃′  connect left/right (resp. top/bottom) boundaries.

𝑍 𝑍 𝑍 𝑍 𝑍

The surface code:  A [𝑛, 1, Θ(𝑛1/2)]-code with geometrically local generators

𝑋

𝑋

𝑋

𝑋

𝑋

𝑋



Pr[ recovery fails ]  ≤ σ𝑚∈ℳPr𝐸[𝐷𝑚 ⊆ supp(𝐸)]

𝐷𝑚 𝑚∈ℳ  is a certain family of subsets of qubits

Lemma: (Combinatorics) for all 𝑝 ≤  𝑝0 = 1/36 ≈ 0.028

𝑓(𝑝): = σ𝑚∈ℳ 𝑝 𝐷𝑚            for           𝑝 ∈ 0,1

𝑓(𝑝) ≤ poly(𝑑) ⋅ 𝑝/𝑝0
𝑑/2

Combinatorial upper bounds on failure probability

Dennis, Kitaev, Preskill,  J. Math. Phys. 43, 4452-4505 (2002).
http://theory.caltech.edu/~preskill/ph219/fault-tolerance-2011.pdf
Fowler Phys. Rev. Lett. 109, 180502 (2012)

Corollary: Can recover from local stochastic error 𝐸 of strength 𝒑 ≤ 𝒑𝟎 for sufficiently large 𝑑

Proof:    Use the Definition of local stochastic errors!
 

http://theory.caltech.edu/~preskill/ph219/fault-tolerance-2011.pdf


ideal qubits/
operations

noisy qubits/
operations

Main consequence:
Overhead-efficient fault-tolerance constructions incorporating locality constraints.

Fault-tolerance 
construction

Fully connected
noisy device

Fully connected
ideal device

Low-connectivity
noisy device

This talk: How to use
noisy, local operations

noise-robust 
localizer



Noise-robust localization

localizer

Low-connectivity
ideal device

Fully connected
ideal device

Basic building blocks:

• Bell (resource) states

• Entanglement-
Swapping

noise-robust 
localizer

Low-connectivity
noisy device

Fully connected
noisy device



Single-shot (stabilizer) state preparation protocols
Prepare a (stabilizer) state 𝚽 ∈ ℂ𝟐 ⊗𝒓

 as follows:

1. Apply a constant-depth Clifford circuit 𝑊 to 0𝑁 .

2. Apply single-qubit measurements to 𝑁 − 𝑟 qubits, 
resulting in a measurement results 𝑠 ∈ {0,1}𝑁−𝑟.

3. Apply a Pauli correction 𝐶(𝑠) ∈ 𝒫𝑟 to the remaining  
qubits.

(𝐶: {0,1}𝑁−𝑟 → 𝒫𝑟 should be efficiently computable.) 

shallow
quantum
circuit

ancilla 
qubits

classical 
computation

𝑠

Pauli
𝐶(𝑠) |Φ⟩

𝑊



Single-shot (stabilizer) state preparation protocols

𝐸eff 𝐸 Φ ∝ 𝐶(𝑠)(𝐼 ⊗ ⟨𝑠|)𝐸|0𝑁⟩

shallow
quantum
circuit

classical 
computation

𝑠

Pauli
𝐶(𝑠) 

𝑊

𝐸eff 𝐸

shallow
quantum
circuit

classical 
computation

𝑠

Pauli
𝐶(𝑠) 

𝑊

𝐸

Prepare a (stabilizer) state 𝚽 ∈ ℂ𝟐 ⊗𝒓
 as follows:

1. Apply a constant-depth Clifford circuit 𝑊 to 0𝑁 .

2. Apply single-qubit measurements to 𝑁 − 𝑟 qubits, 
resulting in a measurement results 𝑠 ∈ {0,1}𝑁−𝑟.

3. Apply a Pauli correction 𝐶(𝑠) ∈ 𝒫𝑟 to the remaining  
qubits.

0 ⊗𝑛

0 ⊗𝑛



𝐸eff 𝐸 Φ ∝ 𝐶(𝑠)(𝐼 ⊗ ⟨𝑠|)𝐸|0𝑁⟩

shallow
quantum
circuit

classical 
computation

𝑠

Pauli
𝐶(𝑠) 

𝑊

𝐸eff 𝐸

shallow
quantum
circuit

classical 
computation

𝑠

Pauli
𝐶(𝑠) 

𝑊

𝐸

We are often only interested in the probability 

Pr [protocol fails to prepare |Φ⟩] = Pr[E ∈FAIL]

FAIL ≔ {𝐸 ∈ 𝒫𝑛 | 𝐸eff 𝐸 Φ ≠ Φ }

Definition: Let 𝑓: 0,1 → [0,1]. The protocol is called 

𝒇-robust  if there is a family 𝐷𝑚 𝑚∈ℳ ⊂ 2[𝑛] such that

(a) For every 𝐸 ∈ FAIL: 

          ∃ 𝑚 ∈ ℳ such that 𝐷𝑚 ⊆ supp (𝐸)

(b)  σ𝑚∈ℳ 𝑝 𝐷𝑚 ≤ 𝑓 𝑝  for all 𝑝 ∈ 0,1 .

State preparation: Robustness

0 ⊗𝑛

0 ⊗𝑛



𝐸eff 𝐸 Φ ∝ 𝐶(𝑠)(𝐼 ⊗ ⟨𝑠|)𝐸|0𝑁⟩

shallow
quantum
circuit

classical 
computation

𝑠

Pauli
𝐶(𝑠) 

𝑊

𝐸

Lemma  An 𝑓-robust protocol 𝜋 fault-
tolerantly prepares the state Φ                  
under local stochastic noise 𝐸 ∼ 𝒩(𝑝): 

Pr 𝜋 fails ≤ 𝑓 𝑝  for any 𝑝 ∈ [0,1].

Proof. Consider local stochastic noise 𝐸 ∼ 𝒩(𝑝) with strength 𝑝 ≤ 𝑝0. 
Then

Pr[𝐸 ∈ FAIL]  ≤ ෍

𝑚∈ℳ

Pr 𝐷𝑚 ⊆ supp(𝐸)  by the union bound and (a) 

 ≤ ෍

𝑚∈ℳ

𝑝 𝐷𝑚  by the assumption 𝐸 ∼ 𝒩(𝑝)

 ≤ 𝑓(𝑝) by (b)

State preparation: Robustness and failure probability
FAIL ≔ {𝐸 ∈ 𝒫𝑛 | 𝐸eff 𝐸 Φ ≠ Φ }

Definition: Let 𝑓: 0,1 → [0,1]. The protocol is called 

𝒇-robust  if there is a family 𝐷𝑚 𝑚∈ℳ ⊂ 2[𝑛] such that

(a) For every 𝐸 ∈ FAIL: 

          ∃ 𝑚 ∈ ℳ such that 𝐷𝑚 ⊆ supp (𝐸)

(b)  σ𝑚∈ℳ 𝑝 𝐷𝑚 ≤ 𝑓 𝑝  for all 𝑝 ∈ 0,1 .

0 ⊗𝑛



Robustness of a 3D-local state preparation procedure 

Theorem (Quantum bus architecture). 

For any 𝑅 ≥ 2 , Δ ∈ ℕ with 𝑅 ≤ 𝑒
Δ

8  there is a circuit 𝜋 such that:

(i) 𝜋 is local and constant-depth on the grid graph 𝑃Δ × 𝑃Δ × 𝑃𝑅.

(ii) 𝜋 prepares the state |𝛷⟩ =
1

2
(|00⟩ + |11⟩).

(iii) 𝝅 is 𝒇-robust for a function 𝒇: 𝟎, 𝟏 → 𝟎, 𝟏  that satisfies 

  𝒇 𝒑 =
𝒑

𝒑𝟎
     for any  𝒑 ≤ 𝒑𝟎: = 𝟏/𝟓𝟎𝟎𝟒.

Δ

Δ

𝑅

𝑄1

𝑄2

|𝛷⟩

Raussendorf, Bravyi, Harrington, PRA (2005)

Shin Ho Choe and RK, arXiv: 2209.09774𝑞1

𝑞2



Robustness of a 3D-local state preparation procedure 

Δ

Δ

𝑅

𝑄1

𝑄2

Creates a constant-fidelity Bell pair at a distance exponential in 𝑁𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑟

where the number of qubits per slice is 𝑁𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑟 = Δ2.

(We know that the maximal distance for any protocol is 𝑂(𝑁𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑟).

|𝛷⟩

Theorem (Quantum bus architecture). 

For any 𝑅 ≥ 2 , Δ ∈ ℕ with 𝑅 ≤ 𝑒
Δ

8  there is a circuit 𝜋 such that:

(i) 𝜋 is local and constant-depth on the grid graph 𝑃Δ × 𝑃Δ × 𝑃𝑅.

(ii) 𝜋 prepares the state |𝛷⟩ =
1

2
(|00⟩ + |11⟩).

(iii) 𝝅 is 𝒇-robust for a function 𝒇: 𝟎, 𝟏 → 𝟎, 𝟏  that satisfies 

  𝒇 𝒑 =
𝒑

𝒑𝟎
     for any  𝒑 ≤ 𝒑𝟎: = 𝟏/𝟓𝟎𝟎𝟒.



State preparation up to local stochastic noise

𝐸eff 𝐸 Φ ∝ 𝐶(𝑠)(𝐼 ⊗ ⟨𝑠|)𝐸|0𝑁⟩

shallow
quantum
circuit

classical 
computation

𝑠

Pauli
𝐶(𝑠) 

𝑊

𝐸eff 𝐸

shallow
quantum
circuit

classical 
computation

𝑠

Pauli
𝐶(𝑠) 

𝑊

𝐸

Definition: The protocol prepares |Φ⟩ 

up to local stochastic noise of strength 𝒒

under local stochastic noise of strength 𝒑

if        𝑬 ∼ 𝓝(𝒑)    implies that     𝑬eff (𝑬) ∼ 𝓝(𝒒).

Prepare a (stabilizer) state 𝚽 ∈ ℂ𝟐 ⊗𝒓
 as follows:

1. Apply a constant-depth Clifford circuit 𝑊 to 0𝑁 .

2. Apply single-qubit measurements to 𝑁 − 𝑟 qubits, 
resulting in a measurement results 𝑧 ∈ {0,1}𝑁−𝑟.

3. Apply a Pauli correction 𝐶(𝑧) ∈ 𝒫𝑟 to the remaining  
qubits.



𝑊

𝐶

𝑊

𝐶

𝐸

A parallel repetition theorem
Theorem (Parallel repetition)

Let 𝜋 be a 𝑓-robust protocol preparing |Φ⟩ ∈ ℂ2 ⊗𝑟.

Then: 𝜋 × 𝜋 prepares |Φ⟩ ⊗ |Φ⟩

up to local stochastic noise of strength 𝑓(𝑝)1/𝑟.

under local stochastic noise of strength 𝒑



𝑊

𝐶

𝑊

𝐶

A parallel repetition theorem
Theorem (Parallel repetition)

Let 𝜋 be a 𝑓-robust protocol preparing |Φ⟩ ∈ ℂ2 ⊗𝑟.

Then: 𝜋 × 𝜋 prepares |Φ⟩ ⊗ |Φ⟩

up to local stochastic noise of strength 𝒇(𝒑)𝟏/𝒓.

under local stochastic noise of strength 𝑝

𝐸𝑒𝑓𝑓



A parallel repetition theorem
𝑊

𝐶

𝑊

𝐶

𝑊

𝐶

𝐸

Effective output noise of strength
independent of the number of parallel repetitions.

Theorem (Parallel repetition)

Let 𝜋 be a 𝑓-robust protocol preparing |Φ⟩ ∈ ℂ2 ⊗𝑟.

Then: 𝜋×𝑘 prepares Φ ⊗𝑘

up to local stochastic noise of strength 𝑓(𝑝)1/𝑟.

under local stochastic noise of strength 𝑝



A parallel repetition theorem

𝐸

Effective output noise of strength
independent of the number of parallel repetitions.

Theorem (Parallel repetition)

Let 𝜋 be a 𝑓-robust protocol preparing |Φ⟩ ∈ ℂ2 ⊗𝑟.

Then: 𝜋×𝑘 prepares Φ ⊗𝑘

up to local stochastic noise of strength 𝑓(𝑝)1/𝑟.

under local stochastic noise of strength 𝑝



Putting it all together: basic idea

Path 𝑃 used in pairing 4 buses applied in parallel

Φ ⊗4 with local stochastic noise

fault-tolerant bus &
parallel repetition theorem

3 entanglement swapping 
measurements 

circuit level analysis

Φ  constant-fidelity Bell pair

Φ

Result:



Putting it all together

𝑘 = 𝐿2/2      paths     𝑃1, … . , 𝑃𝑘 4 𝑘 buses applied in parallel

⋮

Φ ⊗4𝑘 with local stochastic noise

fault-tolerant bus &
parallel repetition theorem

Result:

3 𝑘 entanglement swapping 
measurements 

parallel repetition theorem 
for entanglement swapping

𝚽 ⊗𝐤 up to local stochastic noise

Φ

⋮



Theorem:

There is an adaptive circuit 𝒬′ with

 the following properties:

1. 𝒬′ uses 𝒏 ⋅ 𝑶 𝒏𝟏/𝟐𝒍𝒐𝒈𝟑 𝒏  qubits

      and is local when these are arranged 

      on a 3D grid graph.

2. 𝒬′ has quantum depth of order 𝑶(𝑻).

3. 𝒬′ simulates 𝒬 exactly

4. A noisy implementation of 𝒬′  with 

     noise of strength 𝑝 is equivalent to a

    noisy implementation of 𝒬 

     with noise of strength 𝐶𝑝𝑐

Main result: noise-robust localization

noise-robust 
localizer

Given: adaptive quantum circuit 𝒬

            on 𝒏 qubits 

            of depth 𝑻

           involving non-local operations



ideal qubits/
operations

noisy qubits/
operations

Main consequence I:
Overhead-efficient fault-tolerance constructions incorporating locality constraints.

Fault-tolerance 
construction

Fully connected
noisy device

Fully connected
ideal device

noise-robust 
localizer

Low-connectivity
noisy device

Application I of localizers:
Fault-tolerant computation

use Yamasaki 
and Koashi, Nat. 
Phys. no. 20, Feb 
2024



Related work on fault-tolerant computationReference geometry/locality physical qubit overhead quantum depth overhead

[1-4] 1D, 2D & 3D poly(𝑛) poly(𝑛)

[5-8] 2D & 3D poly(n) poly(𝑛)

our work quasi-2D-local O 𝑛 log3𝑛 exp 𝑂( log2 log 𝑛

our work 3𝐷-local O 𝑛1/2log3𝑛 exp 𝑂( log2 log 𝑛

Fawzi et al. & Gottesman non-local O(1) O(𝑛)

Yamasaki et al. non-local O(1) exp 𝑂( log2 log 𝑛

[9] Yamasaki and Koashi, Nat. Phys. no. 20, Feb 2024
[10] Fawzi, Grospellier & Leverrier, FOCS 2018& D. Gottesman,  Quant. Inf. Comp. 2014

[1] Aharonov and Ben-Or, SIAM J. Comp. 38, 1207-1282 (2008)
[2] Gottesman, J. Mod. Opt 47, 333-345 (2000)
[3] Svore, Terhal, DiVincenzo, Phys. Rev. A72, 002317 (2005)
[4] Svore, DiVincenzo, Terhal, Quant. Inf. Comp. Vol. 7, No. 4, pp. 297-318 (2007)

[5] Raussendorf, Harrington, Phys. Rev. Lett. 98, 190504 (2007)
[6] Bombin, arXiv:1810.0957
[7] Hormsan, Fowler, Devitt, Meter, NJP, 2012
[8] Litinski, Quantum 2019.



ideal qubits/
operations

noisy qubits/
operations

Main consequence II:
Overhead-efficient fault-tolerant constructions incorporating locality constraints.

Fault-tolerant 
memory

Fully connected
noisy device

noise-robust 
localizer

Low-connectivity
noisy device

Application II of localizers:
quantum memories

use single-shot
decoder for good 
quantum LDPC 
codes by Gu et al.

ideal quantum 
memory



Another application: building quantum memories

[1] E. Dennis, A. Kitaev, A. Landahl, J. Preskill, J. Math. Phys. 43, 4452-4505 (2002).

[2] Pattison, Krishna and Preskill, arXiv:2303.04798

[3] Gu, Tang, Caha, Choe, He, Kubica, Commun. Math. Phys. 405, 85 (2024)

construction physical qubit overhead quantum depth overhead locality

toric code/surface codes [1] polynomial polynomial 2D

hierarchical code [2] by 
Pattison et al.

polylogarithmic polynomial 2D

our work together with [3] polynomial constant 3D (or quasi-2D)



Construction Circuit depth 
𝑇

Total number 
of qubits

Syndrome 
extraction 
(Delfosse 
et al.) 
bound 
applies

Parameters 
saturate 
bound

Recovery 
(Baspin et al)
 bound 
applies

Parameter
saturate 
bound

Fault-
tolerant

Reference

LDPC code 
implemented 
with qubit 
routing

𝑂(1) 𝑂 𝑛3/2

Yes Yes Yes No No Our work
(routing)

LPDC code 
with fault-
tolerant 
routing

𝑂(1) 
up to polylog 

factors 

Θ 𝑛3/2log3 𝑛

No
(controls 
are not 
parities)

Yes Yes No Yes Our work

LDPC code 
concatenate
d +O(1)-
surface code Θ( 𝑛) Θ(𝑛)

Yes Yes Yes Yes No Pattison et 
al.

LDPC code 
concatenate
d +O(log n)-
surface code

Θ( 𝑛log 𝑛) Θ 𝑛log2 𝑛 No
(not LPDC)

Yes Yes Yes Yes

Pattison et 
al.

[1] N. Delfosse, M. E. Beverland, and M. A. Tremblay, Bounds on stabilizer measurement circuits and obstructions to local implementations of quantum LDPC codes, Sep. 2021. arXiv: 2109.14599.
[2] N. Baspin, O. Fawzi, and A. Shayeghi, A lower bound on the overhead of quantum error correction in low dimensions, Feb. 2023. arXiv: 2302.04317.



Local codes in ℝ𝐷

[1 ] S. Bravyi and B. Terhal, "A no-go theorem for a two-dimensional self-correcting
quantum memory based on stabilizer codes," New Journal of Physics, vol. 11, no. 4, 
p. 043 029, Apr. 2009. DOI: 10.1088/1367 − 2630/11/4/043029.
[2] S. Bravyi, D. Poulin, and B. Terhal, "Tradeoffs for reliable quantum information
storage in 2d systems," Phys. Rev. Lett., vol. 104, p. 050503,5 Feb. 2010. DOI: 
10.1103/ PhysRevLett. 104.050503.
[3] J. Haah, "A degeneracy bound for homogeneous topological order," SciPost
Phys., vol. 10, p. 011, 2021. DOI: 10.21468/SciPostPhys.10.1.011.

Bound Reference

𝑑 ∈ 𝑂(𝑛
𝐷−1

𝐷 ) [1]

𝑘𝑑
2

𝐷−1 ∈ 𝑂(𝑛)
[2]

𝑘 ∈ 𝑂(𝑛
𝐷−2

𝐷 )
[3]

𝑑 code distance
𝑘 number of encoded (logical) qubits
𝑛 number of physical qubits

𝐷 = 2 𝐷 = 3

[1] Elia Portnoy, Local Quantum Codes from Subdivided Manifolds, 
arXiv:2303.06755
[2] Dominic J. Williamson  and Nouédyn Baspin,  Layer codes, arXiv:2309.16503
[3] Ting-Chun Lin, Adam Wills, Min-Hsiu Hsieh, 
Geometrically Local Quantum and Classical Codes from Subdivision, 
arXiv:2309.16104

No-go theorems (trade-off bounds) Explicit constructions



The layer code associated with the Shor code

[1] Dominic J. Williamson  and Nouédyn Baspin,  Layer codes, arXiv:2309.16503

Figure from [1]

𝒮 = ⟨𝑍1𝑍2, 𝑍2𝑍3, 𝑍4 𝑍5, 𝑍5𝑍6, 𝑍7𝑍8, 𝑍8𝑍9, 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6, 𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9⟩Shor’s code



The layer code associated with the Shor code

[1] Dominic J. Williamson  and Nouédyn Baspin,  Layer codes, arXiv:2309.16503

Figure from [1]

𝒮 = ⟨𝑍1𝑍2, 𝑍2𝑍3, 𝑍4 𝑍5, 𝑍5𝑍6, 𝑍7𝑍8, 𝑍8𝑍9, 𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6, 𝑋4𝑋5𝑋6𝑋7𝑋8𝑋9⟩Shor’s code



The layer code associated with a good quantum LDPC code

[1] Dominic J. Williamson  and Nouédyn Baspin,  Layer codes, arXiv:2309.16503

𝑛, 𝑘, 𝑑 = Θ 𝐿3 , Θ(𝐿), Θ 𝐿2

𝐿

𝐿

𝐿

Applying the layer code construction to a good quantum CSS-code gives a code with parameters

Bound Reference

𝑑 ∈ 𝑂(𝑛
𝐷−1

𝐷 ) [1]

𝑘𝑑
2

𝐷−1 ∈ 𝑂(𝑛)
[2]

𝑘 ∈ 𝑂(𝑛
𝐷−2

𝐷 )
[3]

𝑑 code distance
𝑘 number of encoded (logical) qubits
𝑛 number of physical qubits

[2] A. Leverrier, G. Zémor, Quantum Tanner codes, FOCS 2022 



Conclusions

• New, geometrically local fault-tolerance constructions with low depth-overhead

• Systematic separation of locality considerations and fault-tolerance design 
(codes/decoders/gates)

• Many open question: 

• Optimality? 

• 2D-locality?

• Exciting recent new developments in our field! 

      Quantum LDPC codes, No low-energy trivial states conjecture, optimal local codes…..



Shin Ho Choe, RK, How to fault-tolerantly realize any quantum
circuit with local operations, arXiv:2402.13863

Shin Ho Choe, RK, Long-range data transmission in a fault-tolerant 
quantum bus architecture, arXiv:2209.09774 
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