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1. What is quantum thermaliza5on?
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microscopic reversibility and macroscopic irreversibility
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microscopic mechanics are symmetric with respect to 5me

macroscopic processes have a preferred direc5on

thermaliza5on: relaxa5on towards equilibrium in an isolated system



Boltzmann’s idea
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ergodicity
long-5me average of a physical quan5ty coincides with its 
microcanonical average (equilibrium value)

macroscopic quan55es take on their equilibrium values for a vast 
majority of microscopic states

typicality

e.g. typicality of Maxwell distribution was proved by Jeans

ergodicity and typicality

t

ergodicity only

t
long-5me average 
= equilibrium value



quantum systems
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i
d
dt

|ψ(t)⟩ = Ĥ |ψ(t)⟩

expecta5on value of a physical quan5ty ⟨Ô⟩ψ(t) := ⟨ψ(t) | Ô |ψ(t)⟩

microscopic pure state: vector in the Hilbert space |ψ(t)⟩

5me evolu5on: Schrödinger equa5on

energy eigenstates and eigenvalues Ĥ |ϕn⟩ = En |ϕn⟩

|ψ(t)⟩ = ∑
n

Cne−iEnt |ϕn⟩



quantum typicality
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theorem: Consider an arbitrary bounded operator . For a large 
quantum system, most microscopic states in the energy shell share the 
same expecta5on value (that is nothing but the equilibrium value)

Ô

⟨Ô⟩ψ ≈ ⟨Ô⟩eq for most |ψ⟩

 is not necessarily a macroscopic quan5tyÔ

typicality: a vast majority of pure states corresponds to thermal 
equilibrium

S. Popescu, A. Short, A. Winter, Nat. Phys. (2006)

Typicality is almost trivial in quantum mechanics



ergodicity: Eigenstate Thermaliza5on Hypothesis
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ergodicity: long-5me average of a physical quan5ty equals its 
equilibrium value

lim
τ→∞

1
τ ∫

τ

0
⟨Ô⟩ψ(t)dt = ∑

n

|Cn |2 ⟨Ô⟩ϕn
(assume that there is no energy degeneracy)

lim
τ→∞

1
τ ∫

τ

0
⟨Ô⟩ψ(t)dt ≈ ⟨Ô⟩eq for any ini5al state

⟨Ô⟩ϕn
≈ ⟨Ô⟩eq for all energy eigenstates

Eigenstate Thermaliza5on Hypothesis (ETH)
J. von Neumann (1929); M. Srednicki (1994); M. Rigol, V. Dunjko, and M. Olshanii (2008)

every energy eigenstate corresponds to thermal equilibrium



2. 5mescale of thermaliza5on
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remaining issue: 5mescale of thermaliza5on
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ETH (and typicality) implies that the system thermalizes 
a#er a sufficiently long 1me evolu1on

ETH does not tell us about the 1mescale of thermaliza1on

τrel

t

⟨Ô⟩ψ(t)

thermaliza5on



importance of the choice of observables
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Any realis5c quantum many-body system has an observable whose 
relaxa5on 5me behaves as  with  being the number of 
degrees of freedom (the number of par5cles, volume,…)

τrel = eO(N) N

Ô = ∑
n

|ϕn+1⟩⟨ϕn |

⟨Ô⟩ψ(t) = ∑
n

C*n+1Cnei(En+1−En)t

energy level spacing ∼ e−O(N)

we should focus on a specific class of observables!

S. Goldstein, T. Hara, and H. Tasaki, Phys. Rev. Lett. (2013)



local or few-body observables
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local operators: operators ac5ng to spa5ally local region



local or few-body observables
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local operators: operators ac5ng to spa5ally local region



local or few-body observables

13

local operators: operators ac5ng to spa5ally local region



local or few-body observables
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local operators: operators ac5ng to spa5ally local region



local or few-body observables
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(local operators) ⊂ (few-body operators)

few-body operators: operators ac5ng on a finite number of sites

macroscopic distance



local or few-body observables
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many-body operators: operators ac5ng on a macroscopically large 
number of sites

We do not consider this class of observables
In the following, we consider thermaliza5on of local or few-body 
observables



3. slow relaxa5on
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prethermaliza5on
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Let’s focus on simple situa5ons: large separa5on of 5mescales

two-step relaxa5on
ini5al relaxa5on (prethermaliza5on): fast degrees of freedom
second relaxa5on (thermaliza5on): slow degrees of freedom

⟨Ô⟩ψ(t)

ln t

⟨Ô⟩pre

⟨Ô⟩eq

review: TM, T. N. Ikeda, E. Kaminishi, and M. Ueda, J. Phys. B (2018)



Fermi’s golden rule
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example: nearly integrable systems

Ĥ = Ĥ0 + λ ̂V

integrable Hamiltonian small perturba5on

perturba5ve treatment: Fermi’s golden rule
transi5on rate between two energy eigenstates of Ĥ0 ∝ λ2

relaxa5on 5me ∝ λ−2

⟨Ô⟩ψ(t)

ln t

⟨Ô⟩pre

⟨Ô⟩eq

Ĥ0

λ ̂V



anomalously slow thermaliza5on
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In some cases, the relaxa5on 5me can be much longer

exponen5ally slow relaxa5on τ ∼ eO(1/λ) = eO(U/J)

example: strong-coupling Hubbard model

Ĥ = J
L

∑
i=1

∑
σ=↑,↓

( ̂c†
i,σ ̂ci+1,σ + h.c.) + U

L

∑
i=1

̂ni,↑ ̂ni,↓

small perturba5on

λ ∼
J
U

U ≫ J

N. Strohmaier et al. (2010)実験



rigorous theorem on Floquet systems
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similar slow relaxa5ons are found in periodically driven (Floquet) 
many-body systems at high frequencies

Ĥ(t) = Ĥ0 + ̂V(t) ̂V(t) = ̂V(t + T ) ω =
2π
T

ω ≫ g (local energy scale of Ĥ0)

physically, the system absorbs energy from driving fields (hea5ng)

Theorem: hea1ng is exponen1ally slow with respect to ω/g
τrel ∼ eO(1/λ) = eO(ω/g)

T. Kuwahara, TM, K. Saito (2016); TM, T. Kuwahara, and K. Saito (2016) 
D. Abanin, W. De Roeck, W. W. Ho, F. Huveneers  (2017)

and eventually heats up to the infinite temperature

λ = g/ωsmall parameter:



exponen5ally slow relaxa5on in the strong-coupling Hubbard model is 
explained by the theorem on Floquet systems

strong-coupling Hubbard = Floquet

22

Ĥ = J
L

∑
i=1

∑
σ=↑,↓

( ̂c†
i,σ ̂ci+1,σ + h.c.) + U

L

∑
i=1

̂ni,↑ ̂ni,↓

small perturba5on unitary transforma5on

𝒰t := e−itU∑i ̂ni,↑ ̂ni,↓

Ĥ′ (t) = 𝒰†
t J

L

∑
i=1

∑
σ=↑,↓

( ̂c†
i,σ ̂ci+1,σ + h.c.) 𝒰t

eigenvalues are integer mul5ple of U

Note that  with 𝒰t = 𝒰t+T T = 2π/U

Ĥ′ (t) = Ĥ′ (t + T ) ω =
2π
T

= U ≫ J



4. open-system analysis of thermaliza5on 
5mescale in isolated systems
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open systems
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quantum many-body system
external periodic driving

dissipa5on to environment



Lindbladian (Liouvillian) and its eigenvalues
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d
dt

ρ(t) = − i[Ĥ, ρ(t)] + γ
L

∑
i=1

(L̂iρ(t)L̂†
i −

1
2 {L̂†

i L̂i, ρ(t)})
=: ℒρ(t) Lindbladian

γ
Ĥ

∥ρ(t) − ρss∥tr ∼ e−gt asympto5c decay rate in the long-5me limit

lim
γ→+0

g = 0

eigenvalues of Lindbladian  Liouvillian gap → g



operator growth and accelera5on of dissipa5on
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general property of weak bulk dissipa5on: accelera5on of dissipa5on

γ γ γ γ γ γ γ γ γ dissipa5on
Ôi → e−γΔt

Ôi−1ÔiÔi+1 → e−3γΔt

Ôi−2Ôi−1ÔiÔi+1Ôi+2 → e−5γΔt

t = 0

t

mechanism: operator growth + weak bulk dissipa5on

instantaneous decay rate ∝ γ × (average operator size)
T. Shirai and TM, Phys. Rev. Lett. (2024)

∼ γvt

Ô(t) = eiHtÔe−iHt



nontrivial Liouvillian gap in the weak dissipa5on limit
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operator growth  amplifica5on of dissipa5on→

infinitesimally weak dissipa5on  can provide a finite 
asympto5c decay rate (i.e. a finite Liouvillian gap)

(γ → + 0)

lim
γ→+0

lim
L→∞

g =: ḡ > 0

remark: if we take the limit of  before the thermodynamic limit, the Liouvillian gap always 
tends to zero

γ → + 0

lim
L→∞

lim
γ→+0

g = 0



finite Liouvillian gap in the weak dissipa5on limit
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kicked Ising chain

Ĥ(t) =
L

∑
i=1

(−J ̂σz
i ̂σz

i+1 − hz ̂σz
i) +

∞

∑
n=−∞

δ(t − nT )
L

∑
i=1

(−hx ̂σx
i )

numerics

(J, hz, hx, τ) = (1, 0.8090, 0.9045, 0.7)

+ bulk dephasing of strength γ L̂i = ̂σz
i

TM, Phys. Rev. B (2024)



rela5on with the 5mescale of thermaliza5on
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note: this is an analogue of Ruelle-Pollico_ resonance in classical chaos
M. Pollicott (1985); D. Ruelle (1986)

solid lines: numerical solu5on of the Schrödinger eq. in the isolated system
dashed lines ∝ exp(−ḡt)

numerical result for the kicked Ising chain
TM, Phys. Rev. B (2024)

The non-zero Liouvillian gap in the weak dissipa5on limit describes 
the 5mescale of thermaliza5on!



summary

• Typicality and ETH explain quantum thermaliza5on 

• Timescale of thermaliza5on is non-trivial  
(model dependent, observable dependent,…) 

• Slow relaxa5on aaer prethermaliza5on: perturba5ve 
approach (Fermi’s golden rule) some5mes doesn’t work 

• Anomalously slow relaxa5on in Floquet systems and some 
sta5c systems (e.g. Hubbard) is explained by our rigorous 
theorems 

• New approach to thermaliza5on: adding weak dissipa5on
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