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Particle physics aims to answer: 

‣What is the origin and future of 
the Universe? 

‣What is the nature of elementary 
particles? 

‣ How do they interact? 

Why is the Universe like 
the one we see now?

Particle Physics
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How Answer to the Questions? 

High-energy accelerator 
can directly probe 
fundamental constituents 
in nature by colliding 
particles

CERN

LHC 
27 km circumference

100 m underground
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Accelerator physics can probe the epoch of the birth of the Universe

Why is the 
Universe like the 
one we see now?

How Answer to the Questions? 
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BIG BANG Telescope

Cooled down 
by expansion

? Accelerator

Universe becomes 
visible at  
years

3 × 105

Soup of elementary 
particles at very 
high temperature 
and density
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Particle Physics and Quantum

Fundamental physics to understand properties/
dynamics of elementary particles and nuclear matters 
‣ Governed by  gauge theory U(1) × SU(2) × SU(3)

Quantum Field Theory (QFT) at cores in particle 
physics theories

Quantum mechanics as a foundation of QFT 

➡ Quantum computer may offer a unique opportunity 
to probe phenomena governed by particle physics 
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‣How did the known phenomena 
(e.g, Higgs condensation, quark 
confinement) occur in early 
Universe? 

‣Can we exploit quantum resources 
to reach beyond conventional 
experimental techniques?

Particle Physics and Quantum

How did the Universe become 
the one we see now?

Quantum technology might be able to address the questions:
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Outline

Highlight a few selected results on: 

‣ learning quantum states/processes  

‣ simulating quantum dynamics in 
Lattice Gauge Theory 

‣ searching for dark matter with 
superconducting qubits

Quantum Machine Learning

Present our recent studies at ICEPP that utilize quantum resources for 
the application to particle physics 

Quantum Simulation

Quantum Sensing
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Learning Task (in case of classification): 

‣ Given a dataset  (  = Classical or Quantum) 

‣ Consider a hypothesis  which predicts the true label  from input  in  

‣ Define Loss function  to quantify the difference between the label  
and prediction  

‣ Minimize the training error                                                    over input data in  
 

D = {(xi, yi)}N
i=1 xi

hθ yi xi D
L(yi, hθ(xi)) yi

hθ
DR̂S(θ) = 1

N

N

∑
i=1

L(yi, hθ(xi))

Machine Learning of Quantum States

State preparation and optimization as key processes for learning task
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‣ Prepare an input state  for classical or  for quantum  

‣ Apply a parameterized unitary  to generate  

‣ Prepare the desired state by optimizing the parameter  with classical computer 

‣ Calculate, e.g, expectation value of observable  with optimized parameter 

|ψin⟩ = U(x) |ψ0⟩ |ψin⟩ = |ψq⟩
U(θ) |ψ(θ)⟩ = U(θ) |ψin⟩

θ
O θ*

‣ Suitable for near-term quantum devices  

‣ Applicable to a wide range of problems 
in quantum simulation (e.g, VQE),  
quantum machine learningFeedback Loop

Quantum Classical

Variational State Preparation and Optimization 
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Learning classical data x

cvcc

c

c

E.g, digitized detector signals
Quantum Neural Networks

|0⟩ … …U(x) …

|ψin⟩

U(θ)

Classification, Regression

Quantum Machine Learning
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Learning HEP Data with QML

Simulator results

Classify new physics events from background with classical detector information

‣ Early attempt of QML looks encouraging with small system and dataset sizes 
‣ Limited scalability to large-size problem (due to infamous Barren Plateau problem 

discussed later)

g

g

H

Signal events that contain 
new particles

χ0

χ0

ℓ+

ν
ν

ℓ−

Background events

q

q

ℓ+

ν

ν

ℓ−

KT et al., Comput. Softw. Big Sci. 5, 2 (2021)

https://doi.org/10.1007/s41781-020-00047-7
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E.g, quantum state from  
        another quantum  
        system

Learning Quantum Data

Quantum Neural Networks

|1⟩

|0⟩
|0⟩
|1⟩

Wave function

Quantum sensor

Directly learn quantum states without classical measurement, e.g, to 
‣ Extract entanglement properties of a quantum system 
‣ Determine classical parameters that control a physical system  

(e.g, Hamiltonian parameters)

… …|ψin⟩ U(θ)
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L. Nagano, KT et al., Phys. Rev. Res. 5, 043250 (2023)
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Ground States 
     
  gauge theory
(1 + 1)d U(1)

Time-evolved states  
     
  gauge theory
(1 + 1)d ℤ2

Multi-particle states 
  Parton shower

Phase recognition 
CT-symmetry 
phases

Phase recognition 
(De)confinement 
phases of matter

Lagrangian 
parameter 
determination

Quantum Convolutional Neural Networks 

ρin

Learning Quantum Data

Learn physical properties of quantum states generated with HEP quantum simulation

https://doi.org/10.1103/PhysRevResearch.5.043250
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  Gauge Theory (Schwinger Model)(1 + 1)d U(1)

H = J
Ns−2

∑
j=0 (

j

∑
k=0

Zk + (−1)k

2 + θ
2π )

2

+ ω
2

Ns−2

∑
j=0

(XjXj+1 + YjYj+1) + m
2

Ns−1

∑
j=0

(−1) jZj

‣ Non-trivial properties such as chiral condensate, though the model is simple 

‣ Phase transition at  due to topological -termθ = π, m/g = mc/g ≈ 0.33 θ
0 ∞

0.5θ
2π

1

≈ 0.33
m/g

Phase transition 
in -  planem θ

Quantum data generation and classification 
‣ Physical parameters:  

‣ Generate ground states  using VQE within 
parameter range of  

‣ Phase recognition as a 
classification with label:

N = Ns = 8, ag = 2, θ = π
|ψGS(m)⟩

m/g ∈ [−2,2]

ym = {+1 (m > mc)
−1 (m < mc)

Uconv

Uconv

Uconv

Uconv

Uconv

Uconv

Uconv

Upool

Upool

Upool

Upool

Upool

Uconv

Uconv

Uconv

Upool

Upool

Uconv

QML to Quantum Data (I)
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  Gauge Theory(1 + 1)d ℤ2

H = − J
2

Ns−1

∑
j=0

(XjZj,j+1Xj+1 + YjZj,j+1Yj+1) −f
Ns−2

∑
j=0

Xj,j+1 + m
2

Ns−1

∑
j=0

(−1) jZj

‣ Confinement  and Deconfinement  phases 
depending on the presence of background electric field 

( f ≠ 0) ( f = 0)

Matter site

Deconfinement ConfinementQML to Quantum Data (II)

Quantum data generation and classification 
‣ Physical parameters:  

‣ Generate time-evolved states  
using Suzuki-Trotter decomposition within 

 

‣ Phase recognition as a 
classification with label:

N = 2Ns = 4, J = 1, T = 2
|ψ(m, f )⟩ = e−iH(m,f )T |ψ0⟩

m ∈ [0,2], f ∈ {0,3}

ym = {+1 ( f ≠ 0)
−1 ( f = 0)

Uconv

Uconv

Uconv

Upool

Upool

Uconv Upool

Uconv
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Training Error from   :           D R̂S(θ) = 1
N

N

∑
i=1

L(yi, hθ(xi))

Prediction Error (for unseen data)  :           R(θ) = 𝔼(x,y)∼P [L(y, hθ(x))]

Finding a hypothesis  that minimizes the prediction error is a goal of 
machine learning

hθ

Revisiting Machine Learning

Assuming that the data  has a underlying distribution , and a dataset 

 is created by sampling the distribution :

(x, y) P
D = {(xi, yi)}N

i=1 P
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ML model class 
F = {h : xi → yi}

: True maph*
: Selected Model h̃N

Likely that the problems considered so far 
were simple enough, so that the true map 
could easily fall inside the model class : 

                      h̃N ≈ h*

: True map that faithfully outputs the 
  true label  from an input y x

h*

A given ML architecture would enable certain class of models (model class)
≈

Machine Learning Task and Model Class
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True map may not necessarily reside in a given model class 
for more complex problems

h*

h̃N

ML model class 
F = {h : xi → yi}

Machine Learning Task and Model Class
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h*
: Best Model

h̃N

hF (x, y) ∼ P

Best model within the model class may 
be obtained when input distribution  
is directly used in the training 

P

However, input distribution  is usually 
unknown

P

True map may not necessarily reside in a given model class 
for more complex problems

Machine Learning Task and Model Class
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h*

h̃N

hF

ĥN : Best trained model
(x, y) ∈ D

Best trained model is likely different from 
the best model because the finite dataset 

 is used instead of D P

Model ErrorR(h*) =R(hF)−
Estimation ErrorR(hF) =R(ĥN)−
Optimization ErrorR(ĥN) =R(h̃N)−

True map may not necessarily reside in a given model class 
for more complex problems

Different sources contribute to errors:

Machine Learning Task and Model Class
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(b > 1)

Known that the training of parameterized quantum circuit generally becomes difficult 
with increasing system size (Curse of dimensionality)

Nqubits

C(θ)

Barren Plateau (BP) problem

Cost function
C(θ) = Tr[OU(θ)ρU†(θ)]

J. R. McClean et al.,

Nat. Commun. 9, 4812 (2018)

Concentration of cost function 
or vanishing gradient

Vθ∼uniform [C(θ) or ∂C(θ)
∂θi ] = 𝒪(b−n)

Optimization Errors

Insufficient training would be an important source of optimization errors 

https://www.nature.com/articles/s41467-018-07090-4


前提知識
量子コンピューター
変分量子アルゴリズム
量子機械学習
バレンプラトー (BP)

研究概要
コスト関数の勾配の分散の上界
コスト関数の勾配の分散の下界
誤差関数の形とコスト関数の勾配の分散
まとめ

コスト関数の勾配の分散の上界：設定 11/27

ℓi(θ) = Tr[ρi(θ)OL] ∈ [0, 1], OL =
1

n

n∑

j=1

|0⟩⟨0|j ⊗ 1j

データ入力以外の要因でバレンプラトーが起きないように学習回路や OL を設定。
東京大学理学系研究科物理学専攻寺師研究室上曽山健介 量子機械学習におけるデータ符号化由来の勾配消失に関する研究 2024/01/24 11 / 38

ℓi(θ) = Tr [ρi(θ)OL]
OL = 1

n

n

∑
j=1

|0⟩⟨0 |j ⊗ 𝕀j̄

L(θ) = 1
N

N

∑
i=1

f(yi, ℓi(θ))

22

Examine how data-encoding unitary  can cause BP 
(when QNN part is assumed be BP-free)

U(x)
Learning classical data requires the data to be encoded into quantum state 

Barren Plateau from Data Encoding

Unitary 2-design K. Kamisoyama (D1)



前提知識
量子コンピューター
変分量子アルゴリズム
量子機械学習
バレンプラトー (BP)

研究概要
コスト関数の勾配の分散の上界
コスト関数の勾配の分散の下界
誤差関数の形とコスト関数の勾配の分散
まとめ

層数の必要条件 15/27

上界が量子ビット数に対して指数関数的に落ちないための層数の設定

(0 < α, n: 量子ビット数)

D
s
HS ∝ e−αn → BP

BPが起きない必要条件：
(0 < γ, 1 < β)

n−γ ≤ β−L ≤ D
s
HS

=⇒ L ≤ γ
log β log n

（BP:バレンプラトー）

東京大学理学系研究科物理学専攻寺師研究室上曽山健介 量子機械学習におけるデータ符号化由来の勾配消失に関する研究 2024/01/24 15 / 38

23

Hilbert-Schmidt distanceVarθ[∂θν
ℒ(θ)] ≤ Af × rn,s × ∫𝕌x

dU DHS(ρ(h)
x , 𝕀/2s)

Derived condition where the  term does not decay exponentially  

(→ A necessary condition to avoid Barren Plateau)
∫ dU DHS

β > 1α, γ > 0
D̄HS ≥ β−L ≥ n−γ

L ≤ ( γ
log β ) log n

Barren Plateau from Data Encoding

Provided a new upper bound on the variance of cost function gradient:

前提知識
量子コンピューター
変分量子アルゴリズム
量子機械学習
バレンプラトー (BP)

研究概要
コスト関数の勾配の分散の上界
コスト関数の勾配の分散の下界
誤差関数の形とコスト関数の勾配の分散
まとめ

コスト関数の勾配の分散の上界：具体的な入力回路 13/27

入力回路 U(x)に次の Alternating Layered Ansatz (ALT)を仮定して、D
s=1
HS を解析計算＊

1 3 52 4

青は入力回路、赤は学習回路
学習回路としての ALTの BPへの影響は先行研究 [Cerezo2021]で調べられた。
（＊青いブロックがユニタリ 2–デザインとして、Random Tensor Network Integrator (RTNI) [Fukuda2019] を用いて計算）

東京大学理学系研究科物理学専攻寺師研究室上曽山健介 量子機械学習におけるデータ符号化由来の勾配消失に関する研究 2024/01/24 13 / 38

K. Kamisoyama (D1)

U(x) V(θ)
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Analytically proved to have large gradient, 
inspired by many-body localized (MBL) systems

Too expressive circuit or too entangled states known to cause Barren Plateau

Barren Plateau from Circuit Expressibility

Parameter initialization technique proposed as a way to avoid Barren Plateau

Numerically confirmed that the gradient 
stays at large value, independently of 
the system size

θx
i ∈ uniform(0, 0.1) θz

i ∈ uniform(0, 2π)

Hardware-efficient ansatz without barren plateaus in any depth

Strategy.  MBL :  ,    
This circuit is inspired by Many Body Localized systems, which generate low entanglement

θx
i ∈ uniform(0, 0.1) ϕz

i,j ∈ uniform(0, 2π)

θx
2θx

1 ϕz
1,1

ϕz
1,2

ϕz
1,3

ϕz
1,4

ϕz
2,1

ϕz
2,2

ϕz
2,3

ϕz
2,4

This paper suggests a parameter initialization strategy to avoid BP.

Chae-Yeun et al, arXiv:2403.04844

C.-Y. Park et al., arXiv:2403.04844
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random in U[�⇡,⇡]. Formally, the parameter condition is
written as follows:

#i = ✓i,j for all 1  j  N and 0  #i  #c for all i,

✓i,j ⇠ U[�⇡,⇡] for all N + 1  j  2N, (3)

where #c is the critical point between the chaotic and the
MBL phases. For the 1D HEA, we find 0.13 . #c . 0.16
(see Appendix B).

Our circuit is in the MBL phase when the parameters
satisfy this condition. A phenomenological theory of the
MBL [35] suggests that one can find a HamiltonianHMBL

such that

V (✓✓✓k,:) · · ·V (✓✓✓1,:) = e�iHMBLkT , (4)

for any k � 1 and a constant T , where HMBL can be
written as

HMBL =
NX

i=1

Ji⌧
z

i
+

X

i 6=j

Jij⌧
z

i
⌧z
j

+
X

all distinct i,j,k

Jijk⌧
z

i
⌧z
j
⌧z
k
+ · · · . (5)

Here, ⌧z
i
is a local integral of motion, which has a finite

overlap with Zi.
Let us consider the gradient component for ✓p,1 when

O = Y1 and | 0i = |0N i is used. From the definition of
the cost function, we obtain

@C

@✓p,1
=

i

2
h0N |U†

[1:p�1][X1,fY1]U[1:p�1]|0
N

i , (6)

where U[1:p�1] = V (✓✓✓p�1,:) · · ·V (✓✓✓1,:) is a subcircuit of

the HEA and fY1 := V (✓✓✓p,:)†Y1V (✓✓✓p,:). After some steps,
the following expression is obtained:

[X1,fY1] = 2i cos(✓p,N+1)[cos(#p)Z1 + sin(#p)Y1]

⇥

Y

j2N (1)

[cos(#p)Zi + sin(#p)Yi], (7)

where N (i) is a set of all neighbors of i in a given lattice
(see Appendix C for details).

In summary, the gradient is expressed as the sum of
multi-point correlation functions. From the fact that Zi

has a finite overlap with ⌧ i
z
, and the correlation functions

involving Pauli-Y operators are relatively small in the
MBL systems [44], we obtain

@C

@✓p,N+1
⇡ � cos(✓p,N+1)

⇥
A2 cos(#p)

⇤1+|N (1)|
(8)

for su�ciently large p (see Appendix C for details). Here,
A = Tr[⌧ i

z
Zi]/2N quantifies the overlap between two op-

erators and is independent of N and p. Hence, we ob-

tain E✓✓✓[(@C/@✓p,N+1)2] ⇡
⇥
A2 cos(#p)

⇤1+|N (1)|
/2. This

implies that the HEA in the MBL phase does not have
barren plateaus in any depth for this observable. One

8 10 12 14 16 18 20 22 24
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h
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i,
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i
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p = 32

p = 64

p = 128

Small

MBL

Random

FIG. 2. Averaged squared gradients as functions of N for
p 2 [32, 64, 128]. Observables (a) O = Y1 and (b) O =
Y1

QN
j=2 Zj are used. Each data point presents the averaged

gradient components for the RX gate acting on the first qubit,Pp
i=1(@i,0C)2/p. For each parameter initialization scheme,

results are averaged over 210 randomly sampled parameters.
For the Small initialization, the gradient magnitudes do not
decay with N regardless of the observable. On the other hand,
the MBL initialization shows ⇥(1) gradient magnitudes when
a local observable is used, whereas they decay exponentially
for a global observable.

can also repeat the same calculation for other observ-
ables. For a global observable O = Y1

Q
N

j=2 Zj , we obtain

E✓✓✓[(@C/@✓p,N+1)2] ⇡
⇥
A2 cos(#p)

⇤N�|N (1)|
/2, which de-

cays exponentially with N (see Appendix C for details).
There is a subtlety in applying our argument here to

the HEA in a higher dimensional lattice. Recent studies
have claimed that the MBL phase does not exist in the
thermodynamic limit when the dimension is larger than
one (see, e.g., Ref. [45]). However, as one can still observe
a signature of the MBL transition for a finite-size sys-
tem [46], we expect that our MBL parameter condition
would work even in a higher dimensional HEA for system
sizes tractable to intermediate-scale quantum computers.
Numerical simulations.– We numerically compare the

magnitudes of the gradients when parameters are ran-
domly sampled from the following distributions. (1)
Small: All parameters are drawn from U[0,⇡/(pN)], (2)
MBL: Parameters follow Eq. (3) with #i 2 U[0,0.1], and
(3) Random: All parameters are completely random,
i.e., ✓i,j ⇠ U[0,2⇡] for all i, j.

We use two observables O = Y1 and O = Y1
Q

N

j=2 Zj ,

and the initial state given by | 0i = |0N i. Simple compu-

O = Y1

https://arxiv.org/abs/2403.04844
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Estimation Errors

Estimation Error R(hF)= R(ĥN)−

h*

h̃N

hF

ĥN : Best trained model
(x, y) ∈ D

: Best Model
(x, y) ∼ P

Estimation error bounded using Generalization Error

 : = R(θ) − R̂S(θ)
How well the trained model can predict 
for unseen data

quantifies the distance between the models
that we can get with  and  D P

Investigating analytically how the parameter 
initialization can affect generalization error

K. Kamisoyama (D1)
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Model Errors

R(h*)= R(hF)−Model Error typically hard to quantify unless the model is
very general or specific 

When a priori knowledge of the problem is accounted for in model building, 
the Model Error could be reduced

Symmetry of the problem at hand is a useful guide to build efficient 
machine learning model

Inductive Bias



27

Information of symmetry provides a useful resource in machine learning 

‣ Symmetry ubiquitous in physics, e.g, Lorentz symmetry, Permutation symmetry, … 
‣ Not obvious to incorporate general (continuous) symmetries in quantum setting

Investigate a generic QNN architecture to efficiently encode rotational 
and permutational symmetries 
‣ Inner products as inputs (e.g, inner products of particle 4-vectors) 

‣ Twirling method to make quantum gates invariant against input permutation

Equivariant Quantum Machine Learning

→ Weyl’s theorem

→ L. Schatzki et al., npj Quantum Inf. 10, 12 (2024)

Z. Li, L. Nagano, KT, Phys. Rev. Res. 6, 043028 (2024)

https://www.nature.com/articles/s41534-024-00804-1
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.043028


Symmetric circuit

14

 Fully symmetric circuit 
• Rotations handled by dot products

• Permutations handled by twirling.

Particle decay

20

 Lorentz symmetry in particle decays. 
• SO(3+1). 

• Typically useful in High energy particle classification.

• Found in many state of the art classical ML algorithms.

• Hard to convolute but easy to take inner products.

-leptons classification as a benchmark 
‣ Lorentz symmetry in particle decay 
‣ Ad-hoc non-linearity added after  

quantum measurement:  

H → ZZ → 4

L(θ, b) = [− | fQ(θ) − b | − y]
2

28

Fully symmetric circuit 
‣ Rotations handled by inner products 
‣ Permutations handled by twirling

Equivariant Quantum Machine Learning
Z. Li, L. Nagano, KT, 

Phys. Rev. Res. 6, 043028 (2024)

Have demonstrated very efficient training 
without any indication of BP  

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.6.043028
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Argued that operator actions in BP-free quantum circuit are likely constrained 
in polynomially-large subspace, hence can classically simulated

Example:  

Hamiltonian Variational Ansatz (HVA) for a given  expressed as  

If  is -local operator, the problem class of HVA can be classically simulated

H H = ∑ αihi

hi 𝒪(1)

Classical Simulability

M. Cerezo et al., arXiv:2312.09121

Skepticism around variational QML approach …  
QML models with provable absence of Barren Plateau in literatures 
can be classically simulated(?)

https://arxiv.org/abs/2312.09121
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Hamiltonian simulation as a useful computational resource with near-term QC

Quantum Simulation

Lattice gauge theory for calculating non-perturbative physics
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Numerical study of Quantum Field Theory
• (conventional) lattice QFT

• discretize spacetime  
using Monte Carlo method

• infamous sign problem
• topological term
• real-time dynamics, etc.

• Hamiltonian simulation  
• discretize space

• no sign problem!

• need exponential resources…
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‣Discretize spacetime 
‣MC sampling for phase-space 

integrals of  e−S

Hamiltonian simulation as a useful computational resource with near-term QC

Quantum Simulation

Lattice gauge theory for calculating non-perturbative physics

Infamous sign problem with 
• non-zero density, temperature 
• topological term, etc.

Conventional LGT simulation
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Numerical study of Quantum Field Theory
• (conventional) lattice QFT

• discretize spacetime  
using Monte Carlo method
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‣Discretize spacetime 
‣MC sampling for phase-space 

integrals of  e−S

‣Discretize space 

‣Directly simulate  e−iHt

Hamiltonian simulation as a useful computational resource with near-term QC

Quantum Simulation

Lattice gauge theory for calculating non-perturbative physics

Infamous sign problem with 
• non-zero density, temperature 
• topological term, etc.

No sign problem 
• still need exponential resource 
• infinite Hilbert spaces for gauge dof’s

Conventional LGT simulation Hamiltonian LGT simulation
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Numerical study of Quantum Field Theory
• (conventional) lattice QFT

• discretize spacetime  
using Monte Carlo method

• infamous sign problem
• topological term
• real-time dynamics, etc.

• Hamiltonian simulation  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‣Discretize spacetime 
‣MC sampling for phase-space 

integrals of  e−S

‣Discretize space 

‣Directly simulate  e−iHt

Hamiltonian simulation as a useful computational resource with near-term QC

Simulation of real-time phenomena, e.g, out-of-equilibrium dynamics, particle 
scattering, is a promising example of quantum enhanced applications

Quantum Simulation

Lattice gauge theory for calculating non-perturbative physics

Infamous sign problem with 
• non-zero density, temperature 
• topological term, etc.

No sign problem 
• still need exponential resource 
• infinite Hilbert spaces for gauge dof’s

Conventional LGT simulation Hamiltonian LGT simulation
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Quantum Dynamics Simulation in Schwinger Model

Simulation of quench dynamics in   LGT (Schwinger model)(1 + 1)d U(1)
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Particle creation due to strong external electric field  ➡ Schwinger effect
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Variational Quantum Simulation (VQS)

Prepare quantum states using time evolution of circuit parameters
Possible to simulate with fixed-depth quantum circuit

L. Nagano, A. Bapat, C. W. Bauer, Phys. Rev. D 108, 034501 (2023)

Mij = Re ∂⟨ψ(θ) |
∂θi

∂ |ψ(θ)⟩
∂θj

Vi = Im ∂⟨ψ(θ) |
∂θi

H |ψ(θ)⟩ ∑
j

Mij
·θj = Vi

Solve classically

Ground state 
with VQE

Time-evolution 
with VQS

q = θ
2π

Simulation of quench dynamics in   LGT (Schwinger model)(1 + 1)d U(1)
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Particle creation due to strong external electric field  ➡ Schwinger effect

Quantum Dynamics Simulation in Schwinger Model

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.034501
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(1) State preparation via VQE: One approximates

jΨGSðq ¼ 0Þi by jψðλoptÞi, and determines λopt by
minimizing hψðλÞjHjψðλÞi on a classical computer.

(2) Real-time evolution via McLachlan’s variational
principle: One uses λopt as initial values and evolve
λ via (20). The coefficientsMij and Vi are evaluated
by a quantum circuit while the parameter evolution
is done by a classical computer.

In a standard algorithm, one need both a state preparation
and time-evolution circuit, but using the approach pre-
sented here one reduces the depth by using the same ansatz
for both processes.

IV. RESULTS

This section presents our results of the simulation using
the variational algorithms and compares them against
results obtained from exact diagonalization (ED). The
VQE and VQS results are obtained from noiseless state-
vector simulation implemented by Qulacs [101], while ED
results are obtained by QuSpin [102].

A. Ground-state preparation via VQE

We first perform VQE for N ¼ 4, ag ¼ 1, m=g ¼ 1 in
the absence of the external field q ¼ 0. We repeat opti-
mizations 20 times starting from different random initial-
izations. Figure 2 shows a metric of accuracy [103]
rðEÞ ≔ ðEmax − EVQEÞ=ðEmax − EminÞ as a function of
the number of layers, where Emax =min is the highest/lowest
eigenvalue of the Hamiltonian.4 The central value corre-
sponds to the median of the 20 optimizations performed,
while the error bar represents the 25–75 percentiles. One
observes that high-accuracy rðEÞ ≥ 0.999 can be achieved
for all L and that for L ≥ 4 the uncertainties improve
markedly.

B. Quench dynamics via VQS

After preparing the initial state, we perform VQS for
N ¼ 4, ag ¼ 1, m=g ¼ 1, and q ¼ 2.5 First, we investigate
the dependence of systematic errors on the number of layers
L and a time increment δt. The left plot in Fig. 3 shows
the fidelity FðtÞ ≔ jhΨEDðtÞjψVQSðtÞij2 between the states
obtained fromVQS and ED as a function of time (multiplied
by a coupling-constant) for different number of layers. One
can see that the stability improves as the number of layers is
raised up toL ¼ 3 and the (median) fidelity is above 0.99 for
all cases. The right panel shows the same plot, but this time
varying δt for fixed L. We see that the VQS results can be
improved significantly by decreasing δt.
Next, we evaluate the physical observables discussed in

Sec. II B and compare them to the results obtained by exact
diagonalization. We verified that the U(1) charge agrees
perfectly with the exact result, as can be expected since our
ansatz satisfies the global U(1) symmetry of the problem.
The remaining two observables are shown in Fig. 4 with
L ¼ 3 and δt ¼ 0.01 fixed. The VQS results are consistent
with those from ED up to a few % errors. The errors from
the variation over the 20 initial conditions is of the same
order of magnitude as the difference from the exact result,
but for the electric field and 1.5≲ t · g≲ 4.5 the difference
between the exact result and the central value of the VQS
results are about three times the size of the quoted error.
For t · g≲ 3, the value of the electric field decreases

while that of the chiral condensate increases, followed by
the oscillation. This can be interpreted as follows—the
external electric field first provides energy for fermions and
then leads to particle-pair creations.
Finally, let us comment on the scaling of the variational

methods. It is very important to understand how the errors/
resources scale with the lattice size/spacing, since we are

FIG. 3. Fidelity between states from VQS and ED for N ¼ 4, a · g ¼ 1.0, m=g ¼ 1.0, q ¼ 2.0. Solid curves/error bands show the
medians and 25–75 percentiles of 20 samples: (left) dependence of the number of layers L ∈ f1; 2; 3g with δt ¼ 0.01 fixed, (right)
dependence of a time increment δt ∈ f0.01; 0.02; 0.04g with L fixed.

4This ratio takes 0 for the worst case (EVQE ¼ Emax) and 1 for
the best case (EVQE ¼ Emin). We obtain Emax =min via ED.

5We regularize the matrix Mij as M → M þ ϵI if detðMÞ < ϵ
when we perform a matrix inversion. In the following simulation,
we set ϵ ¼ 10−7.
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eventually interested in continuum and infinite volume
limit. We provide additional results in Appendix B to show
the dependence of accuracy on the system size and lattice
spacing. As for system-size dependence, we observe that
the accuracy gets worse with increasing N, though we can
achieve F > 0.9 at least up to N ¼ 8 only with L ≤ 3.
Further investigation of the scaling would require the large
size simulation possibly with improved algorithms, which
we leave for the future works.

V. SUMMARY AND DISCUSSION

In this work, we demonstrated a possible application of
the variational quantum algorithm to a gauge theory.
Specifically, we investigated the real-time dynamics in
the Schwinger model after suddenly turning on the external
electric field, by combining VQE and VQS methods. We
performed the (classically-emulated) state-vector simula-
tion and found that the results obtained from the quantum
algorithms are consistent with those obtained from ED. Our
simulation results can be interpreted as a population of a
particle-antiparticle pair induced by the external field.
There aremany possible future directions. This paper used

the original algorithm proposed by Li and Benjamin [66].

There are two main drawbacks to this approach: First, the
matrix M can be singular or ill-conditioned in practice,
leading to unstable trajectories. Workarounds such as regu-
larization add a parameter that must be tuned. Secondly,
computing the each entry of M requires OðN2

pÞ calls to the
quantum computer where Np is the number of parameters.
There aremany attempts toovercome this problem [71–83]. It
would be important to see if these methods can improve our
simulation results in termsof accuracy andmeasurement cost.
Toward an implementation on real quantum devices, it is

important to understand the effects of hardware noise and
statistical error coming from a finite number of measure-
ments. Besides, combination with error mitigation methods
can be an essential ingredient.
Finally, it would be interesting to consider an extension to

the higher-dimensional and/or non-Abelian gauge theory.
For this purpose, a careful search for an ansatz that is efficient
and preserves gauge invariance during simulation can be
crucial.
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(a) (b)
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FIG. 4. Dynamics of physical observables for N ¼ 4, a · g ¼ 1.0,m=g ¼ 1.0, q ¼ 2.0 with L ¼ 3 and δ ¼ 0.01. Dots/error bars show
the median and 25–75 percentiles of 20 samples: (a) electric field, (b) chiral condensate, (c), (d) ratio between the values of observables
obtained from ED and VQS.
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First step towards more complex, non-trivial simulation 
with increasing system volume

Particle creation

L. Nagano, A. Bapat, C. W. Bauer, Phys. Rev. D 108, 034501 (2023)
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Dynamical Phase Transition in Schwinger Model

Investigating topological properties through -term in real-time dynamicsθ
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Dynamical Phase Transition in Schwinger Model

Investigating topological properties through -term in real-time dynamicsθ
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(b)Rate function:  

   Γ(t) = lim
N→∞ {− 1

N
log( |L(t) | )}

Loschmidt echo:  
   with  
  initial state 
L(t) = ⟨Ω |e−iHt |Ω⟩

|Ω⟩

2

FIG. 1: Phase of the time-ordered correlator [Eq. (2)] after
✓ quenches at vanishing gauge coupling. The real-time evo-
lution of the phase exhibits qualitative di↵erences when the
quench is weaker/stronger than the critical value �✓c = ⇡/2,
exemplified here for �✓ = 0.45⇡ (left) and �✓ = ⇡ (right).
While for small quenches |�✓| < �✓c the phase is analytic, for

large quenches |�✓| > �✓c vortices form at (±kc, t
(n)
c ). The

integration path C+(t), here shown for tm ⇡ 9, encloses a dis-
crete number of vortices (marked by yellow circles), leading
to integer increments of the topological invariant ⌫ as time
progresses (see Fig. 2).

Here,  are two-component fermion operators, m the
fermion rest mass, �0/1 constitute a two-dimensional Clif-
ford algebra, and �5 ⌘ �

0
�
1. The first term describes the

energy of the electric field, which is coupled to the kinetic
energy of the fermionic matter via the covariant deriva-
tive Dx.

Here, we wish to study how topological properties ap-
pearing through the CP -violating ✓ term become mani-
fest in the real-time dynamics of the theory. To this end,
we prepare the system in the ground-state |⌦(✓)i of H✓

and switch abruptly to another value ✓0, thereby quench-
ing the system out of equilibrium. Since the ✓-angle in
the massive Schwinger model has the same topological
origin as its counterpart in 3+1D QCD, we can interpret
the studied quench as a classical, external axion field.
In the following, we will show that this quench generates
topological transitions, which appear as momentum–time
vortices of the phase of the gauge-invariant time-ordered
Green’s function,

g✓!✓0(k, t) =

Z
dx e

�ikxh †(x, t)e�ie
R x
0 dx

0
A(x0

,t)
 (0, 0)i.

(2)

We first discuss these topological transitions in the con-
tinuum theory at weak coupling, where we show analyt-
ically their direct correspondence to DQPTs. The weak-
coupling results will motivate the definition of a general
topological invariant, which will enable us to study also
the interacting theory, discussed further below.

Weak-coupling limit. In the weak-coupling limit,
e/m ! 0, the massive Schwinger model is a
free fermionic theory that can be solved analytically
by diagonalizing H✓ =

R
dkH✓(k), with H✓(k) =

FIG. 2: Dynamical topological transitions at vanishing gauge
coupling. (a) The topological invariant exhibits jumps at crit-

ical times t(n)
c = (2n�1)⇡/ [2!(kc)] with n 2 N, if |�✓| > ⇡/2,

while the dynamics is topologically trivial for |�✓| < ⇡/2. (b)
For |�✓| > ⇡/2, the rate function [Eq. (5)] shows non-analytic

kinks at times t(n)
c .

 
†
k
�
0
⇣
k�

1 +m ei✓�
5
⌘
 k. Figure 1 displays the phase of

g✓!✓0 as a function of (k, t) for two exemplary quenches
with �✓ = 0.45⇡,⇡ (our results here depend only on
�✓ = (✓ � ✓

0) 2 (�⇡,⇡]). Strong quenches in the range
|�✓| > ⇡

2 are accompanied by the formation of vortices

at critical times t(n)c = (2n�1)tc, with tc =
⇡

2!(kc)
, n 2 N

and !(k) =
p
k2 +m2. These appear in pairs of opposite

winding at critical modes ±kc = ±m

p
� cos (�✓).

This observation suggests to define a dynamical topo-
logical order parameter that counts the di↵erence of vor-
tices contained in left (�) versus right (+) moving modes,
⌫ ⌘ n+ � n�, with

n±(t) ⌘
1

2⇡

I

C±(t)
dz

�
g̃
†(z)rzg̃(z)

 
. (3)

Here, g̃(z) ⌘ g✓!✓0(k, t0)/|g✓!✓0(k, t0)| and C±(t) is a
rectangular path enclosing the left/right half of the z =
(k, t0)-plane up to the present time t, i.e., it runs (counter-
clockwise) along (0, 0) $ (0, t) $ (±1, t) $ (±1, 0) $
(0, 0) as visualized in Fig. 1. As exemplified in Fig. 2(a),
the topological invariant remains trivial for |�✓| < ⇡/2,
while for |�✓| > ⇡/2 it changes abruptly at critical times

t
(n)
c .
These singular times coincide with fundamental

changes in the properties of the real-time evolution,
coined DQPTs [23]. DQPTs are revealed in the so-
called Loschmidt amplitude, which is related to the vac-
uum persistence amplitude [31] and which is a common

Strong quenches generate dynamical phase transition
T. V. Zache et al.,

PRL 122, 050403 (2019)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.050403


40

Simulation of quench dynamics in   LGT (Schwinger model)(1 + 1)d U(1)

H = J
N−2

∑
j=0 (

j

∑
k=0

Zk + (−1)k

2 + θ
2π )

2

+ ω
2

N−2

∑
j=0

(XjXj+1 + YjYj+1) + m
2

N−1

∑
j=0

(−1)jZj

6

B. Variational Quantum Simulation

1. VQS by statevector

The evolution of the quantum state is first simulated
using statevector simulation, where shot noise does not
affect the results. Figure 5 shows the fidelity between
the exact state and the VQS simulation. The number
of steps is varied from 250 to 3000. All the simulations
use the same initial parameters. Stability improves as
the number of steps increases, although there is little
apparent difference between 1000 steps and 3000 steps.

FIG. 5. Change of fidelity between quantum state calculated
by exact diagonalization and state calculated by VQS with
statevector simulation, depending on the number of steps for
the time evolution.

2. VQS by shots

Concerning the VQS by shots, almost the same rate
function performance was reproduced. However, when
the number of shots decreases, a phenomenon we term
singularity begins to appear. Figure 6 illustrates the fi-
delity between states calculated by VQS and exact diag-
nalization. It is evident that fidelity remains around 1 as
the number of shot increases.

Of particular note is that the average of the shot num-
ber 1000/3162 is lower than the 25th percentile of 35/40
samples during the initial period of time evolution. This
indicates that some fidelities drop rapidly to zero, caus-
ing the average to be lower than the 25th percentile. We
found that this phenomenon is due to the statistical fluc-
tuation of the Mi,j in Eq. 16. When measuring the ele-
ment of Mi,j , it is possible that Mi,j approaches a singu-
lar matrix (matrix without an inverse). When it occurs,
parameters λ are more sensitive to the noise of the mea-
surement. To address this issue, we propose checking the

FIG. 6. Change of fidelity between the exact state calculated
by exact diagonalization and the state calculated by VQS with
shot noise, with the number of shots varied from 1000 (103) to
31622 (104.5). The same initial state is used for all simulations
(fidelity: 0.999801). Solid curves represent the average, and
error bands represent the 25-75 percentiles of 35 samples for
shot numbers 1000, 10000, 31622, and 40 samples for shot
number 3162.

FIG. 7. Simulation of the rate function using exact diago-
nalization and VQE/VQS. Number of steps for VQS is 500.

condition number of the matrix during VQS. A detailed
discussion is in Appendix A.

C. Rate Function

Figure 7 shows the dynamics of the rate function. Be-
cause the quench ∆θ = π(> π/2) is strong enough, the
graph should exhibit the kink. However, both the vari-
ational simulation and the exact diagonalization do not
show the kink. The overall concave shape of the graph
agrees with the previous study [13].

Adapted VQE + VQS approach to simulate 
dynamical phase transition 

‣  from 

             VQS : , 
             VQE :  

‣  change of  
‣ Only 4 qubits so far

L(t) = ⟨Ω |e−iHt |Ω⟩
e−iHt |Ω⟩ ≃ U(λ(t)) |0⟩
|Ω⟩ ≃ U(λ(0)) |0⟩

θ 0 → 4π

S. Ae (Internship student), L. Nagano

More work to do…  Any interest?

Preliminary

Dynamical Phase Transition in Schwinger Model

Investigating topological properties through -term in real-time dynamicsθ
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Qubit technologies offer interesting opportunities to experimentally 
probe nature in different ways from conventional methods

Qubit Technology as a Sensor

Certain types of qubits will work as a probe to nature Quantum Sensor

What quantum system can work as a quantum sensor? 
1. Identified, discretized energy levels (usually 2-levels) 
2. Initialization and measurement 
3. Coherent manipulation of state  
4. Can couple to what we want to measure (e.g, electric/magnetic field, ..)

Utilizing sensor response,  
e.g, qubit transition energy  or rate ,  

to what we want to measure 
E Γ
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Superconducting qubits potentially a powerful probe to nature 

‣ Low threshold ( ) at  temperature 

‣ Coherent manipulation of states within  or longer coherence time 

‣ Robust measurement with non-demolition technique

∼ μeV 𝒪(mK)
𝒪(100 μs)

Qubits as Quantum Sensor

Strong coupling to electromagnetic field

 stronger than single atom𝒪(106)
Josephson 
Junction

EDM: μ ∼ Qd

d = 𝒪(100 μm)
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Qubits as a Dark Matter Sensor

Exploring superconducting qubit technology for Dark Matter searches

Most recent results presented at 19th Patras Workshop on Axions, 
WIMPs and WISPs on Sep. 16-20, 2024: 
‣ K. Nakazono   First results from a cavity haloscope experiment with a novel 

                             frequency tuning system using a qubit (talk) 

‣ K. Watanabe   Search for dark photons using direct excitations of  
                             superconducting qubits (poster) 

‣ T. Nitta   Towards axion searches using superconducting qubits (poster) 

‣ S. Chen   Search for dark photon dark matter using large-scale  
                   superconducting quantum computers as detectors (poster)

Please take a look at their talks/posters for details 
Just highlight one of them today

https://agenda.infn.it/event/40078/overview
https://agenda.infn.it/event/40078/overview
https://agenda.infn.it/event/40078/contributions/240711/
https://agenda.infn.it/event/40078/contributions/240732/
https://agenda.infn.it/event/40078/contributions/240722/
https://agenda.infn.it/event/40078/contributions/240696/
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Wave-like DM, e.g, Axion, Dark Photon with mass , well motivated 
‣ Coherent electric field generated by photons  

converted from DM (e.g, dark photon) 

‣ Directly drive Qubit as a DM-induced microwave  

∼ 𝒪(μeV − meV)
もういっそ直接励起

EX

µ

Qubitのドライブパルス

|g>

|e> ℏω = mDM

DMから転換した光子由来のコヒーレントな電場

= 

○ そもそもqubit-photon結合は強い　 
    µqubit ~106 × µatom 

    直接励起はnaiveには筋が良いはず


○  ダークマター由来の光: コヒーレント 
    Qubitにとってのドライブパルスになる 

    Rabi振動: 1Hz-1kHz

    振動の立ち上がりを頑張って捉える

|0
> 

po
pu

la
tio

n 
(a

.u
.)

Time lapse after resetting the qubit [0.1 µs]

T1 ~ 100µs

32

Dark photon DM

Chen et al.  
arXiv: 2212.03884

S. Chen et al., PRL 131, 211001 (2023)

Dark Matter Search with Direct Qubit Excitation
代表的な波ダークマター (2): Dark Photon

8

○ 新しいU(1)Q'


○ Dark photon := 光子とちょっとだけ混ざってる偽光子


○ 磁場かけてないAxion探索実験で探せる


    (実験初期のベンチマークに利用されがち)

Dark photon  
(質量固有状態)

mixing parameter
一般photon

Dark photon  
(相互作用固有状態)

Xμ = X̃μ − ϵAμ

   磁場がかかったaxionの状態にデフォルトでなってるイメージ

A′ 
γ

Superconducting qubits as an attractive probe due to 
‣ well-motivated DM candidates in ~GHz mass range 
‣ strong coupling of superconducting qubits to photons  

https://doi.org/10.1103/PhysRevLett.131.211001
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Qubit Fabrication

Study for the dark matter search using excitation of 
superconducting qubits
Karin Watanabe (The University of Tokyo / ICEPP)

Summary

• Dark photon convert into a coherent E-field, whose freq. 
corresponds to the mass of dark photon.

• This E-field excites a transmon, only when the E-field freq. is 
the same as the excitation freq. of the transmon. 

Introduction Method and Sensitivity  

Fabrication Readout test 

×	#(10!)

Initialize ~ 20ns

(	 = 	#(100	µs)

Readout ~1μs
Excitation with ,"#(%)

Dark photon

Superconducting qubit: transmon

Dark photon mass-eigenstate
Photon

Dark photon interaction-eigenstate

Kinetic mixing parameter
-' =	 .-' 	− 	ϵ1'

Make transmons by our selves

based on [1]

References
[1] S. Chen et al. , Phys. Rev. Lett. 131, 211001 (2023). 
[2] Jin et al., Phys. Rev. Lett. 114, 240501 (2015). 
[3] Chen, L., Li, HX., Lu, Y. et al., npj Quantum Inf 9, 26 (2023)

Repetitive counting experiment

TransmonAl Cavity

→One to one correspondence btw. the dark photon mass &
    the transmon excitation freq. with anomalous excitation rate  

Outlook
• Extend transmon lifetime: 2( 	→ ~100	56
• know true transmon temp. & improve cooling arrangements 
• Actually do this search,  ex. 1-year mass scan 
• Apply this method to axion search

For measurement preparation, 
• Make transmons by ourselves: 2(~556
• Readout test: error rate ~	15% in |0> as |1> 

Main idea is, 

• Good DM candidate

convert into E-field UNDER B-field

• Light mass	 ~	# meV
• Electromagnetic interaction

behave like a coherent wave 

Metal cavityDark
Photon

~ GHz

E-field
Transmon

|0> |1> 

Main idea

• Excited by coherent E-field

• Nonlinear LC circuitCapacitor

Josephson
Junction

Convert into coherent E-field
freq. corresponding to DM mass

• Josephson Juncion work as
nonlinear inductance

@ temp. < 1.2 K

Freq. of DM-converted E-field
=Excitation freq. of transmon

⇒Transmon excite

Dark count
!

"

Thermal excitation ~	0.1%[*]	 & Readout error ~0.1%[,]

• Find excitation freq. with 
anomalous excitation rate

• SQUID enables tuning of 
the excitation freq.

#!" ≅ 0.12	 ×	 +#,-.#/ 0
10$%%

# 1&'
1	GHz

5
100	µs

# 8
0.1	pF

;
100	µm

# =()
0.45	GeV/cm*

!!": excitation freq. of transmon
": lifetime of transmon

Expected exploration area

Dark gray: excluded by the cosmological 
and astrophysical constraints
Light gray: excluded by the previous 
experiments

1 transmon @ 1 mK

100 transmon @ 1 mK

Detection Criterion
>-./ > max	(3, 5 >0123)

0.1% - 10% excitation 
in the unexplored region

Substrate: Sp, Si

400 µm

250 µm

×	480

Capacitance pad: Nb, Al

20 µm

Line width:
350 nm

7 cm

Josephson 
Junction

Sp

Nb

Plasm Nb

150 nm

Sp

Nb

Resist
1.2 μm

Laser

Resist

Sp

Nb

Sp

Nb

Resist
500nm

500nmResist

F$beam

Sp

Nb

Sp

Nb

Al

Capacitance 
pad

Josephson 
Junction

Error source
=Gsin 2If+,-.K + Mcos 2If+,-.K

Osin 2If+,-.
→Osin 2If+,-.K	 + P

4

2

0

-2

-4

-6
-2 0 2 4 6

I

Q

[	µV	]

[	µ
V	]

• Single shot readout test 

• Error rate
|0>
|1>

• Judged |0> or |1>
    by phase change of    
    readout pulse 

• Transmon lifetime, in |1> as |0> 

• Residual thermal excitation, in |0> as |1> 

• Excited transmon may de-excite before readout

2(	~	5	56

|1> as |0>: ~ 20%
|0> as |1>: ~ 15%

値要修正

• Transmon & cavity was in fridge
• Temp. of transmon & cavity >> temp. of fridge ~ 10 mK ?
• Thermal excitation: 0.1% <30mK, 15% @120 mK  

• Noise of readout pulse

値要修正

[2]

[1]

値要修正

𝒪(100nm × 100nm)

Create our own qubits and cavity for the experiment 

Fabrication of superconducting transmon

480 qubits 
on Wafer

Dicing

Nakazono-
san (M2)

Watanabe-
san (M2)

Work at Clean 
Room

K. Watanabe, K. Nakazono (M2)

T. Nitta, S. Chen, T. Inada
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Frequency Modulation

Scan DM mass by modulating qubit frequency 

Magnetic field by electric current

Qubits

Cu cavity

NbTi coil

SQUID

Eeff
J (ϕext) =

𝜙ext
J2J1 E2

J1 + E2
J2 + 2EJ1EJ2 cos ϕext

Create our own qubits and cavity for the experiment K. Watanabe, K. Nakazono (M2)

T. Nitta, S. Chen, T. Inada

AC stark shift
Change qubit frequency by injecting photons 
with off-resonant frequency in cavity 

Change qubit frequency (energy gaps) by 
varying magnetic flux penetrating the qubit 

Δf01 =
δqΩ2

s

2Δqs(δq + Δqs)

	:	amplitude of injected
       photons 
Ωs

 : qubit anharmonicityδq

 : frequency offset of 
        injected photons 
        wrt 

Δqs

f01

Dark Photon Waves

今あるプロジェクトたち

3

超伝導量子コンピューター用新規量子デバイス開発  
IBM sponsored research (IBM-SR)

 
 

IBM Quantum Sponsored Technology Research Agreement # W2076133 / IBM & U Tokyo  Page 8 of 15 

 

The starting point of our circuit design is the previous work [29] in a tunable coupling qubit (TCQ) 

shown in Fig. 2. It connects two transmons in series where the upper and lower nodes are shunted by a 

capacitor CI. The dipoles of the transmons can add in parallel or in antiparallel (quadrupole), and these 

modes in terms of symmetry are mixed with the ratio tuned by CI. (Fig. 3a)  

 

 

 

 

 

 

 

 

The advantages of this multimode circuit design are as follows. 

(i) The always-on ZZ couplings between transmons are suppressed in one of the mode at the level of 

exchange, as demonstrated in Ref. [30]. 

(ii) Another source of anharmonicity is introduced from the energy splitting between the two internal 

modes (Fig. 3a), and thus improves otherwise small anharmonicity in the conventional transmons. 

(iii) The charge dispersion is improved for both modes compared to the conventional transmon as 

shown in Fig. 3b. For example, the typical IBM devices with EJ/EC ~ 30 are found to have less 

charge dispersion by an order of magnitude. 

Although the first two points (i) and (ii) are already highly beneficial, the last point (iii) plays a key 

role in multilevel computation such as qutrits. To understand this improved immunity to charge noise in 

the TCQ, we first emphasize that the dispersion in the energy levels arises from instanton tunneling 

through the cosine potential. In the |0ۧ-|1ۧ subspace, the ground state |0ۧ is more deeply bounded than 

the |1ۧ state, and therefore the |1ۧ-state tunnelling dominates. By contrast, the eigenstates of the TCQ are 

Fig. 2 Circuit model of the TCQ [29]. 

Fig. 3 (a) Eigenenergies of the TCQ Hamiltonian as a function of EI/EC for EJ = 50EC. Solid lines 
are from numerical diagonalization and dashed lines are from the coupled anharmonic oscillator 
model. (b) Charge dispersion as a function of the ratio EJ/EC for EI = ʷEC (solid lines) and EI = 0 
(dashed lines, transmon limit) [29]. 

量子ビットを使ったダークマター探索 
with 東大諸井研, 東大低温センター, U. Hamburg

高Q共振器を使った高周波重力波探索  
with Fermi lab/SQMS/KEK

5

FIG. 1. Contours of constant p⇤ ⌘ pge(⌧) on mX vs. ✏

plane (10�1, 10�3, 10�5, and 10�7, from the top). Param-
eters of C = 0.5 pF, d = 100 µm, Q = 106,  = 1 and
⇢DM = 0.45 GeV/cm3 are assumed. The gray-shaded region
is excluded by the cosmological and astrophysical constraints
[38] (dark gray) and the existing hidden-photon search exper-
iments [6–31] (light gray) based on the summary in Ref. [47].
The blue shaded regions indicate the sensitivity with the 1-
year scan over the frequency range for nq = 1 (dark blue)
and 100 (light blue) (more details in the main text) assum-
ing the thermal noise of T = 1 mK. The dashed lines show
the sensitivity with T = 30 mK with the top (bottom) line
corresponding to nq = 1 (100) respectively.

by comparing Nsig and Nbkg. Here, we apply a simple
form of Nsig/

p
Nbkg as the proxy to the significance in

the unit of Gaussian-equivalent standard deviation. The
following criterion is used for the DM detection in the
study:

Nsig > max(3, 5
p

Nbkg), (30)

which requires either 5� where there is substantial
amount of backgrounds, or minimum 3 signal events in a
highly background-free regime.

The qubit frequency scan is considered in the range
of 1  f  10 GHz, corresponding to the DM mass of
4 � 40 µeV. The step width is �! = !/Q. Taking
Q = 106, the number of the scan points is ⇠ 2 ⇥ 106,
and the measurement time for each scan point is taken
to be ⇠ 14 sec which is chosen so as the total time for the
scan fits within one year. The readout time (O(100 ns))
and the interval between the readout (10 µs, based on
Ref [10]) is neglected in the evaluation as they are short
enough compared with the coherence time ⌧ .

Fig. 1 shows the projected sensitivity of our proposed
experiment. The contours of constant p⇤ on mX vs. ✏
plane is also overlaid. The gray-shaded region is ex-
cluded by cosmological and astrophysical constraints [38]
(dark gray) and the existing hidden-photon search exper-
iments in this frequency range [6–31] (light gray). The
upper dark blue (lower light blue) shaded regions indi-
cate the regions fulfilling the discovery criteria defined

in Eq. (30) with nq = 1 (100) assuming T = 1 mK.
The dashed lines show the sensitivity with T = 30 mK
with the top and bottom line corresponding to nq = 1
and 100, respectively. Notice that the discovery reach
is insensitive to the value of Q in this evaluation ignor-
ing the measurement time or interval, since p⇤ / Q

2

while Ntry / Q
�2. The unexplored frequencies in the

1� 10 GHz range can be fully covered by the mass scan
with one year of the measurement time. The sensitivity
of the hidden photon DM search of our proposal is com-
parable to or better than those of other proposals with
condensed-matter excitations (e.g., electric excitations
[48–52], phonon [53, 54], magnon [55], and condensed-
matter axion [56–58]).

Conclusions and discussion: In this letter, we have pro-
posed a new detection scheme for the hidden photon
DM using transmon qubits. Due to the small kinetic
mixing with the ordinary EM photon, an e↵ective ac
electric field is induced that coherently drives a trans-
mon qubit from the ground state toward the first-excited
state when it is resonant. We have calculated the rate of
such excitation (see Eq. (25)), and evaluated the hidden
DM search sensitivity assuming the thermal excitation
(1 � 30 mK) as the sole source of background. Using
a standard SQUID-based transmon, the sensitivity can
reach ✏ ⇠ 10�12

� 10�14 with a ⇠ 14 sec of measurement
for a single frequency, and with a one year to complete
the scan over the 4� 40 µeV (1� 10 GHz) range.
There are a few considerations left for the future stud-

ies that can further boost the sensitivity. (1) Qubit
design optimization maximizing the electric dipole mo-
ment, where more aggressive transmon parameters and
complex circuit design can be sought. (2) Coherent
multi-qubit excitation, in an analogy to Dicke’s super-
radiance [59, 60], can be also explored. While dismissed
in this letter, the interference e↵ect can in principle yield
/ n

2
q enhancement as opposed to / nq in the excita-

tion rate, which is particularly relevant when nq becomes
larger. (3) The packaging e↵ect can be further investi-
gated. So far, we focus on a relatively simple setup: a
cylinder-shaped cavity with the o↵-resonant frequency of
the hidden photon. More detailed understanding on the
dependencies of  may allow the use of a high-Q cavity
package resonating to both the DM and the qubits.
The search scheme can be also directly benefited from

the exponential advancement of the large-scale NISQ
computers led by, e.g., IBM [61] or Google [62]. Since
the requirements and the experimental setup are almost
identical, the improved qubit multiplicity and coherence
in the NISQ machines will scale the typical sensitivity of
this experiment as well. Technically, it might be even
possible to perform the experiment with the existing
NISQ machines in a parasitic manner by using their idle
or calibration time during the operation.
Finally, we point out that the physics cases of the

search can be widely extended beyond the hidden photon
DM, such as the axion DM or other non-DM transient
energy density such as dark radiation.

Figure 2: Niobium spherical cavities (fixed coupling)

by the diameter of the coupling tube and by the distance
between the two spherical cells. A central elliptical cell,
which can easily be streched and squeezed, was found to
provide a tuning range of several kHz (4–20 kHz in the fi-
nal design). A prototype with the central elliptical cell was
built and is now being tested (Fig. 3). A second tunable
cavity (two spherical cells and the central cell) will be built
by the middle of 2004.

Figure 3: Niobium spherical cavities (variable coupling)

The system was also mechanically characterized, and the
mechanical resonant modes in the frequency range of inter-
est were identified. In particular the quadrupolar mode of
the sphere was found to be at 4 kHz, in good agreement
with finite elements calculations.
The detection electronics was designed. Its main task is

to provide the rejection of the symmetric mode component
at the detection frequency. A rejection better than 150 dB
was obtained in the final system.
Starting from the results obtained in the last six years,

we are now planning to design and set up an experi-
ment for the detection of gravitational waves in the 4–10
kHz frequency range (MAGO, Microwave Apparatus for
Gravitational waves Observation). Our main task is the de-
sign and construction of the refrigerator and of the cryo-
stat (including the suspension system), which houses the
coupled cavities. The refrigerator must provide the cryo-
genic power needed to keep the superconductiong cavities
at T ∼ 1.8K (approx. 10Watts) without introducing an ex-
cess noise from the external environment. A design based
on the use of subcooled superfluid helium is being invesi-
gated. The expected time-scale is four years (2004–2007).
In the following a detailed description of the various is-

sues aforementioned will be given. Expected system sensi-
tivity will also be discussed.

PHYSICS MOTIVATION
The spectrum of gravitational waves of cosmic origin

targeted by currently operating or planned detectors spans
roughly from 10−4 to 104 Hz.
The f ≤ 10−1 Hz region of the gravitational wave (GW)

spectrum, including galactic binaries [11], (super)massive
black hole (BH) binary inspirals and mergers [12], compact
object inspirals and captures by massive BHs [13], will be
thoroughly explored by LISA [14], which might be hope-
fully flown by year 2015. Ground based interferometers
and acoustic detectors (bars and spheres) will likewise co–
operate in exploring the f ≥ 101 Hz region of the spec-
trum, including compact binary inspirals and mergers [15],
supernovae and newborn black-hole ringings [16], fast-
spinning non-axisymmetric neutron stars [17], and stochas-
tic GW background [18].
The whole spectral range from 10−4 − 104 Hz, how-

ever, is far from being covered with uniform sensitivity, as
seen e.g. from Fig. 4, where the fiducial sensitivity curves
of LISA and LIGO–II are shown side by side. Plans are
being made for small–scale LISA–like space experiments
(e.g., DECIGO, [19]) aimed at covering the frequency gap
10−1 − 101 Hz between LISA and terrestrial detectors.

Figure 4: LISA–LIGO comparison

Several cryogenic/ultracryogenic acoustic (bar) detec-
tors are also operational, including ALLEGRO [20], AU-
RIGA [21], EXPLORER [22], NAUTILUS [23], and
NIOBE [24]. They are tuned at∼ 103 Hz, with bandwidths
of a few tens of Hz, and minimal noise power spectral den-
sities (PSD) of the order of 10−21 Hz−1/2.
Intrinsic factors exist which limit the performance of

both interferometers (IFOs) and acoustic detectors in the
upper frequency decade (f >∼ 103 Hz) of the spectrum.
The high frequency performance of laser interferometers

is limited by the ∝ f2 raise of the laser shot-noise floor.
While it is possible to operate IFOs in a resonant (dual)
light-recycled mode, for narrow-band increased-sensitivity
operation the pitch frequency should be kept below the sus-
pension violin-modes [25], typically clustering near and
above ∼ 5 · 102 Hz.
Increasing the resonant frequency of acoustic detectors

(bars, spheres and TIGAs), on the other hand, requires de-
creasing their mass M . The high frequency performance

2

circulator e�ciency. We show that due to tunneling of
quasiparticles between di↵erent pairs of superconducting
islands the Josephson-ring circulator in Ref. [19] has four
accessible charge-parity sectors. Given the same working
conditions and parameters, these sectors circulate sig-
nals with di↵erent e�ciencies. Stochastic jumps among
the sectors caused by quasiparticle tunneling events then
may result in unstable operation of the circulator de-
vice. To mitigate these fluctuations, we propose to em-
ploy quasiparticle-trapping techniques [24, 25, 30–33] to
suppress quasiparticle population.

The structure of this paper is as follows. In Sec. II
we present the circuit design of the passive on-chip su-
perconducting circulator along with the SLH formalism
to numerically calculate the scattering matrix elements.
Then in Sec. III we derive the scattering matrix elements
exploiting the adiabatic elimination technique and deter-
mine the conditions for optimal circulation, followed by
numerical optimization in Sec. IV. Section V analyzes
quasiparticle tunneling in the circulator system. The pa-
per is concluded in Sec. VII. Appendixes provide detailed
calculations and additional information for the results in
the main text.

II. CIRCUIT DESIGN AND SLH FORMALISM
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FIG. 1. (a) Schematic circuit design of the passive on-chip
superconducting circulator proposed in Ref. [19]. The de-
vice comprises three superconducting islands which are rep-
resented by the numbers of Cooper pairs n̂j and the super-
conducting phases �̂j (j = 1, 2, 3) on each island. They are
connected by three Josephson junctions with Josephson ener-
gies EJj and junction capacitances CJj . Each island is biased
by an external voltage Vxj via a gate capacitance Cxj and cou-
pled capacitively to a waveguide via a coupling capacitance
Ccj . The whole circulator loop is threaded by a central ex-
ternal flux �x as well. (b) First four excited-state energies !k

(k = 1, 2, 3, 4) of the circulator ring versus the reduced exter-
nal flux �x for a symmetric circuit (i.e., EJj = EJ , CJj = CJ ,
Cxj = Cx, and Ccj = Cc). The eigenenergies are computed

by numerically solving the eigensystem of Ĥring given in Eq.
(4) with EC⌃/EJ = 0.35 and nxj = 1/3.

In this section we present the circuit design of the ring
circulator, its working principle, the SLH formalism to
compute the scattering matrix, and the notations used

throughout the paper. Many details of these can be found
in Ref. [19]. The circulator circuit, depicted in Fig. 1a,
is a superconducting ring segmented into three super-
conducting islands by three Josephson junctions each of
which is described by a Josephson energy EJj and a junc-
tion capacitance CJj (j = 1, 2, 3). The three islands are

represented by the superconducting phases �̂j and their
conjugate charges n̂j ; they are biased by external volt-
ages Vxj with gate capacitances Cxj and coupled to three
external waveguides by coupling capacitances Ccj . The
circulator ring is threaded by an external flux �x. Input
fields bin,j propagate along the waveguides, interact with
the ring, and scatter into output fields bout,j .
To begin, we consider the case of a symmetric

Josephson-junction ring, that is, EJj = EJ and CJj =
CJ , and further assume that Cxj = Cx and Ccj = Cc. We
consider asymmetries later. As derived in Appendix A,
the circulator ring Hamiltonian is

Ĥring =
(2e)2

2
(n̂� nx)C�1(n̂� nx)

�EJ

3X

j=1

cos(�̂j � �̂j+1 � 1
3�x), (1)

where n̂ = {n̂1, n̂2, n̂3}, nx = {nx1 , nx2 , nx3} with nxj =
CxjVxj/(2e) the (dimensionless) charge bias on the is-
land j, �x = 2⇡�x/�0 is the reduced flux bias which
has been shared equally by the three Josephson junc-
tions with �0 = h/(2e) the superconducting quantum
flux, and C is the capacitance matrix. To account for the
fact that the total number of Cooper pairs on the ring is
conserved, we define new coordinates

n̂
0
1 = n̂1, n̂

0
2 = �n̂2, n̂

0
3 = n̂1 + n̂2 + n̂3 = n0, (2)

�̂
0
1 = �̂1 � �̂3, �̂

0
2 = �̂3 � �̂2, �̂

0
3 = �̂3, (3)

where n0 is the conserved total charge number, which is
controlled by the external biases [20]. In the new coordi-
nates, the Hamiltonian Ĥring is

Ĥring = EC⌃

�
(n̂0

1 � 1
2 (n0 + nx1 � nx3))

2

+(n̂0
2 +

1
2 (n0 + nx2 � nx3))

2 � n̂
0
1n̂

0
2

�

�EJ

�
cos(�̂0

1 � 1
3�x) + cos(�̂0

2 � 1
3�x)

+ cos(�̂0
1 + �̂

0
2 +

1
3�x)

�
, (4)

where EC⌃ = (2e)2/C⌃ is the charging energy with
C⌃ = 3CJ + Cx + Cc.
In terms of the ring eigenbasis {|ki ; k = 0, 1, 2, . . . },

we have

Ĥring =
X

k>0

!k |ki hk| , (5)

where !k is the eigenenergy1 associated with the excited
state |ki (k > 0), and we have subtracted the ground

1
In this paper, we set ~ = 1.
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is surely Hawking radiation. It is revealed that entanglement entropy is characterized by squeezing parameters 
related to Hawking temperatures, which depend on the velocity of the soliton.

�������
�����Ǥ� The black hole laser originally requires the superluminal dispersion with a positive curvature in the 
dispersion curve of the  system12–14. Here we use a model in which a black hole laser is feasible even in subluminal 
dispersion with well-designed dispersion  curves17. To create the dispersion relation required for black hole lasers 
in subluminal dispersion, we employ dispersive engineering utilizing metamaterials made of sub-wavelength 
inclusions that provide tremendous degrees of freedom for manipulating with high precision the electromag-
netic parameters of materials and modes. In fact, metamaterials create a medium in which the permittivity 
and permeability are simultaneously negative, which does not exist in nature, and enables the unique property 
that the phase velocity and group velocity of electromagnetic waves are opposite to each other. In addition, the 
Josephson effect provides the Kerr  nonlinearity18, 19 essential for black hole lasers, which determines the group 
velocity, required to select the propagation modes in the system.

Suppose that a Josephson metamaterial transmission line consists of a number of LC blocks each comprised 
of composite right/left-handed components together with a Josephson element in the shunt branch as illustrated 
in Fig. 1. Starting from the application of Kirchhoff ’s law to this system together with the Josephson relation, the 
current conservation at the nth node is expressed as

where In is the current through the nth node comprising of the current through the right-handed (rh) inductor 
with inductance Lrh and the left-handed (lh) capacitor with capacitance Clh at the nth cell, i.e., In = ILrh ,n + IClh ,n,

where Ic , ! , e, and θn are the Josephson critical current, Dirac’s constant, an elementary charge, and the phase 
difference in the nth junction, respectively. The currents on the right-hand side of Eq. (1) are the Josephson cur-
rent IJ ,n , the displacement current ICrh ,n flowing through the nth Josephson junction with capacitance Crh , and 
the current ILlh ,n through the left-handed inductor with inductance Llh . Combining these relations, we obtain 
the following circuit equation,

where we use sin θn ≃ θn − θ3n/6 and LJ = !/(2eIc).
Now let us derive the dispersion relation of this transmission line by ignoring the nonlinear terms of the 

Josephson effect. We substitute a plane-wave solution θn ∼ exp[i(kna − ωt)] with the wavenumber k, the fre-
quency ω , and unit cell length a for Eq. (4) and obtain the dispersion relation

where ωrh = 1/
√
CrhLrh and γ = Clh/Crh . In the regime of γω2 ≪ ω2

rh , this reduces to

(1)In − In−1 = −IJ ,n − ICrh ,n − ILlh ,n,

(2)ILrh ,n = −
!

2e

1

Lrh
(θn+1 − θn),

(3)IClh ,n = −
!

2e
Clh

d2

dt2
(θn+1 − θn),

(4)Crh
d2θn
dt2

+
1

Llh
θn +

1

LJ

(

θn −
θ3n
3!

)

−
(

1

Lrh
+ Clh

d2

dt2

)

(θn+1 + θn−1 − 2θn) = 0,

(5)sin2
ka

2
=

1

4

{

ω2

ω2
rh

− Lrh

(

1

Llh
+

1

LJ

)}(

1 − γ
ω2

ω2
rh

)−1

,

Figure 1.  Schematic representation of the composite right/left-handed nonlinear transmission line. Each 
unit cell consists of the series branch elements and the shunt branch elements. In the series branch, a linear 
inductive element of inductance Lrh is arranged in parallel with a linear capacitance Clh . These constitute the 
linear dispersive element of the line. While in the shunt branch, a linear inductive element of inductance Llh is 
also arranged in parallel with a linear capacitor of capacitance Crh as well as the Josephson element (represented 
by × ) which is responsible for the nonlinearity of the system. The dotted vertical lines mark the unit cell of the 
lattice with the length a.
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provides the drive and measurement tones to the system.
Here, ain(t) and aout(t) represent, respectively, the incom-
ing and outgoing field of the transmission line where it
interacts with our circuit. The fields at different times are
not related, such that

[
aout(t), a†

out(t′)
]

=
[
ain(t), a†

in(t
′)
]

=
δ(t − t′). This implies ain and aout have dimension t−1/2.

A detailed balance of the field results in the following
input-output relation:

aout = ain + √
κca, (8)

where κc is defined as the frequency-independent cou-
pling rate at which the oscillator exchanges energy with
the transmission line, and can be experimentally character-
ized for each setup. Here, we choose the sign convention
following the approach in Ref. [48]. With the incoming
and outgoing fields taken into account, we arrive at the
following differential equation for a(t) in the Heisenberg
picture:

∂ta = − i
! [a, H] − κ

2
a − √

κcain. (9)

This expression is called the quantum Langevin equation
[49]. It includes two new terms: the first one corresponds
to a damping of the field at rate κ/2, with κ = κc + κi,
where κi is the coupling rate between the system and the
uncontrolled environment usually called the internal loss
rate; the second term,

√
κcain, referred to as “drive” or

“pump,” is vital for a to obey the same usual commuta-
tion relation

[
a, a†] = 1 at all times despite the damping

term. As an alternative to the quantum Langevin equation,
the Lindblad master equation can also be used to describe
such dissipative systems [49,50]. However, the quantum

Langevin equation is more suited to describe the traveling
fields that we consider here.

While ain is necessary in order for us to control the state
of the resonator, it also introduces undesired fluctuations
in its field. To mitigate this, we typically operate in the
“stiff-pump” regime, where κc is negligible compared to
the frequency of the resonators, but the expectation value
of

√
κcain can be large compared to κc. This way, we have

ain = āin + a0
in, where a0

in represents the negligible fluctua-
tions of the field and āin its average value. In the stiff-pump
approximation, a drive is modeled with the Hamiltonian

Hd

! = ϵ(t)a† + ϵ(t)∗a, (10)

with ϵ(t) = √
κcāin.

B. Josephson junction
Superconducting resonators alone do not provide a use-

ful medium for encoding quantum information. This is
because the energy levels of a resonator are separated by
an equal spacing of !ω, forbidding us from addressing the
transitions individually. Thus, we must introduce a nonlin-
ear element in order to achieve universal quantum control
of the circuit.

In cQED, the most ubiquitous source of nonlinearity
is a Josephson junction (JJ), favored for its simplicity
and nondissipative nature. This element is made of two
superconducting electrodes separated by an insulating tun-
nel barrier, represented in Fig. 3(a). In practice, JJs are
typically fabricated by overlapping two layers of supercon-
ducting films with an oxide barrier in between. The area of
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図 9.6: LC共振器とトランズモンの結合系

というHamiltonianを得る。ここで量子ビットの周波数は h̄ωq =
√
8ECEJ−ECであり、非調和性を表すαq = −EC/h̄を導入した。典型的なパラメータとしては、ωq ≃ 10 GHz、

EJ/EC ≥ 50、αq ∼ −200 MHzほどである。
一見すると JosephsonエネルギーEJ が電荷エネルギーEC よりも大きいという仮定は、Josephson接合が非線形インダクタとして働くということから非線形性が大きいこと

を意味するようにも思えるが、実は θの係数にもEJ/ECの因子があるように、非線形性が小さくなることを意味することが分かる。これはnCの真空ゆらぎ δnC = (EJ/8EC)
1/4

を考えるとより直観的になる。EJ/EC が小さいときには δnC は小さく、Cooper対が 0

個から 1個になるか 1個から 2個になるかでCooper対間の相互作用による遷移エネル
ギーの違いが出る、すなわち非線形性がある。しかしEJ/EC ≫ 1のときには δnCが非常に大きい。すなわちもはやこの領域での固有状態は数状態ではうまく書けないものに
なるのだが、あえてCooper対の個数でいうならば 1個増えようがそこからさらにもう
1個増えようが、数状態の分布が少しシフトするだけで遷移エネルギーにおける違いが
ほとんどないような状況になる、すなわち非線形性が小さくなるのである。今回考えた
ような超伝導回路で大きなEJ/EC を持つものをトランズモン（transmon）と呼ぶ。逆
に EJ/EC が小さくなると非線形性が大きくなるが、こういった超伝導回路を Cooper

pair boxと呼ぶ。

9.2.3 共振器とトランズモンの結合
最後に、超伝導量子ビットと共振器が図のようにキャパシタを介して接続されている

ような回路を考えよう。電圧、キャパシタの電荷、磁束その他のパラメータは図中に示
してあるのでそちらを参照してほしい。結合キャパシタ（coupling capacitor）Ccの扱いが肝だが、キャパシタンスがCq、Crに比べ小さいとし、超伝導量子ビット、共振器、結合キャパシタのエネルギーを足し上げたものとして Hamiltonianを求めてみること
にする。結合キャパシタにかかる電圧は Vc = Vr − Vq = Qr/Cr −Qq/Cqであり、これ

PRACTICAL GUIDE FOR BUILDING SUPERCONDUCTING... PRX QUANTUM 2, 040202 (2021)

Al

AlOx

Al

500 nm

(c)

χ χ

(d)

(e)

(a)

(b)
Substrate 
(silicon/sapphire)Transmon

~cm

~cm

FIG. 3. Dispersive coupling between a transmon and a superconducting resonator. (a) Lumped-element representation of a
Josephson junction and a sketch of its structure, which consists of two layers of aluminium (gray) that are separated by an aluminium
oxide tunnel barrier (white). (b) A SEM image of a bridge-free junction. Image credit: Kyle Serniak (Yale University). (c) Lumped-
element representation of a LC circuit capacitively coupled to a single-junction transmon and the associated the potential of each mode
and the dressing of the energy levels due to the dispersive interaction. (d),(e) Two examples of physical realizations of a transmon
device dispersively coupled to a superconducting cavity in either the planar (d) or 3D configuration (e).

provides the drive and measurement tones to the system.
Here, ain(t) and aout(t) represent, respectively, the incom-
ing and outgoing field of the transmission line where it
interacts with our circuit. The fields at different times are
not related, such that

[
aout(t), a†

out(t′)
]

=
[
ain(t), a†

in(t
′)
]

=
δ(t − t′). This implies ain and aout have dimension t−1/2.

A detailed balance of the field results in the following
input-output relation:

aout = ain + √
κca, (8)

where κc is defined as the frequency-independent cou-
pling rate at which the oscillator exchanges energy with
the transmission line, and can be experimentally character-
ized for each setup. Here, we choose the sign convention
following the approach in Ref. [48]. With the incoming
and outgoing fields taken into account, we arrive at the
following differential equation for a(t) in the Heisenberg
picture:

∂ta = − i
! [a, H] − κ

2
a − √

κcain. (9)

This expression is called the quantum Langevin equation
[49]. It includes two new terms: the first one corresponds
to a damping of the field at rate κ/2, with κ = κc + κi,
where κi is the coupling rate between the system and the
uncontrolled environment usually called the internal loss
rate; the second term,

√
κcain, referred to as “drive” or

“pump,” is vital for a to obey the same usual commuta-
tion relation

[
a, a†] = 1 at all times despite the damping

term. As an alternative to the quantum Langevin equation,
the Lindblad master equation can also be used to describe
such dissipative systems [49,50]. However, the quantum

Langevin equation is more suited to describe the traveling
fields that we consider here.

While ain is necessary in order for us to control the state
of the resonator, it also introduces undesired fluctuations
in its field. To mitigate this, we typically operate in the
“stiff-pump” regime, where κc is negligible compared to
the frequency of the resonators, but the expectation value
of

√
κcain can be large compared to κc. This way, we have

ain = āin + a0
in, where a0

in represents the negligible fluctua-
tions of the field and āin its average value. In the stiff-pump
approximation, a drive is modeled with the Hamiltonian

Hd

! = ϵ(t)a† + ϵ(t)∗a, (10)

with ϵ(t) = √
κcāin.

B. Josephson junction
Superconducting resonators alone do not provide a use-

ful medium for encoding quantum information. This is
because the energy levels of a resonator are separated by
an equal spacing of !ω, forbidding us from addressing the
transitions individually. Thus, we must introduce a nonlin-
ear element in order to achieve universal quantum control
of the circuit.

In cQED, the most ubiquitous source of nonlinearity
is a Josephson junction (JJ), favored for its simplicity
and nondissipative nature. This element is made of two
superconducting electrodes separated by an insulating tun-
nel barrier, represented in Fig. 3(a). In practice, JJs are
typically fabricated by overlapping two layers of supercon-
ducting films with an oxide barrier in between. The area of
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provides the drive and measurement tones to the system.
Here, ain(t) and aout(t) represent, respectively, the incom-
ing and outgoing field of the transmission line where it
interacts with our circuit. The fields at different times are
not related, such that

[
aout(t), a†

out(t′)
]

=
[
ain(t), a†

in(t
′)
]

=
δ(t − t′). This implies ain and aout have dimension t−1/2.

A detailed balance of the field results in the following
input-output relation:

aout = ain + √
κca, (8)

where κc is defined as the frequency-independent cou-
pling rate at which the oscillator exchanges energy with
the transmission line, and can be experimentally character-
ized for each setup. Here, we choose the sign convention
following the approach in Ref. [48]. With the incoming
and outgoing fields taken into account, we arrive at the
following differential equation for a(t) in the Heisenberg
picture:

∂ta = − i
! [a, H] − κ

2
a − √

κcain. (9)

This expression is called the quantum Langevin equation
[49]. It includes two new terms: the first one corresponds
to a damping of the field at rate κ/2, with κ = κc + κi,
where κi is the coupling rate between the system and the
uncontrolled environment usually called the internal loss
rate; the second term,

√
κcain, referred to as “drive” or

“pump,” is vital for a to obey the same usual commuta-
tion relation

[
a, a†] = 1 at all times despite the damping

term. As an alternative to the quantum Langevin equation,
the Lindblad master equation can also be used to describe
such dissipative systems [49,50]. However, the quantum

Langevin equation is more suited to describe the traveling
fields that we consider here.

While ain is necessary in order for us to control the state
of the resonator, it also introduces undesired fluctuations
in its field. To mitigate this, we typically operate in the
“stiff-pump” regime, where κc is negligible compared to
the frequency of the resonators, but the expectation value
of

√
κcain can be large compared to κc. This way, we have

ain = āin + a0
in, where a0

in represents the negligible fluctua-
tions of the field and āin its average value. In the stiff-pump
approximation, a drive is modeled with the Hamiltonian

Hd

! = ϵ(t)a† + ϵ(t)∗a, (10)

with ϵ(t) = √
κcāin.

B. Josephson junction
Superconducting resonators alone do not provide a use-

ful medium for encoding quantum information. This is
because the energy levels of a resonator are separated by
an equal spacing of !ω, forbidding us from addressing the
transitions individually. Thus, we must introduce a nonlin-
ear element in order to achieve universal quantum control
of the circuit.

In cQED, the most ubiquitous source of nonlinearity
is a Josephson junction (JJ), favored for its simplicity
and nondissipative nature. This element is made of two
superconducting electrodes separated by an insulating tun-
nel barrier, represented in Fig. 3(a). In practice, JJs are
typically fabricated by overlapping two layers of supercon-
ducting films with an oxide barrier in between. The area of
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2.	Qubits	as	a	DM	Sensor
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FIG. 1. Superconducting transmon qubit dispersively

coupled to high Q storage cavity. a, Schematic of pho-
ton counting device consisting of storage and readout cavities
bridged by a transmon qubit [28]. The interaction between
the dark matter and electromagnetic field results in a photon
being deposited in the storage cavity. b, Qubit spectroscopy
reveals that the storage cavity population is imprinted as a
shift of the qubit transition frequency. The photon number
dependent shift is 2� per photon.

photons [22]. Here, we develop a detector that is sensitive
in the microwave regime and has a low dark count proba-
bility commensurate with the small signal rates expected
in a dark matter experiment.

Qubit based photon counter

In order to construct a single photon counter, we
employ quantum non-demolition (QND) techniques pi-
oneered in atomic physics [23, 24]. To count photons, we
utilize the interaction between a superconducting trans-
mon qubit [25, 26] and the field in a microwave cavity,
as described by the Jaynes-Cummings Hamiltonian [27]
in the dispersive limit (qubit-cavity coupling ⌧ qubit,
cavity detuning): H/h̄ = !ca†a + 1

2
!q�z + 2�a†a 1

2
�z.

The Hamiltonian can be recast to elucidate a key fea-
ture: a photon number dependent frequency shift (2�)
of the qubit transition (Fig. 1(b)).

H/h̄ = !ca
†a+

1

2
(!q + 2�a†a)�z (1)

We use an interferometric Ramsey measurement of the
qubit frequency to infer the cavity state [29]. Errors in
the measurement occur due to qubit decay, dephasing,
heating, cavity decay, and readout infidelity, introduc-
ing ine�ciencies or worse, false positive detections. For
contemporary transmon qubits, these errors occur with
much greater probability (1-10%) than the appearance
of a dark matter induced photon, resulting in a measure-
ment that is limited by detector errors. The qubit-cavity
interaction (2�a†a 1

2
�z) is composed solely of number op-

erators and commutes with the bare Hamiltonian of the
cavity (!ca†a) and qubit ( 1

2
!q�z). Thus, the cavity state

collapses to a Fock state (|0i or |1i in the n̄ ⌧ 1 limit)
upon measurement, rather than being absorbed and de-
stroyed [30–33]. Repeated measurements of the cavity
photon number made via this QND operator enable us
to devise a counting protocol, shown in Fig. 2(a), insen-
sitive to errors in any individual measurement [34–36].

This provides exponential rejection of false positives with
only a linear cost in measurement time.
In this work, we use a device composed of a high qual-

ity factor (Qs = 2.06 ⇥ 107) 3D cavity [37, 38] used to
accumulate and store the signal induced by the dark mat-
ter (storage, !s = 2⇡ ⇥ 6.011GHz), a superconducting
transmon qubit (!q = 2⇡ ⇥ 4.749GHz), and a 3D cavity
strongly coupled to a transmission line (Qr = 1.5⇥ 104)
used to quickly read out the state of qubit (readout,
!r = 2⇡ ⇥ 8.052GHz) (Fig. 1(a)). We mount the de-
vice to the base stage of a dilution refrigerator at 8mK.
To count photons, we repeatedly map the cavity pop-

ulation onto the qubit state by performing a cavity num-
ber parity measurement with Ramsey interferometry, as
depicted in Fig. 2(a). We place the qubit, initialized ei-
ther in |gi or |ei, in a superposition state 1p

2
(|gi ± |ei)

with a ⇡/2 pulse. The qubit state precesses at a rate of
|2�| = 2⇡ ⇥ 1.13MHz when there is one photon in the
storage cavity due to the photon dependent qubit fre-
quency shift. Waiting for a time tp = ⇡/|2�| results in
the qubit state accumulating a ⇡ phase if there is one
photon in the cavity. We project the qubit back onto the
z-axis with a �⇡/2 pulse completing the mapping of the
storage cavity photon number onto the qubit state. We
then determine the qubit state using its standard disper-
sive coupling to the readout resonator. For weak cavity
displacements (n̄ ⌧ 1), this protocol functions as a qubit
⇡ pulse conditioned on the presence of a single cavity
photon [29]. If there are zero photons in the cavity, the
qubit remains in its initial state. If there is one photon
in the cavity, the qubit state is flipped (|gi $ |ei). More
generally, this protocol is sensitive to any cavity state
with odd photon number population.

Hidden Markov model analysis

In order to account for all possible error mechanisms
during the measurement protocol, we model the evolu-
tion of the cavity, qubit, and readout as a hidden Markov
process where the cavity and qubit states are hidden vari-
ables that emit as a readout signal (see Fig. 2(b)). The
Markov chain is characterized by the transition matrix
(T) (Eqn. 2) that governs how the joint cavity, qubit
hidden state s 2 [|0gi , |0ei , |1gi , |1ei] evolve, and the
emission matrix (E) (Eqn. 3) which determines the prob-
ability of a readout signal R 2 [G,E ] given a possible hid-
den state.
The transition matrix captures the possible qubit (cav-

ity) state changes. Qubit (cavity) relaxation |ei ! |gi
(|1i ! |0i) occurs with a probability P #

eg = 1 � e�tm/T q
1

(P10 = 1 � e�tm/T s
1 ). The probability of spontaneous

heating |gi ! |ei (|0i ! |1i) of the qubit (cavity) to-
wards its steady state population is given by P "

ge =

n̄q[1 � e�tm/T q
1 ] (P01 = n̄c[1 � e�tm/T s

1 ]). n̄c is set to
zero in the model in order to penalize events in which a
photon appears in the cavity after the measurement se-
quence has begun. This makes the detector insensitive

2

Aaron et.al. 
PRL 126 141302 (2021)
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An example of magnetic field  
tolerance: 
Resonator made by TiN films  
maintains resonance up to 0.4 T

1 T is the highest magnetic field ever reported where qubit works 
Phys. Rev. Applied 17, 034032

Critical field  
0.1 mT for Al,  
5 T for TiN,  
20 T for NbN

Diffraction of Josephson Junction  
One magnetic flux quantum diffracts  
critical current of Josephson Junction 
→ 10 T = 1 flux quantum / (14 nm)^2

Qubit works up to 

✓Make qubit with materials having higher critical field 
We are working with NICT scientists who made the first  
all-nitride qubits (made by TiN, NbN, AlNm, NbTiN films) 

✓Make smaller JJ on to mitigate penetrating flux quanta  
We are trying to produce different type of JJ (10 nm order size)  
with FNAL scientists

First setup for magnetic field tolerance at Tokyo 
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We call �J the flux of the magnetic field that crosses the whole of the junction from 
� a/2 to  a/2, i.e. the insulating layer plus the LONDON regions that develop on 
each side (see Fig. 12.4), 
 �J  Bext Da.  (12.13) 

The expression for the phase difference at ordinate y then becomes 

 �( y)  �(0)  2� �J
�0

y
a

 (12.14) 

and the JOSEPHSON current density crossing the barrier at ordinate y (rela-
tion 10.14) can be written 

 
 
j x

J ( y)  jc sin�(y)  jc sin �(0)  2� �J
�0

y
a

�
��

�
	�
.  (12.15) 

The total intensity of the JOSEPHSON current crossing the insulating barrier can be 
obtained by integrating the current density over the whole cross-section 

 
  
I  c jc sin�( y)d y

�a/2
a/2
�  Ic sin � �J

�0

�
��

�
�


� �J
�0

�

	

�
��
sin�(0).  (12.16) 

This means that for a given magnetic flux �J, the junction can adjust its phase �(0) 
in order to transport, in either direction, any value of the current intensity lying 
between 0 and an upper limit Imax given by 

 
 

Imax (�J )  Ic  sin � �J
�0

�
��

�
��

� �J
�0

.   (12.17) 

Except for zero field, where it takes its greatest value, the intensity Imax reduces to 
zero for field fluxes �J equal to an integer number of fluxons. We remark that the 
profile of Imax in Figure 12.5 is formally identical to the diffraction figure of light 
by a slit under the FRAUNHOFER conditions (parallel incident beam and screen infi-
nitely distant). 

Figure 12.5 
Maximum intensity that can be borne 

by a short JOSEPHSON junction 
subject to a magnetic field 

The profile of Imax resembles a diffraction 
pattern of light by a slit under the 

FRAUNHOFER  conditions. Except at the 
origin, Imax is zero for flux values �J 

equal to an integer number of fluxons. �� �� �� � � � � �����

�

I
���I	�������������

320 SUPERCONDUCTIVITY 

Qualitatively, the occurrence of a variation of the maximum intensity as a function 
of external field in agreement with the FRAUNHOFER diffraction pattern is the sig-
nature of the quality of a JOSEPHSON junction, in particular that it is uniform over 
its entire length. 

Current density profiles crossing the barrier and corresponding to different values 
of �J are represented in Figure 12.6. 
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Figure 12.6 - Profiles of the JOSEPHSON current density  

across the insulating layer of a short JOSEPHSON junction subject to magnetic field Bext 
(a, b, c, d) distribution of the JOSEPHSON current across the insulator when the intensity 
takes its maximum possible value Imax compatible with four different values for �J . 
(d, e) for the same value of �J the junction “adjusts” the phase �(0) to the current  
intensity I that is injected: the maximum intensity for (d), or zero for (e). 

»  They are sinusoidal (see eq. 12.15) with the number of periods equal to the num-
ber of fluxons (whether or not it is integer) that �J contains. The periodicity is 

 
 
Y  a�0

�J
.  (12.18) 

»  The magnetic field flux threading a circuit of length Y (in the y-direction) and 
closed beyond the LONDON currents (Fig. 12.7) is one fluxon since by combining 
(12.13) and (12.18) we find 

 Y DBext  �0 .  (12.19) 

»  Within the limits � Imax  I  Imax, the junction “adjusts” �(0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 
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»  Within the limits � Imax  I  Imax, the junction “adjusts” �(0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 
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Qubit Readout and Experiment

Qubit states read out through the cavity

Cavity frequency shifts depending on 
the qubit states (➞ Dispersive readout)

Initialize qubits to , wait and measure 

‣ Count the occurrence of  state in 

 measurements

|0⟩
|1⟩

𝒪(105 − 107)

× 𝒪(105 − 107)
𝒪(100 μs)

Qubit Initialization 
∼ 20 ns

Qubit Readout 
∼ 1 μs

Excited with probability pge

pge ≃ 0.12 × κ2 cos2 Θ ( ϵ
10−11 )

2

( f01
1 GHz ) ( τ

100 μs )
2

( C
0.1 pF ) ( d

100 μm )
2

( ρDM
0.45 GeV/cm3 )

Experimental procedure for DM detection

Dark Photon Waves

今あるプロジェクトたち

3

超伝導量子コンピューター用新規量子デバイス開発  
IBM sponsored research (IBM-SR)

 
 

IBM Quantum Sponsored Technology Research Agreement # W2076133 / IBM & U Tokyo  Page 8 of 15 

 

The starting point of our circuit design is the previous work [29] in a tunable coupling qubit (TCQ) 

shown in Fig. 2. It connects two transmons in series where the upper and lower nodes are shunted by a 

capacitor CI. The dipoles of the transmons can add in parallel or in antiparallel (quadrupole), and these 

modes in terms of symmetry are mixed with the ratio tuned by CI. (Fig. 3a)  

 

 

 

 

 

 

 

 

The advantages of this multimode circuit design are as follows. 

(i) The always-on ZZ couplings between transmons are suppressed in one of the mode at the level of 

exchange, as demonstrated in Ref. [30]. 

(ii) Another source of anharmonicity is introduced from the energy splitting between the two internal 

modes (Fig. 3a), and thus improves otherwise small anharmonicity in the conventional transmons. 

(iii) The charge dispersion is improved for both modes compared to the conventional transmon as 

shown in Fig. 3b. For example, the typical IBM devices with EJ/EC ~ 30 are found to have less 

charge dispersion by an order of magnitude. 

Although the first two points (i) and (ii) are already highly beneficial, the last point (iii) plays a key 

role in multilevel computation such as qutrits. To understand this improved immunity to charge noise in 

the TCQ, we first emphasize that the dispersion in the energy levels arises from instanton tunneling 

through the cosine potential. In the |0ۧ-|1ۧ subspace, the ground state |0ۧ is more deeply bounded than 

the |1ۧ state, and therefore the |1ۧ-state tunnelling dominates. By contrast, the eigenstates of the TCQ are 

Fig. 2 Circuit model of the TCQ [29]. 

Fig. 3 (a) Eigenenergies of the TCQ Hamiltonian as a function of EI/EC for EJ = 50EC. Solid lines 
are from numerical diagonalization and dashed lines are from the coupled anharmonic oscillator 
model. (b) Charge dispersion as a function of the ratio EJ/EC for EI = ʷEC (solid lines) and EI = 0 
(dashed lines, transmon limit) [29]. 

量子ビットを使ったダークマター探索 
with 東大諸井研, 東大低温センター, U. Hamburg

高Q共振器を使った高周波重力波探索  
with Fermi lab/SQMS/KEK

5

FIG. 1. Contours of constant p⇤ ⌘ pge(⌧) on mX vs. ✏

plane (10�1, 10�3, 10�5, and 10�7, from the top). Param-
eters of C = 0.5 pF, d = 100 µm, Q = 106,  = 1 and
⇢DM = 0.45 GeV/cm3 are assumed. The gray-shaded region
is excluded by the cosmological and astrophysical constraints
[38] (dark gray) and the existing hidden-photon search exper-
iments [6–31] (light gray) based on the summary in Ref. [47].
The blue shaded regions indicate the sensitivity with the 1-
year scan over the frequency range for nq = 1 (dark blue)
and 100 (light blue) (more details in the main text) assum-
ing the thermal noise of T = 1 mK. The dashed lines show
the sensitivity with T = 30 mK with the top (bottom) line
corresponding to nq = 1 (100) respectively.

by comparing Nsig and Nbkg. Here, we apply a simple
form of Nsig/

p
Nbkg as the proxy to the significance in

the unit of Gaussian-equivalent standard deviation. The
following criterion is used for the DM detection in the
study:

Nsig > max(3, 5
p

Nbkg), (30)

which requires either 5� where there is substantial
amount of backgrounds, or minimum 3 signal events in a
highly background-free regime.

The qubit frequency scan is considered in the range
of 1  f  10 GHz, corresponding to the DM mass of
4 � 40 µeV. The step width is �! = !/Q. Taking
Q = 106, the number of the scan points is ⇠ 2 ⇥ 106,
and the measurement time for each scan point is taken
to be ⇠ 14 sec which is chosen so as the total time for the
scan fits within one year. The readout time (O(100 ns))
and the interval between the readout (10 µs, based on
Ref [10]) is neglected in the evaluation as they are short
enough compared with the coherence time ⌧ .

Fig. 1 shows the projected sensitivity of our proposed
experiment. The contours of constant p⇤ on mX vs. ✏
plane is also overlaid. The gray-shaded region is ex-
cluded by cosmological and astrophysical constraints [38]
(dark gray) and the existing hidden-photon search exper-
iments in this frequency range [6–31] (light gray). The
upper dark blue (lower light blue) shaded regions indi-
cate the regions fulfilling the discovery criteria defined

in Eq. (30) with nq = 1 (100) assuming T = 1 mK.
The dashed lines show the sensitivity with T = 30 mK
with the top and bottom line corresponding to nq = 1
and 100, respectively. Notice that the discovery reach
is insensitive to the value of Q in this evaluation ignor-
ing the measurement time or interval, since p⇤ / Q

2

while Ntry / Q
�2. The unexplored frequencies in the

1� 10 GHz range can be fully covered by the mass scan
with one year of the measurement time. The sensitivity
of the hidden photon DM search of our proposal is com-
parable to or better than those of other proposals with
condensed-matter excitations (e.g., electric excitations
[48–52], phonon [53, 54], magnon [55], and condensed-
matter axion [56–58]).

Conclusions and discussion: In this letter, we have pro-
posed a new detection scheme for the hidden photon
DM using transmon qubits. Due to the small kinetic
mixing with the ordinary EM photon, an e↵ective ac
electric field is induced that coherently drives a trans-
mon qubit from the ground state toward the first-excited
state when it is resonant. We have calculated the rate of
such excitation (see Eq. (25)), and evaluated the hidden
DM search sensitivity assuming the thermal excitation
(1 � 30 mK) as the sole source of background. Using
a standard SQUID-based transmon, the sensitivity can
reach ✏ ⇠ 10�12

� 10�14 with a ⇠ 14 sec of measurement
for a single frequency, and with a one year to complete
the scan over the 4� 40 µeV (1� 10 GHz) range.
There are a few considerations left for the future stud-

ies that can further boost the sensitivity. (1) Qubit
design optimization maximizing the electric dipole mo-
ment, where more aggressive transmon parameters and
complex circuit design can be sought. (2) Coherent
multi-qubit excitation, in an analogy to Dicke’s super-
radiance [59, 60], can be also explored. While dismissed
in this letter, the interference e↵ect can in principle yield
/ n

2
q enhancement as opposed to / nq in the excita-

tion rate, which is particularly relevant when nq becomes
larger. (3) The packaging e↵ect can be further investi-
gated. So far, we focus on a relatively simple setup: a
cylinder-shaped cavity with the o↵-resonant frequency of
the hidden photon. More detailed understanding on the
dependencies of  may allow the use of a high-Q cavity
package resonating to both the DM and the qubits.
The search scheme can be also directly benefited from

the exponential advancement of the large-scale NISQ
computers led by, e.g., IBM [61] or Google [62]. Since
the requirements and the experimental setup are almost
identical, the improved qubit multiplicity and coherence
in the NISQ machines will scale the typical sensitivity of
this experiment as well. Technically, it might be even
possible to perform the experiment with the existing
NISQ machines in a parasitic manner by using their idle
or calibration time during the operation.
Finally, we point out that the physics cases of the

search can be widely extended beyond the hidden photon
DM, such as the axion DM or other non-DM transient
energy density such as dark radiation.

Figure 2: Niobium spherical cavities (fixed coupling)

by the diameter of the coupling tube and by the distance
between the two spherical cells. A central elliptical cell,
which can easily be streched and squeezed, was found to
provide a tuning range of several kHz (4–20 kHz in the fi-
nal design). A prototype with the central elliptical cell was
built and is now being tested (Fig. 3). A second tunable
cavity (two spherical cells and the central cell) will be built
by the middle of 2004.

Figure 3: Niobium spherical cavities (variable coupling)

The system was also mechanically characterized, and the
mechanical resonant modes in the frequency range of inter-
est were identified. In particular the quadrupolar mode of
the sphere was found to be at 4 kHz, in good agreement
with finite elements calculations.
The detection electronics was designed. Its main task is

to provide the rejection of the symmetric mode component
at the detection frequency. A rejection better than 150 dB
was obtained in the final system.
Starting from the results obtained in the last six years,

we are now planning to design and set up an experi-
ment for the detection of gravitational waves in the 4–10
kHz frequency range (MAGO, Microwave Apparatus for
Gravitational waves Observation). Our main task is the de-
sign and construction of the refrigerator and of the cryo-
stat (including the suspension system), which houses the
coupled cavities. The refrigerator must provide the cryo-
genic power needed to keep the superconductiong cavities
at T ∼ 1.8K (approx. 10Watts) without introducing an ex-
cess noise from the external environment. A design based
on the use of subcooled superfluid helium is being invesi-
gated. The expected time-scale is four years (2004–2007).
In the following a detailed description of the various is-

sues aforementioned will be given. Expected system sensi-
tivity will also be discussed.

PHYSICS MOTIVATION
The spectrum of gravitational waves of cosmic origin

targeted by currently operating or planned detectors spans
roughly from 10−4 to 104 Hz.
The f ≤ 10−1 Hz region of the gravitational wave (GW)

spectrum, including galactic binaries [11], (super)massive
black hole (BH) binary inspirals and mergers [12], compact
object inspirals and captures by massive BHs [13], will be
thoroughly explored by LISA [14], which might be hope-
fully flown by year 2015. Ground based interferometers
and acoustic detectors (bars and spheres) will likewise co–
operate in exploring the f ≥ 101 Hz region of the spec-
trum, including compact binary inspirals and mergers [15],
supernovae and newborn black-hole ringings [16], fast-
spinning non-axisymmetric neutron stars [17], and stochas-
tic GW background [18].
The whole spectral range from 10−4 − 104 Hz, how-

ever, is far from being covered with uniform sensitivity, as
seen e.g. from Fig. 4, where the fiducial sensitivity curves
of LISA and LIGO–II are shown side by side. Plans are
being made for small–scale LISA–like space experiments
(e.g., DECIGO, [19]) aimed at covering the frequency gap
10−1 − 101 Hz between LISA and terrestrial detectors.

Figure 4: LISA–LIGO comparison

Several cryogenic/ultracryogenic acoustic (bar) detec-
tors are also operational, including ALLEGRO [20], AU-
RIGA [21], EXPLORER [22], NAUTILUS [23], and
NIOBE [24]. They are tuned at∼ 103 Hz, with bandwidths
of a few tens of Hz, and minimal noise power spectral den-
sities (PSD) of the order of 10−21 Hz−1/2.
Intrinsic factors exist which limit the performance of

both interferometers (IFOs) and acoustic detectors in the
upper frequency decade (f >∼ 103 Hz) of the spectrum.
The high frequency performance of laser interferometers

is limited by the ∝ f2 raise of the laser shot-noise floor.
While it is possible to operate IFOs in a resonant (dual)
light-recycled mode, for narrow-band increased-sensitivity
operation the pitch frequency should be kept below the sus-
pension violin-modes [25], typically clustering near and
above ∼ 5 · 102 Hz.
Increasing the resonant frequency of acoustic detectors

(bars, spheres and TIGAs), on the other hand, requires de-
creasing their mass M . The high frequency performance

2

circulator e�ciency. We show that due to tunneling of
quasiparticles between di↵erent pairs of superconducting
islands the Josephson-ring circulator in Ref. [19] has four
accessible charge-parity sectors. Given the same working
conditions and parameters, these sectors circulate sig-
nals with di↵erent e�ciencies. Stochastic jumps among
the sectors caused by quasiparticle tunneling events then
may result in unstable operation of the circulator de-
vice. To mitigate these fluctuations, we propose to em-
ploy quasiparticle-trapping techniques [24, 25, 30–33] to
suppress quasiparticle population.

The structure of this paper is as follows. In Sec. II
we present the circuit design of the passive on-chip su-
perconducting circulator along with the SLH formalism
to numerically calculate the scattering matrix elements.
Then in Sec. III we derive the scattering matrix elements
exploiting the adiabatic elimination technique and deter-
mine the conditions for optimal circulation, followed by
numerical optimization in Sec. IV. Section V analyzes
quasiparticle tunneling in the circulator system. The pa-
per is concluded in Sec. VII. Appendixes provide detailed
calculations and additional information for the results in
the main text.

II. CIRCUIT DESIGN AND SLH FORMALISM
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FIG. 1. (a) Schematic circuit design of the passive on-chip
superconducting circulator proposed in Ref. [19]. The de-
vice comprises three superconducting islands which are rep-
resented by the numbers of Cooper pairs n̂j and the super-
conducting phases �̂j (j = 1, 2, 3) on each island. They are
connected by three Josephson junctions with Josephson ener-
gies EJj and junction capacitances CJj . Each island is biased
by an external voltage Vxj via a gate capacitance Cxj and cou-
pled capacitively to a waveguide via a coupling capacitance
Ccj . The whole circulator loop is threaded by a central ex-
ternal flux �x as well. (b) First four excited-state energies !k

(k = 1, 2, 3, 4) of the circulator ring versus the reduced exter-
nal flux �x for a symmetric circuit (i.e., EJj = EJ , CJj = CJ ,
Cxj = Cx, and Ccj = Cc). The eigenenergies are computed

by numerically solving the eigensystem of Ĥring given in Eq.
(4) with EC⌃/EJ = 0.35 and nxj = 1/3.

In this section we present the circuit design of the ring
circulator, its working principle, the SLH formalism to
compute the scattering matrix, and the notations used

throughout the paper. Many details of these can be found
in Ref. [19]. The circulator circuit, depicted in Fig. 1a,
is a superconducting ring segmented into three super-
conducting islands by three Josephson junctions each of
which is described by a Josephson energy EJj and a junc-
tion capacitance CJj (j = 1, 2, 3). The three islands are

represented by the superconducting phases �̂j and their
conjugate charges n̂j ; they are biased by external volt-
ages Vxj with gate capacitances Cxj and coupled to three
external waveguides by coupling capacitances Ccj . The
circulator ring is threaded by an external flux �x. Input
fields bin,j propagate along the waveguides, interact with
the ring, and scatter into output fields bout,j .
To begin, we consider the case of a symmetric

Josephson-junction ring, that is, EJj = EJ and CJj =
CJ , and further assume that Cxj = Cx and Ccj = Cc. We
consider asymmetries later. As derived in Appendix A,
the circulator ring Hamiltonian is

Ĥring =
(2e)2

2
(n̂� nx)C�1(n̂� nx)

�EJ

3X

j=1

cos(�̂j � �̂j+1 � 1
3�x), (1)

where n̂ = {n̂1, n̂2, n̂3}, nx = {nx1 , nx2 , nx3} with nxj =
CxjVxj/(2e) the (dimensionless) charge bias on the is-
land j, �x = 2⇡�x/�0 is the reduced flux bias which
has been shared equally by the three Josephson junc-
tions with �0 = h/(2e) the superconducting quantum
flux, and C is the capacitance matrix. To account for the
fact that the total number of Cooper pairs on the ring is
conserved, we define new coordinates

n̂
0
1 = n̂1, n̂

0
2 = �n̂2, n̂

0
3 = n̂1 + n̂2 + n̂3 = n0, (2)

�̂
0
1 = �̂1 � �̂3, �̂

0
2 = �̂3 � �̂2, �̂

0
3 = �̂3, (3)

where n0 is the conserved total charge number, which is
controlled by the external biases [20]. In the new coordi-
nates, the Hamiltonian Ĥring is

Ĥring = EC⌃

�
(n̂0

1 � 1
2 (n0 + nx1 � nx3))

2

+(n̂0
2 +

1
2 (n0 + nx2 � nx3))

2 � n̂
0
1n̂

0
2

�

�EJ

�
cos(�̂0

1 � 1
3�x) + cos(�̂0

2 � 1
3�x)

+ cos(�̂0
1 + �̂

0
2 +

1
3�x)

�
, (4)

where EC⌃ = (2e)2/C⌃ is the charging energy with
C⌃ = 3CJ + Cx + Cc.
In terms of the ring eigenbasis {|ki ; k = 0, 1, 2, . . . },

we have

Ĥring =
X

k>0

!k |ki hk| , (5)

where !k is the eigenenergy1 associated with the excited
state |ki (k > 0), and we have subtracted the ground

1
In this paper, we set ~ = 1.
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is surely Hawking radiation. It is revealed that entanglement entropy is characterized by squeezing parameters 
related to Hawking temperatures, which depend on the velocity of the soliton.

�������
�����Ǥ� The black hole laser originally requires the superluminal dispersion with a positive curvature in the 
dispersion curve of the  system12–14. Here we use a model in which a black hole laser is feasible even in subluminal 
dispersion with well-designed dispersion  curves17. To create the dispersion relation required for black hole lasers 
in subluminal dispersion, we employ dispersive engineering utilizing metamaterials made of sub-wavelength 
inclusions that provide tremendous degrees of freedom for manipulating with high precision the electromag-
netic parameters of materials and modes. In fact, metamaterials create a medium in which the permittivity 
and permeability are simultaneously negative, which does not exist in nature, and enables the unique property 
that the phase velocity and group velocity of electromagnetic waves are opposite to each other. In addition, the 
Josephson effect provides the Kerr  nonlinearity18, 19 essential for black hole lasers, which determines the group 
velocity, required to select the propagation modes in the system.

Suppose that a Josephson metamaterial transmission line consists of a number of LC blocks each comprised 
of composite right/left-handed components together with a Josephson element in the shunt branch as illustrated 
in Fig. 1. Starting from the application of Kirchhoff ’s law to this system together with the Josephson relation, the 
current conservation at the nth node is expressed as

where In is the current through the nth node comprising of the current through the right-handed (rh) inductor 
with inductance Lrh and the left-handed (lh) capacitor with capacitance Clh at the nth cell, i.e., In = ILrh ,n + IClh ,n,

where Ic , ! , e, and θn are the Josephson critical current, Dirac’s constant, an elementary charge, and the phase 
difference in the nth junction, respectively. The currents on the right-hand side of Eq. (1) are the Josephson cur-
rent IJ ,n , the displacement current ICrh ,n flowing through the nth Josephson junction with capacitance Crh , and 
the current ILlh ,n through the left-handed inductor with inductance Llh . Combining these relations, we obtain 
the following circuit equation,

where we use sin θn ≃ θn − θ3n/6 and LJ = !/(2eIc).
Now let us derive the dispersion relation of this transmission line by ignoring the nonlinear terms of the 

Josephson effect. We substitute a plane-wave solution θn ∼ exp[i(kna − ωt)] with the wavenumber k, the fre-
quency ω , and unit cell length a for Eq. (4) and obtain the dispersion relation

where ωrh = 1/
√
CrhLrh and γ = Clh/Crh . In the regime of γω2 ≪ ω2

rh , this reduces to

(1)In − In−1 = −IJ ,n − ICrh ,n − ILlh ,n,

(2)ILrh ,n = −
!

2e

1

Lrh
(θn+1 − θn),

(3)IClh ,n = −
!

2e
Clh

d2

dt2
(θn+1 − θn),

(4)Crh
d2θn
dt2

+
1

Llh
θn +

1

LJ

(

θn −
θ3n
3!

)

−
(

1

Lrh
+ Clh

d2

dt2

)

(θn+1 + θn−1 − 2θn) = 0,

(5)sin2
ka

2
=

1

4

{

ω2

ω2
rh

− Lrh

(

1

Llh
+

1

LJ

)}(

1 − γ
ω2

ω2
rh

)−1

,

Figure 1.  Schematic representation of the composite right/left-handed nonlinear transmission line. Each 
unit cell consists of the series branch elements and the shunt branch elements. In the series branch, a linear 
inductive element of inductance Lrh is arranged in parallel with a linear capacitance Clh . These constitute the 
linear dispersive element of the line. While in the shunt branch, a linear inductive element of inductance Llh is 
also arranged in parallel with a linear capacitor of capacitance Crh as well as the Josephson element (represented 
by × ) which is responsible for the nonlinearity of the system. The dotted vertical lines mark the unit cell of the 
lattice with the length a.
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oxide tunnel barrier (white). (b) A SEM image of a bridge-free junction. Image credit: Kyle Serniak (Yale University). (c) Lumped-
element representation of a LC circuit capacitively coupled to a single-junction transmon and the associated the potential of each mode
and the dressing of the energy levels due to the dispersive interaction. (d),(e) Two examples of physical realizations of a transmon
device dispersively coupled to a superconducting cavity in either the planar (d) or 3D configuration (e).

provides the drive and measurement tones to the system.
Here, ain(t) and aout(t) represent, respectively, the incom-
ing and outgoing field of the transmission line where it
interacts with our circuit. The fields at different times are
not related, such that

[
aout(t), a†

out(t′)
]

=
[
ain(t), a†

in(t
′)
]

=
δ(t − t′). This implies ain and aout have dimension t−1/2.

A detailed balance of the field results in the following
input-output relation:

aout = ain + √
κca, (8)

where κc is defined as the frequency-independent cou-
pling rate at which the oscillator exchanges energy with
the transmission line, and can be experimentally character-
ized for each setup. Here, we choose the sign convention
following the approach in Ref. [48]. With the incoming
and outgoing fields taken into account, we arrive at the
following differential equation for a(t) in the Heisenberg
picture:

∂ta = − i
! [a, H] − κ

2
a − √

κcain. (9)

This expression is called the quantum Langevin equation
[49]. It includes two new terms: the first one corresponds
to a damping of the field at rate κ/2, with κ = κc + κi,
where κi is the coupling rate between the system and the
uncontrolled environment usually called the internal loss
rate; the second term,

√
κcain, referred to as “drive” or

“pump,” is vital for a to obey the same usual commuta-
tion relation

[
a, a†] = 1 at all times despite the damping

term. As an alternative to the quantum Langevin equation,
the Lindblad master equation can also be used to describe
such dissipative systems [49,50]. However, the quantum

Langevin equation is more suited to describe the traveling
fields that we consider here.

While ain is necessary in order for us to control the state
of the resonator, it also introduces undesired fluctuations
in its field. To mitigate this, we typically operate in the
“stiff-pump” regime, where κc is negligible compared to
the frequency of the resonators, but the expectation value
of

√
κcain can be large compared to κc. This way, we have

ain = āin + a0
in, where a0

in represents the negligible fluctua-
tions of the field and āin its average value. In the stiff-pump
approximation, a drive is modeled with the Hamiltonian

Hd

! = ϵ(t)a† + ϵ(t)∗a, (10)

with ϵ(t) = √
κcāin.

B. Josephson junction
Superconducting resonators alone do not provide a use-

ful medium for encoding quantum information. This is
because the energy levels of a resonator are separated by
an equal spacing of !ω, forbidding us from addressing the
transitions individually. Thus, we must introduce a nonlin-
ear element in order to achieve universal quantum control
of the circuit.

In cQED, the most ubiquitous source of nonlinearity
is a Josephson junction (JJ), favored for its simplicity
and nondissipative nature. This element is made of two
superconducting electrodes separated by an insulating tun-
nel barrier, represented in Fig. 3(a). In practice, JJs are
typically fabricated by overlapping two layers of supercon-
ducting films with an oxide barrier in between. The area of
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図 9.6: LC共振器とトランズモンの結合系

というHamiltonianを得る。ここで量子ビットの周波数は h̄ωq =
√
8ECEJ−ECであり、非調和性を表すαq = −EC/h̄を導入した。典型的なパラメータとしては、ωq ≃ 10 GHz、

EJ/EC ≥ 50、αq ∼ −200 MHzほどである。
一見すると JosephsonエネルギーEJ が電荷エネルギーEC よりも大きいという仮定は、Josephson接合が非線形インダクタとして働くということから非線形性が大きいこと

を意味するようにも思えるが、実は θの係数にもEJ/ECの因子があるように、非線形性が小さくなることを意味することが分かる。これはnCの真空ゆらぎ δnC = (EJ/8EC)
1/4

を考えるとより直観的になる。EJ/EC が小さいときには δnC は小さく、Cooper対が 0

個から 1個になるか 1個から 2個になるかでCooper対間の相互作用による遷移エネル
ギーの違いが出る、すなわち非線形性がある。しかしEJ/EC ≫ 1のときには δnCが非常に大きい。すなわちもはやこの領域での固有状態は数状態ではうまく書けないものに
なるのだが、あえてCooper対の個数でいうならば 1個増えようがそこからさらにもう
1個増えようが、数状態の分布が少しシフトするだけで遷移エネルギーにおける違いが
ほとんどないような状況になる、すなわち非線形性が小さくなるのである。今回考えた
ような超伝導回路で大きなEJ/EC を持つものをトランズモン（transmon）と呼ぶ。逆
に EJ/EC が小さくなると非線形性が大きくなるが、こういった超伝導回路を Cooper

pair boxと呼ぶ。

9.2.3 共振器とトランズモンの結合
最後に、超伝導量子ビットと共振器が図のようにキャパシタを介して接続されている

ような回路を考えよう。電圧、キャパシタの電荷、磁束その他のパラメータは図中に示
してあるのでそちらを参照してほしい。結合キャパシタ（coupling capacitor）Ccの扱いが肝だが、キャパシタンスがCq、Crに比べ小さいとし、超伝導量子ビット、共振器、結合キャパシタのエネルギーを足し上げたものとして Hamiltonianを求めてみること
にする。結合キャパシタにかかる電圧は Vc = Vr − Vq = Qr/Cr −Qq/Cqであり、これ
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provides the drive and measurement tones to the system.
Here, ain(t) and aout(t) represent, respectively, the incom-
ing and outgoing field of the transmission line where it
interacts with our circuit. The fields at different times are
not related, such that

[
aout(t), a†

out(t′)
]

=
[
ain(t), a†

in(t
′)
]

=
δ(t − t′). This implies ain and aout have dimension t−1/2.

A detailed balance of the field results in the following
input-output relation:

aout = ain + √
κca, (8)

where κc is defined as the frequency-independent cou-
pling rate at which the oscillator exchanges energy with
the transmission line, and can be experimentally character-
ized for each setup. Here, we choose the sign convention
following the approach in Ref. [48]. With the incoming
and outgoing fields taken into account, we arrive at the
following differential equation for a(t) in the Heisenberg
picture:

∂ta = − i
! [a, H] − κ

2
a − √

κcain. (9)

This expression is called the quantum Langevin equation
[49]. It includes two new terms: the first one corresponds
to a damping of the field at rate κ/2, with κ = κc + κi,
where κi is the coupling rate between the system and the
uncontrolled environment usually called the internal loss
rate; the second term,

√
κcain, referred to as “drive” or

“pump,” is vital for a to obey the same usual commuta-
tion relation

[
a, a†] = 1 at all times despite the damping

term. As an alternative to the quantum Langevin equation,
the Lindblad master equation can also be used to describe
such dissipative systems [49,50]. However, the quantum

Langevin equation is more suited to describe the traveling
fields that we consider here.

While ain is necessary in order for us to control the state
of the resonator, it also introduces undesired fluctuations
in its field. To mitigate this, we typically operate in the
“stiff-pump” regime, where κc is negligible compared to
the frequency of the resonators, but the expectation value
of

√
κcain can be large compared to κc. This way, we have

ain = āin + a0
in, where a0

in represents the negligible fluctua-
tions of the field and āin its average value. In the stiff-pump
approximation, a drive is modeled with the Hamiltonian

Hd

! = ϵ(t)a† + ϵ(t)∗a, (10)

with ϵ(t) = √
κcāin.

B. Josephson junction
Superconducting resonators alone do not provide a use-

ful medium for encoding quantum information. This is
because the energy levels of a resonator are separated by
an equal spacing of !ω, forbidding us from addressing the
transitions individually. Thus, we must introduce a nonlin-
ear element in order to achieve universal quantum control
of the circuit.

In cQED, the most ubiquitous source of nonlinearity
is a Josephson junction (JJ), favored for its simplicity
and nondissipative nature. This element is made of two
superconducting electrodes separated by an insulating tun-
nel barrier, represented in Fig. 3(a). In practice, JJs are
typically fabricated by overlapping two layers of supercon-
ducting films with an oxide barrier in between. The area of
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provides the drive and measurement tones to the system.
Here, ain(t) and aout(t) represent, respectively, the incom-
ing and outgoing field of the transmission line where it
interacts with our circuit. The fields at different times are
not related, such that

[
aout(t), a†

out(t′)
]

=
[
ain(t), a†

in(t
′)
]

=
δ(t − t′). This implies ain and aout have dimension t−1/2.

A detailed balance of the field results in the following
input-output relation:

aout = ain + √
κca, (8)

where κc is defined as the frequency-independent cou-
pling rate at which the oscillator exchanges energy with
the transmission line, and can be experimentally character-
ized for each setup. Here, we choose the sign convention
following the approach in Ref. [48]. With the incoming
and outgoing fields taken into account, we arrive at the
following differential equation for a(t) in the Heisenberg
picture:

∂ta = − i
! [a, H] − κ

2
a − √

κcain. (9)

This expression is called the quantum Langevin equation
[49]. It includes two new terms: the first one corresponds
to a damping of the field at rate κ/2, with κ = κc + κi,
where κi is the coupling rate between the system and the
uncontrolled environment usually called the internal loss
rate; the second term,

√
κcain, referred to as “drive” or

“pump,” is vital for a to obey the same usual commuta-
tion relation

[
a, a†] = 1 at all times despite the damping

term. As an alternative to the quantum Langevin equation,
the Lindblad master equation can also be used to describe
such dissipative systems [49,50]. However, the quantum

Langevin equation is more suited to describe the traveling
fields that we consider here.

While ain is necessary in order for us to control the state
of the resonator, it also introduces undesired fluctuations
in its field. To mitigate this, we typically operate in the
“stiff-pump” regime, where κc is negligible compared to
the frequency of the resonators, but the expectation value
of

√
κcain can be large compared to κc. This way, we have

ain = āin + a0
in, where a0

in represents the negligible fluctua-
tions of the field and āin its average value. In the stiff-pump
approximation, a drive is modeled with the Hamiltonian

Hd

! = ϵ(t)a† + ϵ(t)∗a, (10)

with ϵ(t) = √
κcāin.

B. Josephson junction
Superconducting resonators alone do not provide a use-

ful medium for encoding quantum information. This is
because the energy levels of a resonator are separated by
an equal spacing of !ω, forbidding us from addressing the
transitions individually. Thus, we must introduce a nonlin-
ear element in order to achieve universal quantum control
of the circuit.

In cQED, the most ubiquitous source of nonlinearity
is a Josephson junction (JJ), favored for its simplicity
and nondissipative nature. This element is made of two
superconducting electrodes separated by an insulating tun-
nel barrier, represented in Fig. 3(a). In practice, JJs are
typically fabricated by overlapping two layers of supercon-
ducting films with an oxide barrier in between. The area of
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2.	Qubits	as	a	DM	Sensor
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FIG. 1. Superconducting transmon qubit dispersively

coupled to high Q storage cavity. a, Schematic of pho-
ton counting device consisting of storage and readout cavities
bridged by a transmon qubit [28]. The interaction between
the dark matter and electromagnetic field results in a photon
being deposited in the storage cavity. b, Qubit spectroscopy
reveals that the storage cavity population is imprinted as a
shift of the qubit transition frequency. The photon number
dependent shift is 2� per photon.

photons [22]. Here, we develop a detector that is sensitive
in the microwave regime and has a low dark count proba-
bility commensurate with the small signal rates expected
in a dark matter experiment.

Qubit based photon counter

In order to construct a single photon counter, we
employ quantum non-demolition (QND) techniques pi-
oneered in atomic physics [23, 24]. To count photons, we
utilize the interaction between a superconducting trans-
mon qubit [25, 26] and the field in a microwave cavity,
as described by the Jaynes-Cummings Hamiltonian [27]
in the dispersive limit (qubit-cavity coupling ⌧ qubit,
cavity detuning): H/h̄ = !ca†a + 1

2
!q�z + 2�a†a 1

2
�z.

The Hamiltonian can be recast to elucidate a key fea-
ture: a photon number dependent frequency shift (2�)
of the qubit transition (Fig. 1(b)).

H/h̄ = !ca
†a+

1

2
(!q + 2�a†a)�z (1)

We use an interferometric Ramsey measurement of the
qubit frequency to infer the cavity state [29]. Errors in
the measurement occur due to qubit decay, dephasing,
heating, cavity decay, and readout infidelity, introduc-
ing ine�ciencies or worse, false positive detections. For
contemporary transmon qubits, these errors occur with
much greater probability (1-10%) than the appearance
of a dark matter induced photon, resulting in a measure-
ment that is limited by detector errors. The qubit-cavity
interaction (2�a†a 1

2
�z) is composed solely of number op-

erators and commutes with the bare Hamiltonian of the
cavity (!ca†a) and qubit ( 1

2
!q�z). Thus, the cavity state

collapses to a Fock state (|0i or |1i in the n̄ ⌧ 1 limit)
upon measurement, rather than being absorbed and de-
stroyed [30–33]. Repeated measurements of the cavity
photon number made via this QND operator enable us
to devise a counting protocol, shown in Fig. 2(a), insen-
sitive to errors in any individual measurement [34–36].

This provides exponential rejection of false positives with
only a linear cost in measurement time.
In this work, we use a device composed of a high qual-

ity factor (Qs = 2.06 ⇥ 107) 3D cavity [37, 38] used to
accumulate and store the signal induced by the dark mat-
ter (storage, !s = 2⇡ ⇥ 6.011GHz), a superconducting
transmon qubit (!q = 2⇡ ⇥ 4.749GHz), and a 3D cavity
strongly coupled to a transmission line (Qr = 1.5⇥ 104)
used to quickly read out the state of qubit (readout,
!r = 2⇡ ⇥ 8.052GHz) (Fig. 1(a)). We mount the de-
vice to the base stage of a dilution refrigerator at 8mK.
To count photons, we repeatedly map the cavity pop-

ulation onto the qubit state by performing a cavity num-
ber parity measurement with Ramsey interferometry, as
depicted in Fig. 2(a). We place the qubit, initialized ei-
ther in |gi or |ei, in a superposition state 1p

2
(|gi ± |ei)

with a ⇡/2 pulse. The qubit state precesses at a rate of
|2�| = 2⇡ ⇥ 1.13MHz when there is one photon in the
storage cavity due to the photon dependent qubit fre-
quency shift. Waiting for a time tp = ⇡/|2�| results in
the qubit state accumulating a ⇡ phase if there is one
photon in the cavity. We project the qubit back onto the
z-axis with a �⇡/2 pulse completing the mapping of the
storage cavity photon number onto the qubit state. We
then determine the qubit state using its standard disper-
sive coupling to the readout resonator. For weak cavity
displacements (n̄ ⌧ 1), this protocol functions as a qubit
⇡ pulse conditioned on the presence of a single cavity
photon [29]. If there are zero photons in the cavity, the
qubit remains in its initial state. If there is one photon
in the cavity, the qubit state is flipped (|gi $ |ei). More
generally, this protocol is sensitive to any cavity state
with odd photon number population.

Hidden Markov model analysis

In order to account for all possible error mechanisms
during the measurement protocol, we model the evolu-
tion of the cavity, qubit, and readout as a hidden Markov
process where the cavity and qubit states are hidden vari-
ables that emit as a readout signal (see Fig. 2(b)). The
Markov chain is characterized by the transition matrix
(T) (Eqn. 2) that governs how the joint cavity, qubit
hidden state s 2 [|0gi , |0ei , |1gi , |1ei] evolve, and the
emission matrix (E) (Eqn. 3) which determines the prob-
ability of a readout signal R 2 [G,E ] given a possible hid-
den state.
The transition matrix captures the possible qubit (cav-

ity) state changes. Qubit (cavity) relaxation |ei ! |gi
(|1i ! |0i) occurs with a probability P #

eg = 1 � e�tm/T q
1

(P10 = 1 � e�tm/T s
1 ). The probability of spontaneous

heating |gi ! |ei (|0i ! |1i) of the qubit (cavity) to-
wards its steady state population is given by P "

ge =

n̄q[1 � e�tm/T q
1 ] (P01 = n̄c[1 � e�tm/T s

1 ]). n̄c is set to
zero in the model in order to penalize events in which a
photon appears in the cavity after the measurement se-
quence has begun. This makes the detector insensitive

2

Aaron et.al. 
PRL 126 141302 (2021)

Talk by Kan Nakazono on Wed.
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An example of magnetic field  
tolerance: 
Resonator made by TiN films  
maintains resonance up to 0.4 T

1 T is the highest magnetic field ever reported where qubit works 
Phys. Rev. Applied 17, 034032

Critical field  
0.1 mT for Al,  
5 T for TiN,  
20 T for NbN

Diffraction of Josephson Junction  
One magnetic flux quantum diffracts  
critical current of Josephson Junction 
→ 10 T = 1 flux quantum / (14 nm)^2

Qubit works up to 

✓Make qubit with materials having higher critical field 
We are working with NICT scientists who made the first  
all-nitride qubits (made by TiN, NbN, AlNm, NbTiN films) 

✓Make smaller JJ on to mitigate penetrating flux quanta  
We are trying to produce different type of JJ (10 nm order size)  
with FNAL scientists

First setup for magnetic field tolerance at Tokyo 
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We call �J the flux of the magnetic field that crosses the whole of the junction from 
� a/2 to  a/2, i.e. the insulating layer plus the LONDON regions that develop on 
each side (see Fig. 12.4), 
 �J  Bext Da.  (12.13) 

The expression for the phase difference at ordinate y then becomes 

 �( y)  �(0)  2� �J
�0

y
a

 (12.14) 

and the JOSEPHSON current density crossing the barrier at ordinate y (rela-
tion 10.14) can be written 

 
 
j x

J ( y)  jc sin�(y)  jc sin �(0)  2� �J
�0

y
a

�
��

�
	�
.  (12.15) 

The total intensity of the JOSEPHSON current crossing the insulating barrier can be 
obtained by integrating the current density over the whole cross-section 

 
  
I  c jc sin�( y)d y

�a/2
a/2
�  Ic sin � �J

�0

�
��

�
�


� �J
�0

�

	

�
��
sin�(0).  (12.16) 

This means that for a given magnetic flux �J, the junction can adjust its phase �(0) 
in order to transport, in either direction, any value of the current intensity lying 
between 0 and an upper limit Imax given by 

 
 

Imax (�J )  Ic  sin � �J
�0

�
��

�
��

� �J
�0

.   (12.17) 

Except for zero field, where it takes its greatest value, the intensity Imax reduces to 
zero for field fluxes �J equal to an integer number of fluxons. We remark that the 
profile of Imax in Figure 12.5 is formally identical to the diffraction figure of light 
by a slit under the FRAUNHOFER conditions (parallel incident beam and screen infi-
nitely distant). 

Figure 12.5 
Maximum intensity that can be borne 

by a short JOSEPHSON junction 
subject to a magnetic field 

The profile of Imax resembles a diffraction 
pattern of light by a slit under the 

FRAUNHOFER  conditions. Except at the 
origin, Imax is zero for flux values �J 

equal to an integer number of fluxons. �� �� �� � � � � �����

�

I
���I	�������������

320 SUPERCONDUCTIVITY 

Qualitatively, the occurrence of a variation of the maximum intensity as a function 
of external field in agreement with the FRAUNHOFER diffraction pattern is the sig-
nature of the quality of a JOSEPHSON junction, in particular that it is uniform over 
its entire length. 

Current density profiles crossing the barrier and corresponding to different values 
of �J are represented in Figure 12.6. 
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Figure 12.6 - Profiles of the JOSEPHSON current density  

across the insulating layer of a short JOSEPHSON junction subject to magnetic field Bext 
(a, b, c, d) distribution of the JOSEPHSON current across the insulator when the intensity 
takes its maximum possible value Imax compatible with four different values for �J . 
(d, e) for the same value of �J the junction “adjusts” the phase �(0) to the current  
intensity I that is injected: the maximum intensity for (d), or zero for (e). 

»  They are sinusoidal (see eq. 12.15) with the number of periods equal to the num-
ber of fluxons (whether or not it is integer) that �J contains. The periodicity is 

 
 
Y  a�0

�J
.  (12.18) 

»  The magnetic field flux threading a circuit of length Y (in the y-direction) and 
closed beyond the LONDON currents (Fig. 12.7) is one fluxon since by combining 
(12.13) and (12.18) we find 

 Y DBext  �0 .  (12.19) 

»  Within the limits � Imax  I  Imax, the junction “adjusts” �(0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 
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»  Within the limits � Imax  I  Imax, the junction “adjusts” �(0) to the intensity of 
the applied current. As illustrated in Figure 12.6 (d and e), this translates into a 
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single JJ under high B-field
SQUID

Fraunhofer  
diffraction  

From “Superconductivity An introduction” Mangin - Kahn

Cavity Frequency
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Dark blue:  / year 
Light blue:  / year

nq = 1 @ 1 mK
nq = 100 @ 1 mK

Dashed lines: 30 mK

Expected Sensitivity for Direct Qubit Excitation

Expected noise sources of  
transition 

‣Thermal noise: 
 

‣Readout error : 

|0⟩ → |1⟩

p ∼ e−ℏω/kBT ∼ 0.01% − 1 % @ 30 mK
∼ 0.1 %

Possible to probe into unexplored region 
even with the excitation rate of 0.1%-10%

S. Chen et al., PRL 131, 211001 (2023)

https://doi.org/10.1103/PhysRevLett.131.211001
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First Results from Direct Qubit Excitation
Performed experiments with 2 qubits

Background estimated 
from the baseline of 
observed data (mainly 
from thermal noise)

Expected sensitivity 
at , 

, 
 

C = 0.1 pF
d = 100 μm
τ = 30 μs

Preliminary

Possible future improvements: 
‣ Qubit design optimization for larger  and  
‣ Sensitivity enhancement with quantum interference  

                                       S. Chen et al., PRL 133, 021801 (2024)

‣ Extending to Axion search with -field 

                           S. Chen et al., arXiv:2407.19755

C d

B

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.021801
https://arxiv.org/abs/2407.19755
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⊠

|0⟩

|1⟩

|ψ⟩

̂x

̂z

̂y

Quantum machine learning: 

‣ Barren plateau, Generalization 

‣ Learning with symmetry 

‣ Quantum data

‣ AQCEL circuit optimization 

‣ Qutrit implementation on superconducting qubits 

‣ Quantum error correction

Component for large-scale QC 
- Amplifier 
- Circulator/Isolator, etc.

Application/Algorithm

Efforts on Quantum Computing/Sensing

Hardware

Quantum LGT simulation 

‣ Low-dimensional , SU(2) LGT 

‣ Finite temperature/density
ℤ2

H H
X U1

q0

q1

C

Software

Superconducting qubits and related technology 
Qubit development for DM searches 
- Design optimization (e.g, larger / , smaller JJs) 
- Magnetic field tolerance

C d

Y. Iiyama, W. Jang et al., arXiv:2405.14752

H. Elhag, L. Nagano et al., arXiv:2408.08701

https://arxiv.org/abs/2405.14752
https://arxiv.org/abs/2408.08701
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Summary

Aiming at demonstrating quantum advantage and/or quantum as 
useful resources in the computational particle physics in future 

New opportunities in technology development and scientific discovery 
(e.g, DM search with superconducting qubits) 

Presented selected results at ICEPP on quantum computing and 
the application to particle physics: 
‣ learning quantum states/processes  
‣ simulating quantum dynamics in Lattice Gauge Theory 
‣ searching for dark matter with superconducting qubits
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