

1. What is quantum thermalization?

microscopic reversibility and macroscopic irreversibility

microscopic mechanics are symmetric with respect to time

macroscopic processes have a preferred direction

thermalization: relaxation towards equilibrium in an isolated system

Boltzmann's idea

ergodicity

long-time average of a physical quantity coincides with its microcanonical average (equilibrium value)

typicality

macroscopic quantities take on their equilibrium values for a vast majority of microscopic states

e.g. typicality of Maxwell distribution was proved by Jeans

quantum systems

microscopic pure state: vector in the Hilbert space $|\psi(t)\rangle$

time evolution: Schrödinger equation

$$i\frac{d}{dt}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$

expectation value of a physical quantity $\langle \hat{O} \rangle_{\psi(t)} := \langle \psi(t) | \hat{O} | \psi(t) \rangle$

energy eigenstates and eigenvalues

 $\hat{H} | \phi_n \rangle = E_n | \phi_n \rangle$

$$|\psi(t)\rangle = \sum_{n} C_{n} e^{-iE_{n}t} |\phi_{n}\rangle$$

quantum typicality

typicality: a vast majority of pure states corresponds to thermal equilibrium

S. Popescu, A. Short, A. Winter, Nat. Phys. (2006)

theorem: Consider an arbitrary bounded operator \hat{O} . For a large quantum system, most microscopic states in the energy shell share the same expectation value (that is nothing but the equilibrium value)

$$\langle \hat{O} \rangle_{\psi} \approx \langle \hat{O} \rangle_{\text{eq}} \quad \text{for most } |\psi\rangle$$

 \hat{O} is not necessarily a macroscopic quantity

Typicality is almost trivial in quantum mechanics

ergodicity: Eigenstate Thermalization Hypothesis

ergodicity: long-time average of a physical quantity equals its equilibrium value

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \langle \hat{O} \rangle_{\psi(t)} dt \approx \langle \hat{O} \rangle_{eq} \quad \text{for any initial state}$$

$$\lim_{\tau \to \infty} \frac{1}{\tau} \int_{0}^{\tau} \langle \hat{O} \rangle_{\psi(t)} dt = \sum_{n} |C_{n}|^{2} \langle \hat{O} \rangle_{\phi_{n}} \quad \text{(assume that there is no energy degeneracy)}$$
$$\langle \hat{O} \rangle_{\phi_{n}} \approx \langle \hat{O} \rangle_{\text{eq}} \quad \text{for all energy eigenstates}$$

every energy eigenstate corresponds to thermal equilibrium Eigenstate Thermalization Hypothesis (ETH)

J. von Neumann (1929); M. Srednicki (1994); M. Rigol, V. Dunjko, and M. Olshanii (2008)

2. timescale of thermalization

remaining issue: timescale of thermalization

ETH (and typicality) implies that the system thermalizes after a sufficiently long time evolution

ETH does not tell us about the timescale of thermalization

importance of the choice of observables

S. Goldstein, T. Hara, and H. Tasaki, Phys. Rev. Lett. (2013)

Any realistic quantum many-body system has an observable whose relaxation time behaves as $\tau_{\rm rel} = e^{O(N)}$ with N being the number of degrees of freedom (the number of particles, volume,...)

$$\hat{O} = \sum_{n} |\phi_{n+1}\rangle \langle \phi_{n}|$$

$$\langle \hat{O} \rangle_{\psi(t)} = \sum_{n} C_{n+1}^* C_n e^{i(\underline{E_{n+1}} - \underline{E_n})t}$$

energy level spacing ~ $e^{-O(N)}$

we should focus on a specific class of observables!

few-body operators: operators acting on a finite number of sites

(local operators) ⊂ (few-body operators)

many-body operators: operators acting on a macroscopically large number of sites

We do not consider this class of observables

In the following, we consider thermalization of local or few-body observables

3. slow relaxation

prethermalization

Let's focus on simple situations: large separation of timescales

two-step relaxation

initial relaxation (prethermalization): fast degrees of freedom second relaxation (thermalization): slow degrees of freedom

review: TM, T. N. Ikeda, E. Kaminishi, and M. Ueda, J. Phys. B (2018)

Fermi's golden rule

example: nearly integrable systems

perturbative treatment: Fermi's golden rule

transition rate between two energy eigenstates of $\hat{H}_0 \propto \lambda^2$ relaxation time $\propto \lambda^{-2}$

anomalously slow thermalization

In some cases, the relaxation time can be much longer **example:** strong-coupling Hubbard model $U \gg J$ $\lambda \sim \frac{J}{U}$

$$\hat{H} = J \sum_{i=1}^{L} \sum_{\sigma=\uparrow,\downarrow} (\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \text{h.c.}) + U \sum_{i=1}^{L} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$
small perturbation

exponentially slow relaxation $\tau \sim e^{O(1/\lambda)} = e^{O(U/J)}$

Parameter space

U/h (kHz)

5

rigorous theorem on Floquet systems

similar slow relaxations are found in periodically driven (Floquet) many-body systems at high frequencies

$$\hat{H}(t) = \hat{H}_0 + \hat{V}(t) \qquad \hat{V}(t) = \hat{V}(t+T) \qquad \omega = \frac{2\pi}{T}$$

 $\omega \gg g$ (local energy scale of \hat{H}_0) small parameter: $\lambda = g/\omega$

physically, the system absorbs energy from driving fields (heating) and eventually heats up to the infinite temperature

Theorem: heating is exponentially slow with respect to ω/g $\tau_{\rm rel} \sim e^{O(1/\lambda)} = e^{O(\omega/g)}$ T. Kuwahara, TM, K. Saito (2016); TM, T. Kuwahara, and K. Saito (2016) D. Abanin, W. De Roeck, W. W. Ho, F. Huveneers (2017)

strong-coupling Hubbard = Floquet

$$\hat{H} = J \sum_{i=1}^{L} \sum_{\sigma=\uparrow,\downarrow} (\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \text{h.c.}) + \bigcup_{i=1}^{L} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow} \text{ eigenvalues are integer multiple of } U$$
small perturbation unitary transformation
$$\mathcal{U}_{t} := e^{-itU\sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}}$$

$$\hat{H}'(t) = \mathcal{U}_{t}^{\dagger} \left[J \sum_{i=1}^{L} \sum_{\sigma=\uparrow,\downarrow} (\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \text{h.c.}) \right] \mathcal{U}_{t}$$
Note that $\mathcal{U}_{t} = \mathcal{U}_{t+T}$ with $T = 2\pi/U$

$$\hat{H}'(t) = \hat{H}'(t+T) \quad \omega = \frac{2\pi}{T} = U \gg J$$

exponentially slow relaxation in the strong-coupling Hubbard model is explained by the theorem on Floquet systems

4. open-system analysis of thermalization timescale in isolated systems

open systems

Lindbladian (Liouvillian) and its eigenvalues

eigenvalues of Lindbladian \rightarrow Liouvillian gap g

 $\|\rho(t) - \rho_{ss}\|_{tr} \sim e^{-gt}$ asymptotic decay rate in the long-time limit

$$\lim_{\gamma \to +0} g = 0$$

operator growth and acceleration of dissipation

general property of *weak* bulk dissipation: acceleration of dissipation mechanism: operator growth + weak bulk dissipation

$$\hat{O}(t) = e^{iHt} \hat{O} e^{-iHt} \stackrel{\gamma}{} \stackrel{}$$

T. Shirai and TM, Phys. Rev. Lett. (2024) instantaneous decay rate $\propto \gamma \times$ (average operator size)

 $\sim \gamma v t$

operator growth \rightarrow amplification of dissipation

infinitesimally weak dissipation $(\gamma \rightarrow +0)$ can provide a finite asymptotic decay rate (i.e. a finite Liouvillian gap)

 $\lim_{\gamma \to +0} \lim_{L \to \infty} g =: \bar{g} > 0$

remark: if we take the limit of $\gamma \to +0$ before the thermodynamic limit, the Liouvillian gap always tends to zero

 $\lim_{L \to \infty} \lim_{\gamma \to +0} g = 0$

finite Liouvillian gap in the weak dissipation limit

TM, Phys. Rev. B (2024)

kicked Ising chain

 $(J, h_z, h_x, \tau) = (1, 0.8090, 0.9045, 0.7)$

$$\hat{H}(t) = \sum_{i=1}^{L} \left(-J\hat{\sigma}_i^z \hat{\sigma}_{i+1}^z - h_z \hat{\sigma}_i^z \right) + \sum_{n=-\infty}^{\infty} \delta(t - nT) \sum_{i=1}^{L} \left(-h_x \hat{\sigma}_i^x \right)$$

+ bulk dephasing of strength γ $\hat{L}_i = \hat{\sigma}_i^z$

relation with the timescale of thermalization

TM, Phys. Rev. B (2024)

numerical result for the kicked Ising chain

The non-zero Liouvillian gap in the weak dissipation limit describes the timescale of thermalization!

note: this is an analogue of Ruelle-Pollicott resonance in classical chaos M. Pollicott (1985); D. Ruelle (1986)

summary

- Typicality and ETH explain quantum thermalization
- Timescale of thermalization is non-trivial (model dependent, observable dependent,...)
- Slow relaxation after prethermalization: perturbative approach (Fermi's golden rule) sometimes doesn't work
- Anomalously slow relaxation in Floquet systems and some static systems (e.g. Hubbard) is explained by our rigorous theorems
- New approach to thermalization: adding weak dissipation