ExU Public Online Colloquium October 16, 2024

Quantum Algorithm and Qubit Technology Applications for Particle Physics

ICEPP, The University of Tokyo Koji Terashi

Particle physics aims to answer:

- What is the origin and future of the Universe?
- What is the nature of elementary particles?
- How do they interact?

Why is the Universe like the one we see now?

How Answer to the Questions?

High-energy accelerator can directly probe fundamental constituents in nature by colliding particles

How Answer to the Questions?

Accelerator physics can probe the epoch of the birth of the Universe

Soup of elementary particles at very high temperature and density

BIG BANG

Universe becomes visible at 3×10^5 years

Why is the Universe like the one we see now?

Cooled down by expansion

Particle Physics and Quantum

Fundamental physics to understand properties/ dynamics of elementary particles and nuclear matters • Governed by $U(1) \times SU(2) \times SU(3)$ gauge theory

- Quantum Field Theory (QFT) at cores in particle
- Quantum mechanics as a foundation of QFT
 - Quantum computer may offer a unique opportunity to probe phenomena governed by particle physics

Particle Physics and Quantum

Quantum technology might be able to address the questions:

- How did the known phenomena (e.g, Higgs condensation, quark confinement) occur in early Universe?
- Can we exploit quantum resources to reach beyond conventional experimental techniques?

How did the Universe become the one we see now?

the application to particle physics

Highlight a few selected results on:

- Iearning quantum states/processes
- simulating quantum dynamics in Lattice Gauge Theory
- searching for dark matter with superconducting qubits

Present our recent studies at ICEPP that utilize quantum resources for

Quantum Machine Learning

Quantum Simulation

Quantum Sensing

Machine Learning of Quantum States

- Given a dataset $D = \{(x_i, y_i)\}_{i=1}^N (x_i = \text{Classical or Quantum})$
- Consider a hypothesis h_{θ} which predicts the true label y_i from input x_i in D • Define Loss function $L(y_i, h_{\theta}(x_i))$ to quantify the difference between the label y_i
- and prediction h_{A}
- Minimize the training error $\hat{R}_{S}(\theta) =$

$$\frac{1}{N}\sum_{i=1}^{N} L(y_i, h_{\theta}(x_i)) \text{ over input data in } D$$

State preparation and optimization as key processes for learning task

Variational State Preparation and Optimization

- Apply a parameterized unitary $U(\theta)$ to generate $|\psi(\theta)\rangle = U(\theta) |\psi_{in}\rangle$

▶ Prepare an input state $|\psi_{in}\rangle = U(x) |\psi_0\rangle$ for classical or $|\psi_{in}\rangle = |\psi_q\rangle$ for quantum • Prepare the desired state by optimizing the parameter θ with classical computer • Calculate, e.g, expectation value of observable O with optimized parameter θ^*

- Suitable for near-term quantum devices
- Applicable to a wide range of problems in quantum simulation (e.g, VQE), quantum machine learning

Quantum Machine Learning

Learning classical data *x*

E.g, digitized detector signals

 $|0\rangle$

Quantum Neural Networks

Classification, Regression

10

Learning HEP Data with QML

Classify new physics events from background with classical detector information KT et al., Comput. Softw. Big Sci. 5, 2 (2021) Simulator results

- Early attempt of QML looks encouraging with small system and dataset sizes
- discussed later)

Limited scalability to large-size problem (due to infamous Barren Plateau problem)

11

Learning Quantum Data

Directly learn quantum states without classical measurement, e.g, to Extract entanglement properties of a quantum system Determine classical parameters that control a physical system

- (e.g, Hamiltonian parameters)
- E.g, quantum state from another quantum system

Learning Quantum Data

Quantum Convolutional Neural Networks

L. Nagano, KT et al., Phys. Rev. Res. 5, 043250 (2023)

QML to Quantum Data (I)

(1 + 1)d U(1) Gauge Theory (Schwinger Model)

$$H = J \sum_{j=0}^{N_s - 2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2} + \frac{\theta}{2\pi} \right)^2 + \frac{\omega}{2} \sum_{j=0}^{N_s - 2} (X_j X_{j+1})^2$$

- Non-trivial properties such as chiral condensate, though the model is simple
- Phase transition at $\theta = \pi$, $m/g = m_c/g \approx 0.33$ due to topological θ -term

Quantum data generation and classification

- Physical parameters: $N = N_s = 8$, ag = 2, $\theta = \pi$
- Generate ground states $|\psi_{GS}(m)\rangle$ using VQE within parameter range of $m/g \in [-2,2]$
- Phase recognition as a classification with label:

$$y_m = \begin{cases} +1 & (m > m_c) \\ -1 & (m < m_c) \end{cases}$$

Revisiting Machine Learning

 $D = \{(x_i, y_i)\}_{i=1}^N$ is created by sampling the distribution P:

Training Error from $D : \hat{R}_{S}(\theta) = -\frac{1}{2}$

Prediction Error (for unseen data)

machine learning

Assuming that the data (x, y) has a underlying distribution P, and a dataset

$$\frac{1}{N} \sum_{i=1}^{N} L(y_i, h_{\theta}(x_i))$$

: $R(\theta) = \mathbb{E}_{(x,y)\sim P} \left[L(y, h_{\theta}(x)) \right]$

Finding a hypothesis h_{θ} that minimizes the prediction error is a goal of

ML model class $F = \{h : x_i \to y_i\}$ h^* : True map \tilde{h}_N : Selected Model

A given ML architecture would enable certain class of models (model class)

 h^* : True map that faithfully outputs the true label *y* from an input *x*

Likely that the problems considered so far were simple enough, so that the true map could easily fall inside the model class :

 $h_N \approx h^*$

17

True map may not necessarily reside in a given model class for more complex problems

True map may not necessarily reside in a given model class for more complex problems

Best model within the model class may be obtained when input distribution Pis directly used in the training

However, input distribution P is usually unknown

True map may not necessarily reside in a given model class for more complex problems

- Best trained model is likely different from the best model because the finite dataset D is used instead of P
- Different sources contribute to errors:

 $R(\hat{h}_N) - R(\tilde{h}_N) =$ Optimization Error $R(\hat{h}_F) - R(\hat{h}_N) =$ Estimation Error $R(h^*) - R(h_F) = Model Error$

Optimization Errors

Insufficient training would be an important source of optimization errors

with increasing system size (*Curse of dimensionality*)

Cost function $C(\boldsymbol{\theta}) = \text{Tr}[OU(\boldsymbol{\theta})\rho U^{\dagger}(\boldsymbol{\theta})]$

Concentration of cost function or vanishing gradient

Known that the training of parameterized quantum circuit generally becomes difficult

J. R. McClean et al., Nat. Commun. 9, 4812 (2018)

Barren Plateau (BP) problem

Barren Plateau from Data Encoding

Learning classical data requires the data to be encoded into quantum state

Examine how data-encoding unitary U(x) can cause BP (when QNN part is assumed be BP-free)

Barren Plateau from Data Encoding

Provided a new upper bound on the variance of cost function gradient: $\operatorname{Var}_{\boldsymbol{\theta}}[\partial_{\boldsymbol{\theta}_{\nu}}\mathscr{L}(\boldsymbol{\theta})] \leq A_{f} \times r_{n,s} \times \int_{\mathbb{T}^{+}} dU \frac{D_{HS}(\rho_{x}^{(h)}, \mathbb{I}/2^{s})}{D_{HS}(\rho_{x}^{(h)}, \mathbb{I}/2^{s})}$ Hilbert-Schmidt distance Derived condition where the $dU D_{HS}$ term does not decay exponentially (→ A necessary condition to avoid Barren Plateau)

Barren Plateau from Circuit Expressibility

Too expressive circuit or too entangled states known to cause Barren Plateau Parameter initialization technique proposed as a way to avoid Barren Plateau

Estimation Errors

Estimation Error = $R(h_F) - R(\hat{h}_N)$ quantifies the distance between the models that we can get with D and P

very general or specific

the Model Error could be reduced

Symmetry of the problem at hand is a useful guide to build efficient machine learning model

Model Error $= R(h^*) - R(h_F)$ typically hard to quantify unless the model is

When a *priori* knowledge of the problem is accounted for in model building, Inductive Bias

Equivariant Quantum Machine Learning

Information of symmetry provides a useful resource in machine learning

- Symmetry ubiquitous in physics, e.g, Lorentz symmetry, Permutation symmetry, ... Not obvious to incorporate general (continuous) symmetries in quantum setting
- Z. Li, L. Nagano, KT, Phys. Rev. Res. 6, 043028 (2024) Investigate a generic QNN architecture to efficiently encode rotational and permutational symmetries Inner products as inputs (e.g, inner products of particle 4-vectors) → Weyl's theorem
 - Twirling method to make quantum gates invariant against input permutation

→ L. Schatzki et al., <u>npj Quantum Inf. 10, 12 (2024)</u>

Equivariant Quantum Machine Learning

Z. Li, L. Nagano, KT, Phys. Rev. Res. 6, 043028 (2024)

Fully symmetric circuit

- Rotations handled by inner products
- Permutations handled by twirling

$H \rightarrow ZZ \rightarrow 4$ -leptons classification as a benchmark

0

Η

- Lorentz symmetry in particle decay
- Ad-hoc non-linearity added after quantum measurement:

$$L(\theta, b) = \left[-|f_Q(\theta) - b| - y \right]$$

Have demonstrated very efficient training without any indication of BP

Classical Simulability

Skepticism around variational QML approach ... QML models with provable absence of Barren Plateau in literatures can be classically simulated(?) M. Cerezo et al., <u>arXiv:2312.09121</u>

Argued that operator actions in BP-free quantum circuit are likely constrained in polynomially-large subspace, hence can classically simulated

Example:

Hamiltonian Variational Ansatz (HVA) for a given H expressed as $H = \sum \alpha_i h_i$ If h_i is $\mathcal{O}(1)$ -local operator, the problem class of HVA can be classically simulated

Hamiltonian simulation as a useful computational resource with near-term QC Lattice gauge theory for calculating non-perturbative physics

Hamiltonian simulation \vec{as} a useful computational resource with near-term QC $Z = \int [d\phi]e^{-S[\phi]} |\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$ Lattice gauge theory for calculating non-perturbative physics

Conventional LGT simulation

Discretize spacetime MC sampling for phase-space integrals of e^{-S}

Infamous sign problem with

- non-zero density, temperature
- topological term, etc.

Hamiltonian simulation \vec{as} a useful computational resource with near-term QC $Z = \int [d\phi] e^{-S[\phi]} |\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$ Lattice gauge theory for calculating non-perturbative physics

Conventional LGT simulation

Discretize spacetime MC sampling for phase-space integrals of e^{-S}

Infamous sign problem with

- non-zero density, temperature
- topological term, etc.

- still need exponential resource
- infinite Hilbert spaces for gauge dof's

Hamiltonian simulation \vec{as} a useful computational resource with near-term QC $Z = \int [d\phi]e^{-S[\phi]} |\psi(t)\rangle = e^{-iHt} |\psi(0)\rangle$ Lattice gauge theory for calculating non-perturbative physics

Conventional LGT simulation

Discretize spacetime MC sampling for phase-space integrals of e^{-S}

Infamous sign problem with

- non-zero density, temperature
- topological term, etc.

Simulation of real-time phenomena, e.g, out-of-equilibrium dynamics, particle scattering, is a promising example of quantum enhanced applications

- still need exponential resource
- infinite Hilbert spaces for gauge dof's

Quantum Dynamics Simulation in Schwinger Model

Simulation of quench dynamics in (1 + 1)d U(1) LGT (Schwinger model)

Particle creation due to strong external electric field **Schwinger effect**

Quantum Dynamics Simulation in Schwinger Model

Simulation of quench dynamics in (1 + 1)d U(1) LGT (Schwinger model)

- Particle creation due to strong external electric field **Schwinger effect**
 - L. Nagano, A. Bapat, C. W. Bauer, Phys. Rev. D 108, 034501 (2023)

Variational Quantum Simulation (VQS)

Prepare quantum states using time evolution of circuit parameters Possible to simulate with fixed-depth quantum circuit

$$\operatorname{Re} \frac{\partial \langle \psi(\theta) \mid}{\partial \theta_{i}} \frac{\partial \mid \psi(\theta) \rangle}{\partial \theta_{j}} \longrightarrow \sum_{j}^{\infty} \operatorname{Solve classically} \sum_{i \neq j} M_{ij} \dot{\theta}_{j} = V_{i}$$

36

Quantum Dynamics Simulation in Schwinger Model

Simulation of quench dynamics in (1 + 1)d U(1) LGT (Schwinger model)

Particle creation due to strong external electric field **Schwinger effect**

with increasing system volume

Dynamical Phase Transition in Schwinger Model

Simulation of quench dynamics in (1 + 1)d U(1) LGT (Schwinger model)

$$H = J \sum_{j=0}^{N-2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2} + \frac{\theta}{2\pi} \right)^2 + -\frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{$$

Investigating topological properties through heta-term in real-time dynamics

Dynamical Phase Transition in Schwinger Model

Simulation of quench dynamics in (1 + 1)d U(1) LGT (Schwinger model)

$$H = J \sum_{j=0}^{N-2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j} \frac{Z_k + (-1)^k}{2\pi} + \frac{\theta}{2\pi} \right)^2 + \frac{1}{2} \left(\sum_{k=0}^{j$$

Investigating topological properties through θ -term in real-time dynamics Strong quenches generate dynamical phase transition T. V. Zache et Rate function: $\xi_{0.6}$ T. V. Zache etPRL 122, 050

$$\Gamma(t) = \lim_{N \to \infty} \left\{ -\frac{1}{N} \log(|L(t)|) \right\}$$

Loschmidt echo: $L(t) = \langle \Omega | e^{-iHt} | \Omega \rangle$ with initial state $| \Omega \rangle$

Qubit Technology as a Sensor

Certain types of qubits will work as a probe to nature

<u>What quantum system can work as a quantum sensor?</u> 1. Identified, discretized energy levels (usually 2-levels)

- 2. Initialization and measurement
- 3. Coherent manipulation of state

Qubit technologies offer interesting opportunities to experimentally probe nature in different ways from conventional methods

4. Can couple to what we want to measure (e.g, electric/magnetic field, ..)

Utilizing sensor response, e.g, qubit transition energy E or rate Γ , to what we want to measure

Qubits as Quantum Sensor

Superconducting qubits potentially a powerful probe to nature

- Low threshold ($\sim \mu eV$) at $\mathcal{O}(mK)$ temperature
- Coherent manipulation of states within $\mathcal{O}(100\,\mu s)$ or longer coherence time Robust measurement with non-demolition technique

Strong coupling to electromagnetic field $O(10^6)$ stronger than single atom

Qubits as a Dark Matter Sensor

- Exploring superconducting qubit technology for Dark Matter searches
 - Most recent results presented at <u>19th Patras Workshop on Axions</u>, <u>WIMPs and WISPs</u> on Sep. 16-20, 2024:
 - K. Nakazono First results from a cavity haloscope experiment with a novel frequency tuning system using a qubit (talk)
 - K. Watanabe Search for dark photons using direct excitations of superconducting qubits (poster)
 - T. Nitta Towards axion searches using superconducting qubits (poster)
 - Search for dark photon dark matter using large-scale superconducting quantum computers as detectors (poster)
 - Please take a look at their talks/posters for details Just highlight one of them today

Dark Matter Search with Direct Qub.

Wave-like DM, e.g., Axion, Dark Photon with mass $\sim O(\mu eV - meV)$, well motivated by photons ► Co $A' \stackrel{\epsilon}{\sim} \gamma$

- - Colivence non owner, e.y. uarr proton)
- Directly drive Qubit as a DM-induced microwave

S. Chen et al., <u>PRL 131, 211001 (2023)</u>

Qubit Fabrication

Expected Sensitivity for Direct Qubit Excitation

S. Chen et al., PRL 131, 211001 (2023)

Possible to probe into unexplored region even with the excitation rate of **0.1%-10%**

Expected noise sources of $|0\rangle \rightarrow |1\rangle$ transition

Thermal noise:

 $p \sim e^{-\hbar\omega/k_B T} \sim 0.01\% - 1\% @ 30 \,\mathrm{mK}$

• Readout error : $\sim 0.1 \%$

48

First Results from Direct Qubit Excitation

Performed experiments with 2 qubits

Mass [GHz] 10^{1}

Background estimated from the baseline of observed data (mainly from thermal noise)

Expected sensitivity at $C = 0.1 \, \text{pF}$, $d = 100 \,\mu{\rm m},$ $\tau = 30 \,\mu s$

Sensitivity enhancement with quantum interference S. Chen et al., PRL 133, 021801 (2024) S. Chen et al., <u>arXiv:2407.19755</u>

Efforts on Quantum Computing/Sensing

Application/Algorithm

- Amplifier
- Circulator/Isolator, etc.

- ► Low-dimensional \mathbb{Z}_2 , SU(2) LGT

- Design optimization (e.g, larger C/d, smaller JJs)
- Magnetic field tolerance

Summary

the application to particle physics:

- Iearning quantum states/processes
- simulating quantum dynamics in Lattice Gauge Theory searching for dark matter with superconducting qubits

Aiming at demonstrating quantum advantage and/or quantum as useful resources in the *computational particle physics* in future

(e.g, DM search with superconducting qubits)

- Presented selected results at ICEPP on quantum computing and

- New opportunities in technology development and scientific discovery

Summary

Kensuke Kamisoyama

Karin Watanabe

Zhelun Li

Lento Nagano

Toshiaki Inada

Yutaro liyama

Nobuyuki Yoshioka

Kan Nakazono

Kazuyuki Nakayama

Toshiaki Kaji

Kirill Shulga

Wai Yuen Chan

Koji Terashi

Tatsumi Nitta

Ryu Sawada

