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Particle Physics

LIISTAORY OETHE | INIVERCE A

Dark energy
accelerated

Particle physics aims to answer:

» What is the origin and future of
the Universe?

» What is the nature of elementary
particles?

» How do they interact?

Accelerators
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How Answer to the Questions?
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How Answer to the Questions?

Accelerator physics can probe the epoch of the birth of the Universe

Soup of elementary
particles at very
high temperature
and density

BIG BANG

Universe becomes

visible at 3 x 10°
years

Why is the
Universe like the Cooled down
one we see now? by expansion



Particle Physics and Quantum

Fundamental physics to understand properties/ e’ ;
dynamics of elementary particles and nuclear matters k O
#

» Governed by U(1) X SU(2) X SU(3) gauge theory C

e

Quantum Field Theory (QFT) at cores in particle
physics theories

s
« Quantum mechanics as a foundation of QFT

m)» Quantum computer may offer a unique opportunity
- I to probe phenomena governed by particle physics




Particle Physics and Quantum

Quantum technology might be able to address the questions:
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» How did the known phenomena
(e.g, Higgs condensation, quark
confinement) occur in early
Universe?

» Can we exploit guantum resources
to reach beyond conventional
experimental techniques?

How did the Universe become

the one we see now?




Outline

Present our recent studies at ICEPP that utilize quantum resources for
the application to particle physics

Highlight a few selected results on:
» learning quantum states/processes == Quantum Machine Learning

» simulating quantum dynamics in

i uantum Simulation
Lattice Gauge Theory = Q ulatio

» searching for dark matter with

superconducting qubits = Quantum Sensing



Machine Learning of Quantum States

Learning Task (in case of classification):

» Given a dataset D = {(x;, yi)}fil (x; = Classical or Quantum)

» Consider a hypothesis /1y which predicts the true label y. from input x; in D
» Define Loss function L(y,, iip(x;)) to quantify the difference between the label y.
and prediction A

» Minimize the training error RS(H) = Z L(y;, hy(x;)) over input datain D
=1

State preparation and optimization as key processes for learning task



Variational State Preparation and Optimization

» Prepare aninput state |ys,) = U(x) [yy) for classical or [y,) = |y, for quantum

» Apply a parameterized unitary U(@) to generate | y(8)) = U@) |y,

» Prepare the desired state by optimizing the parameter @ with classical computer
» Calculate, e.g, expectation value of observable O with optimized parameter 6*

Quantum Classical
» Suitable for near-term quantum devices

» Applicable to a wide range of problems
in quantum simulation (e.qg, VQE),
guantum machine learning

Feedback Loop




Quantum Machine Learning

Learning classical data x

E.g, digitized detector signals

Quantum Neural Networks

[ win)

-
‘O> 5 U(X) - U(H) :

Classification, Regression
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Learning HEP Data with QML

Classify new physics events from background with classical detector information

KT et al., Comput. Softw. Big Sci. 5, 2 (2021)

Simulator results

BDT 3-variables
BDT 5-variables
- BDT 7-variables
DNN 3-variables

DNN 5-variables

DNN 7-variables

—— QCL 3-variables
-[1- QCL 5-variables
-4+ QCL 7-variables
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» Early attempt of QML looks encouraging with small system and dataset sizes
» Limited scalability to large-size problem (due to infamous Barren Plateau problem

discussed later)
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https://doi.org/10.1007/s41781-020-00047-7

Learning Quantum Data

Directly learn guantum states without classical measurement, e.g, to
» Extract entanglement properties of a quantum system
» Determine classical parameters that control a physical system
(e.g, Hamiltonian parameters)

E.g, guantum state from

another quantum - -
system _— ATy
y ”’Q‘&/";’

Wave function

Quantum sensor
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Quantum Neural Networks




Learning Quantum Data

Learn physical properties of qguantum states generated with HEP quantum simulation

CL PL CL PL FCL

Ground States ( L Phase recognition
(1 + 1)dU(1) o 5 ) CT-symmetry
gauge theory | o phases

— -

Time-evolved states| < B P % R i] S Phase recognition
(1+1)d 2z, E Pin : : i O (De)confinement
gauge theory 7 "} 'Q‘g’\—f T N phases of matter

N .

Multi-particle states e | Lagrangian

Parton shower ;)-%} o parameter
T determination

Quantum Convolutional Neural Networks

L. Nagano, KT et al., Phys. Rev. Res. 5, 043250 (2023)
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https://doi.org/10.1103/PhysRevResearch.5.043250

QML to Quantum Data (l)

(1 + 1)d U(1) Gauge Theory (Schwinger Model) 14  Phase transition
- p in m-0 plane
an(l)" 0 m 05| @ uewenmmmmsnes
. JZ(Z ) Z(X “+%“)+5§5(_1)]Z" o ¢
» Non-trivial properties such as chiral condensate, though the model is simple 0 ~ 0.33 00
» Phase transitionat 0 = n,m/g = m_./g ~ 0.33 due to mlg
/Quantum data generation and classification ) 1.001 & Training Data R
est Data | I
» Physical parameters: N =N, =8,ag=2,0=nx 0.75 1 festbat E#W‘I I
» Generate ground states |yq(m)) using VQE within 050 :
parameter range of m/g € [—2,2] o i
» Phase recognition as a T g e {‘? """"""""""
classification with label: ‘w Dembe ~0.25-
{+1 (m>my = os0- § i
y, = Ueom ‘“ |
" -1 (m< mc) 1 Tors ~0.75 - # |
N Mo O 77
0 a7 I e R 30 -15 10 —65 00 05 10 15 20

U e G \_/\)\)/7< m/g 14




QML to Quantum Data (ll)

(14 1)d Z, Gauge Theory

N.—1

J
H=—EZ(X]Z]+1X+1+Y . i+1 +1) —fz ]+1+_2(

j=0

» Confinement (f # 0) and Deconfinement (f = 0) phases
depending on the presence of

@uantum data generation and classification )
» Physical parameters: N =2N. =4,/ =1,T=12

» Generate time-evolved states | y(m, f)) = e~ HDT |y,
using Suzuki-Trotter decomposition within

m < [O,Z],fe {0,3} e VI e W
» Phase recognition as a s PN e [
classification with label: T
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R G T T e o e e e o
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Revisiting Machine Learning

Assuming that the data (x, y) has a underlying distribution P, and a dataset
D = {(x, yl-)}fil is created by sampling the distribution P:

. l <
Training Error from D : Ry(0) = — 2 L(y;, hy(x;))
N i=1

Prediction Error (for unseen data) : R(0) = E,.,,.p [L(y, hy(x))]

Finding a hypothesis /i, that minimizes the prediction error is a goal of
machine learning



Machine Learning Task and Model Class

A given ML architecture would enable certain class of models (model class)

ML model class

@ /" : True map

2.
@ hN : Selected Model

J1* :True map that faithfully outputs the
true label y from an input x

Likely that the problems considered so far
were simple enough, so that the true map
could easily fall inside the model class:

"~/

hy =~ h*

17



Machine Learning Task and Model Class

True map may not necessarily reside in a given model class
for more complex problems

®/*

ML model class
F={h:x -y}

‘ilN

18



Machine Learning Task and Model Class

True map may not necessarily reside in a given model class
for more complex problems

be obtained when input distribution P
is directly used in the training

However, input distribution P is usually
unknown

19



Machine Learning Task and Model Class

True map may not necessarily reside in a given model class
for more complex problems

® /

®/*

7N

N : Best trained model
(x,y) € D

Best trained model is likely different from
the best model because the finite dataset

D is used instead of P

Different sources contribute to errors:

R(ilN) — R(iLN) — Optimization Error

_ R(ilN) = Estimation Error

R(h™) — = Model Error

20



Optimization Errors

Insufficient training would be an important source of optimization errors

Known that the training of parameterized quantum circuit generally becomes difficult
with increasing system size (Curse of dimensionality) J. R. McClean et al.,
Nat. Commun. 9, 4812 (2018)

Cost function

C(O) = Tr[OU@)pU"(0)]

oC(O \/
- VHNuniform C(H) Or o = 0b™")

90, (b>1)

tyo N, qubits v

Concentration of cost function
or vanishing gradient

= Barren Plateau (BP) problem
21


https://www.nature.com/articles/s41467-018-07090-4

Barren Plateau from Data Encoding

Learning classical data requires the data to be encoded into quantum state

. Examine how data-encoding unitary U(x) can cause BP
(when QNN part is assumed be BP-free)

_Unitary 2-design

K. Kamisoyama (D1)

= Vi(61) ) s \ Ry
~ a0 pi = Trylpil
Uy O s,

XL Vi(6h) L(O) = — N2,

E Z f : n=sx¢ @ Nizzlf(y’ @)
// Ve 1(0¢ 1) j £.0) = Tr [pi(H)OL]
= Ve(Be) - o

pi pi(0) 0,=— Y 100}, ®1;
j=1
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Barren Plateau from Data Encoding

Provided a new upper bound on the variance of cost function gradient:

Vargldy ZL(0)] < Ap X1, (X J dU: D, ((p?,
[LJ EEsEEEEEEEEEEEEEEEEEEEEEEEEEEEEEnnl

X

» Derived condition where the [dU Dy term does not decay exponentially

(— A necessary condition to avoid Barren Plateau)
ALT
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Barren Plateau from Circuit Expressibility

Too expressive circuit or too entangled states known to cause Barren Plateau

B Parameter initialization technique proposed as a way to avoid Barren Plateau
C.-Y. Park et al., arXiv:2403.04844

Analytically proved to have large gradient,

. . . 10° -
inspired by many-body localized (MBL) systems
—9 O =Y
. . —~1072- 1
0" € uniform(0,0.1) 67 € uniform(0,27) | & | -
< 1074- e
— —¥— OSmall " p =32
. A MBL ........ — p =04
10764 T N Tl — p=128
-------- Random (&) e
I S 10 12 14 16 18 20 22 24
2 Nqubits
Numerically confirmed that the gradient
3 stays at large value, independently of

the system size 04


https://arxiv.org/abs/2403.04844

Estimation Errors

Estimation Error = — R(]/;[N) quantifies the distance between the models
that we can get with D and P

B Estimation error bounded using Generalization Error
= R(0) — R((0)

How well the trained model can predict
for unseen data

7N

K. Kamisoyama (D1) N (x,y) €D
Investigating analytically how the parameter

initialization can affect generalization error

® /;.. :Besttrained model

25



Model Errors

Model Error = R(h*) — typically hard to quantify unless the model is
very general or specific

When a priori knowledge of the problem is accounted for in model building,
the Model Error could be reduced m) Inductive Bias

Symmetry of the problem at hand is a useful guide to build efficient
machine learning model

26



Equivariant Quantum Machine Learning

Information of symmetry provides a useful resource in machine learning

» Symmetry ubiquitous in physics, e.g, Lorentz symmetry, Permutation symmetry, ...
» Not obvious to incorporate general (continuous) symmetries in quantum setting

- Z. Li, L. Nagano, KT, Phys. Rev. Res. 6, 043028 (2024)

Investigate a generic QNN architecture to efficiently encode rotational

and permutational symmetries

» Inner products as inputs (e.g, inner products of particle 4-vectors)
— Weyl’s theorem

» Twirling method to make quantum gates invariant against input permutation
— L. Schatzki et al., npj Quantum Inf. 10, 12 (2024)

27


https://www.nature.com/articles/s41534-024-00804-1
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.043028

Equivariant Quantum Machine Learning

Z. Li, L. Nagano, KT, sl
Phys. Rev. Res. 6, 043028 (2024) e e %
L A e
Fully symmetric circuit O A6 —
. . [0 HH{ 7 Hpop 65
» Rotations handled by inner products HC e e
» Permutations handled by twirling el e e

%%%%%%‘%9\9\%

I

H — 7/ — 4-leptons classification as a benchmark

» Lorentz symmetry in particle decay Lo
» Ad-hoc non-linearity added after g08
quantum measurement: 2os

2 2
o 0.4
L©O,b) = |~ /@ — bl -
Have demonstrated very efficient training 0.0

without any indication of BP

Rotation (18 parameters)

- Rotation + Permutation (4 parameters)

— Mass cut

- Baseline (48 parameters)

0.0

0.2

0.4 0.6 0.8
Fake positive rate

1.0

28


https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.043028

Classical Simulability

Skepticism around variational QML approach ...
QML models with provable absence of Barren Plateau in literatures
can be classically simulated(?) M. Cerezo et al., arXiv:2312.09121

Argued that operator actions in BP-free quantum circuit are likely constrained
in polynomially-large subspace, hence can classically simulated

Example:

Hamiltonian Variational Ansatz (HVA) for a given H expressed as H = Z ah,

If h.is O(1)-local operator, the problem class of HVA can be classically simulated

29


https://arxiv.org/abs/2312.09121

Quantum Simulation

Hamiltonian simulation as a useful computational resource with near-term QC

Lattice gauge theory for calculating non-perturbative physics

31



Quantum Simulation

Hamiltonian simulation as a useful computational resource with near-term QC

Lattice gauge theory for calculating non-perturbative physics

Conventional LGT simulation

» Discretize spacetime / /

» MC sampling for phase-space /
¢(;) /

integrals of ¢ ™ | S—

Infamous sign problem with = /

» non-zero density, temperature
» topological term, etc.




Quantum Simulation

Hamiltonian simulation as a useful computational resource with near-term QC

Lattice gauge theory for calculating non-perturbative physics

Conventional LGT simulation

» Discretize spacetime
» MC sampling for phase-space
integrals of ™

Infamous sign problem with

Pl

L L7

» non-zero density, temperature

» topological term, etc.

Hamiltonian LGT simulation

» Discretize space
» Directly simulate e

No sign problem
o still need exponential resource
o infinite Hilbert spaces for gauge dof’s

—1H1t

\\ \\ \\ \\

\\ \\ \\ \\

AN N N\

\\ \\ \\ \\

> time
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Quantum Simulation

Hamiltonian simulation as a useful computational resource with near-term QC

Lattice gauge theory for calculating non-perturbative physics

Conventional LGT simulation

// » Discretize space

» Discretize spacetime
» MC sampling for phase-space
integrals of ™

Infamous sign problem with

» non-zero density, temperature

» topological term, etc.

Simulation of real-time phenomena, e.g, out-of-equilibrium dynamics, particle

/ » Directly simulate e
o (x;)

No sign problem

—1H1t

\\ \\ \\ \\

Hamiltonian LGT simulation

AN N N

\\ \\ \\ \\

\\ \\ \\ \\

o still need exponential resource
o infinite Hilbert spaces for gauge dof’s

scattering, is a promising example of quantum enhanced applications

> time

34



Quantum Dynamics Simulation in Schwinger Model

Simulation of quench dynamicsin (1 + 1)d U(1) LGT (Schwinger model)

2
H = JZ(ZZkH 1)k+;ﬂ) + —Z(XX]H+YY]+1)+—Z( 1YZ,

J=0 j=0
Particle creation due to strong external electric field = Schwinger effect

35



Quantum Dynamics Simulation in Schwinger Model

Simulation of quench dynamicsin (1 + 1)d U(1) LGT (Schwinger model)

2
H = JZ(ZZk+( 1)k+2‘9ﬂ> + —Z(XX]H+YX,+1)+—Z( 1YZ,

J=0 j=0
Particle creation due to strong external electric field = Schwinger effect
L. Nagano, A. Bapat, C. W. Bauer, Phys. Rev. D 108, 034501 (2023)

0
Mg =S Variational Quantum Simulation (VQS)
q=70 Prepare quantum states using time evolution of circuit parameters
V(1) = [(A(2))) - Possible to simulate with fixed-depth guantum circuit
Was) ~ [1(As))
M. — Re Ky (0)| 9| V/(H» |:| Solve classically
t Y 00.
VQE VQS l Z M (9
Ground state V.= Im 0(1//(6’) ‘ H\ (9)) B
with VQE a 00, 4 36


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.034501

Quantum Dynamics Simulation in Schwinger Model

Simulation of quench dynamicsin (1 + 1)d U(1) LGT (Schwinger model)

2
Zk+( 1)’< 0 0 m N |
= JZ Z t )+ T L XX+ YY)+ ) (17
J=0 j=0

Partlcle creation due to strong external electric field = Schwinger effect

5 L. Nagano, A. Bapat, C. W. Bauer, Phys. Rev. D 108, 034501 (2023)
(a)

_ N=4, ag=1.0, m/g=1.0, g=2.0, 6t=0.01
)\(t) q T 100 }

9.995 x 1071 ¢

q ) O 9.99 x 1071t
|\Ij(t)> ~ |¢()\(t))> %’9.985x10—1-

©
iC 9.98x1071}

N=4, ag=1.0, m/g=1.0, g=2.0, L=3, 6t=0.01

‘\IJGS> ~ ‘w()\*)> 9.975x 1071 ¢ -
t 9.9.65><10‘1:_ tz; - ,{ \E/gs . ! Tt .. ! !
VQE VQS 6 1 2 . 3 éll 5 1.86 0 1 2 . 3 4 5
Ground state First step towards more complex, non-trivial simulation

with VQE with increasing system volume 37


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.034501

Dynamical Phase Transition in Schwinger Model

Simulation of quench dynamicsin (1 + 1)d U(1) LGT (Schwinger model)

2
Z +(=DF 0 0 m N |
= ~’2<Z +2—,,)+3209?9+1+Yj1§+1>+32(—1>’2j
J=0 j=0

Investigating topological properties through @-term in real-time dynamics

38



Dynamical Phase Transition in Schwinger Model

Simulation of quench dynamicsin (1 + 1)d U(1) LGT (Schwinger model)

2
H = JZ(ZZk+( 1)k+;ﬂ) + —Z(XX]H+YY]+1)+—Z( 1YZ,

J=0 j=0

Investigating topological properties through @-term in real-time dynamics

m) Strong quenches generate dynamical phase transition
1. V. Zache et al.,

Rate function: B PRL 122, 050403 (2019)
| | 50
['(r) = lim {——log(\L(t) \)} Z
N— oo N S 0.4
9
L oschmidt echo: S 09
_ —1Ht : 3 4 === A0=1.1x7/2
L(t) — <Q ‘ € ‘ Q) with v — = AO=0.9x 7/2

=
-

initial state | Q)
Time tm 39


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.050403

Dynamical Phase Transition in Schwinger Model

Simulation of quench dynamicsin (1 + 1)d U(1) LGT (Schwinger model)

2
2 fz(z S FED M NERAEES NI
/A
j=0 j=0

Investigating topological properties through @-term in real-time dynamics

J=1,m=1,w=1,qubits=4,6:0-n

S. Ae (Internship student), L. Nagano 0,007 . T or Vb sraae
Adapted VQE + VQS approach to simulate oo =8 egone e
dynamical phase transition 50005

- L) = (Q] e M| Q) from
VQs: e H | Q) ~ U(A(r)) ] 0),
VQE: | Q) ~ U(4(0))]0) .
» @ change of 0 — 4r B 1' : ; 3 :

. Time (t- g)
> Only 4 qubits so far More work to do... Any interest?
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Qubit Technology as a Sensor

Certain types of qubits will work as a probe to nature - Quantum Sensor

What guantum system can work as a guantum sensor?
1. Identified, discretized energy levels (usually 2-levels)
2. Initialization and measurement
3. Coherent manipulation of state
4. Can couple to what we want to measure (e.g, electric/magnetic field, ..)

1) — 1) Utilizing sensor response,
E = hw, % r e.g, qubit transition energy E or rate I,
0) — 10) to what we want to measure

Qubit technologies offer interesting opportunities to experimentally

probe nature in different ways from conventional methods
41



Qubits as Quantum Sensor

Superconducting qubits potentially a powerful probe to nature

» Low threshold ( ~ ueV) at O(mK) temperature

» Coherent manipulation of states within @(100 us) or longer coherence time
» Robust measurement with non-demolition technique

-

Josephson
Junction

\_

~

EDM: u ~ Od

X | d=06(100 um)

/

Strong coupling to electromagnetic field

B O(10°) stronger than single atom

42



Qubits as a Dark Matter Sensor

Exploring superconducting qubit technology for Dark Matter searches

Most recent results presented at 19th Patras Workshop on Axions,
WIMPs and WISPs on Sep. 16-20, 2024:

» K. Nakazono First results from a cavity haloscope experiment with a novel
frequency tuning system using a qubit (talk)

» K. Watanabe Search for dark photons using direct excitations of
superconducting qubits (poster)

» T. Nitta Towards axion searches using superconducting qubits (poster)

» S. Chen Search for dark photon dark matter using large-scale
superconducting guantum computers as detectors (poster)

Please take a look at their talks/posters for details
Just highlight one of them today

43


https://agenda.infn.it/event/40078/overview
https://agenda.infn.it/event/40078/overview
https://agenda.infn.it/event/40078/contributions/240711/
https://agenda.infn.it/event/40078/contributions/240732/
https://agenda.infn.it/event/40078/contributions/240722/
https://agenda.infn.it/event/40078/contributions/240696/

Dark Matter Search with Direct Qubit Excitation

Wave-like DM, e.g, Axion, Dark Photon with mass ~ O(ueV — meV ), well motivated

» Coherent electric field generated by photons Al € y
converted from DM (e.g, dark photon) AAAAARAAAANAS
» Directly drive Qubit as a DM-induced microwave
Dark photon DM l_f
"'\/_XZ/{\// -
& " >
| NV € ho = Mpm
5 H : %
: NS G : — DA
. UG — I

S. Chen et al., PRL 131, 211001 (2023)
Superconducting qubits as an attractive probe due to
» well-motivated DM candidates in ~GHz mass range
» strong coupling of superconducting qubits to photons

44


https://doi.org/10.1103/PhysRevLett.131.211001

Qubit Fabrication

Create our own qubits and cavity for the experiment K. Watanabe, K. Nakazono (M2)

Fabrication of superconducting transmon T. Nitta, S. Chen, T. Inada

X 250 um ,
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ < M > 7/
\\\“"\\\ 7 cm \ /
S doanrie o oane \ /
AR B ::::: 400 4
AR TR IR \ HIn Josephson
§§ TRTEE T I BT TR \\ %, Junction
N v e forin 8
\ EET R IR \ R 1
Voo N N
N oo [ \ 20pm|
s\‘ AT BT TR § / S
\\ AR BT § /! Line width:
\ o e nnn § 350 nm
D N S 77T e s e
: REETES BRAL NN ;
A 4 z
N | \\\\\‘\ /
N 3 S X 480 o
Substrate: Sp, Si Capacitance pad: Nb, Al Nakazono-

san (M2)

Watanabe- |

Work at Clean 480 qubits

Room on Wafer




Frequency Modulation

Create our own qubits and cavity for the experiment

Scan DM mass by modulating qubit frequency

K. Watanabe, K. Nakazono (M?2)
T. Nitta, S. Chen, T. Inada

SQUID

Change qubit frequency (energy gaps) by
varying magnetic flux penetrating the qubit

T

Ef (o) =
X ® Xy, T ——

> >
| | Dext I \/ Ef + Ep, + 2Ey Ey, €OS ey

- fo o\
g
b ] e = SRS [ ]
S ; 23 g = = ;
s i \ Bl [« C u C t
J I = r/ K[\
L /s _ N
Ny // /| = AW ®

Ao o Smgmi— Qubits
| S N Ti coil
Magnetic field by electric current

AC stark shift

Change qubit frequency by injecting photons
with off-resonant frequency in cavity

5,02
Afbl — 125 . ............ R S
2Aqs(5q + Aqs) 130 MARELRIN ............

135 EETIEEIEEITr Trrre fsesssdesessassanns CETTTTPI A .

(). : amplitude of injected

photons
6, : qubit anharmonicity oo (MR N AR EONIY N ML

—155 R L L T P L P EEEEEE CRREEEEECEEEE R EEEECEERY

A g5 - frequency offset of
injected photons

wrt fo

_1so JUSUCREUIETI TR MO SR U (P PRI | |
460 462 464 466 468 470

£, [Hz]

VNA power in cavity (dBm)
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Qubit Readout and Experiment

Qubit states read out through the cavity Experimental procedure for DM detection

Cavity frequency shifts depending on
the qubit states (— Dispersive readout)

-30

"~
_35 R
_40 B
_45 R h

-50 - /\
-55 -

_65 -

e Parve=-30dBM, fyrme=-1€-06MHz
=70 1 Parve=-30dBM, fsrme=4817.5MHz

6.92275%.923006.92325%.923506.923756.924005.924256.924506.92475
1e9

Cavity Frequency

Qubit Readout
~ 1 us

Qubit Initialization
~ 20 ns

Excited with probability p,.
O(100 us)

4—

X 0(10° = 107)

>

e \2/ f . 2
Do = 0.12 X Kk cOs* O o
. 10-11 1 GHz 100 us

(517) () ()
0.1 pF 100 um 0.45 GeV/cm3

Initialize qubits to | 0), wait and measure
» Count the occurrence of | 1) state in

O(10° — 107) measurements
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Expected Sensitivity for Direct Qubit Excitation

Frequency (GHz)

. 10° 10°
10
— p.=10"
10-10 — p,=10""
— p,=107"
10_11 D o
— p,=10
o 10712
103 T e
107 |
10-15: - o
10° 10~ 10™

Hidden Photon Mass (eV)

Dark blue:n, = 1 @ 1 mK /year
Light blue:n, = 100 @ 1 mK /year

Dashed lines: 30 mK

S. Chen et al., PRL 131, 211001 (2023)

Possible to probe into unexplored region
even with the excitation rate of 0.1%-10%

Expected noise sources of [0) — | 1)
transition
» Thermal noise:

p~e Mkl L 0.01% — 1% @ 30 mK

» Readout error: ~ 0.1 %
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https://doi.org/10.1103/PhysRevLett.131.211001

First Results from Direct Qubit Excitation

Performed experiments with 2 qubits  Mass [GHz]

0.0108

0.0106 -

0.0104 -
| AC stark shift

0.0102 | 16 hours, 5 points

Excitaton Rate

—0.00005 O  0.00005 0.00010
Mass 4.68800 = A, [GHZz]

0.12 SQU|D
123 hours,

0.1 3,000 points

Excitaton Rate

S -0004 0 0.004
Mass 9.334 = A [GHz]

10! Background estimated
from the baseline of
observed data (mainly

102

:é: 1010 from thermal noise)
= E
O xpected sensitivity
g 107 at C = 0.1pF,
BT d = 100 pm,
. 10—12_ W | | — T = 30 //tS
10—° 10~

Mass [eV]
Possible future improvements:

» Qubit design optimization for larger C and d

» Sensitivity enhancement with quantum interference
S. Chen et al., PRL 133, 021801 (2024)

» Extending to Axion search with B-field
S. Chen et al., arXiv:2407.19755 49



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.021801
https://arxiv.org/abs/2407.19755

Efforts on Quantum Computing/Sensing ICEPP

Application/Algorithm lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ..“

' 10 Quantum machine learning: Quantum LGT simulation
» Barren plateau, Generalization  » Low-dimensional Z,, SU(2) LGT

» Learning with symmetry » Finite temperature/density
» Quantum data

H. Elhag, L. Nagano et al., arXiv:2408.08701 :

» AQCEL circuit optimization
» Qutrit implementation on superconducting qubits
» Quantum error correction

= Y. liyama, W. Jang et al., arXiv:2405.14752

Superconducting qubits and related technology .

Component for large-scale QC Qubit development for DM searches

- Amplifier - Design optimization (e.g, larger C/d, smaller JJs) :
- Circulator/Isolator, etc. - Magnetic field tolerance .



https://arxiv.org/abs/2405.14752
https://arxiv.org/abs/2408.08701

Summary

Presented selected results at ICEPP on quantum computing and

the application to particle physics:
» learning quantum states/processes
» simulating quantum dynamics in Lattice Gauge Theory
» searching for dark matter with superconducting qubits

Aiming at demonstrating quantum advantage and/or quantum as
useful resources in the computational particle physics in future

New opportunities in technology development and scientific discovery
(e.g, DM search with superconducting qubits)
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