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1. What is qguantum thermalization?



microscopic reversibility and macroscopic irreversibility

microscopic mechanics are symmetric with respect to time
— O o

macroscopic processes have a preferred direction

thermalization: relaxation towards equilibrium in an isolated system
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Boltzmann’s idea

ergodicity

long-time average of a physical quantity coincides with its
microcanonical average (equilibrium value)

typicality

macroscopic quantities take on their equilibrium values for a vast
majority of microscopic states

e.g. typicality of Maxwell distribution was proved by Jeans
ergodicity only ergodicity and typicality
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quantum systems

microscopic pure state: vector in the Hilbert space |y(¢))
. . .y . d A
time evolution: Schroédinger equation 7 lw(?)) = H|w(?))
[
expectation value of a physical quantity (é)w) = (y(?) | O] w(1))

energy eigenstates and eigenvalues ﬁl $)=E|¢,)

y(@) = ), Ce | ¢,)



guantum typicality

typicality: a vast majority of pure states corresponds to thermal
equilibrium

S. Popescu, A. Short, A. Winter, Nat. Phys. (2006)

theorem: Consider an arbitrary bounded operator O. For a large

guantum system, most microscopic states in the energy shell share the
same expectation value (that is nothing but the equilibrium value)

(0)w ~ (0)eq for most |y)

Va\

O is not necessarily a macroscopic quantity

Typicality is almost trivial in guantum mechanics



ergodicity: Eigenstate Thermalization Hypothesis

ergodicity: long-time average of a physical quantity equals its
equilibrium value

lim —

. 1 rT . R
lim — [ (O0),ndt = (O), forany initial state

T—>OOT.JO

rT

<é>t//(t)dt — Z | Cn |2 <é>¢n (assume that there is no energy degeneracy)

T—0 T

0 n

—

(0)¢n ~ (O)eq for all energy eigenstates

every energy eigenstate corresponds to thermal equilibrium

Eigenstate Thermalization Hypothesis (ETH)

J. von Neumann (1929); M. Srednicki (1994); M. Rigol, V. Dunjko, and M. Olshanii (2008)
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2. timescale of thermalization



remaining issue: timescale of thermalization

ETH (and typicality) implies that the system thermalizes
after a sufficiently long time evolution

(é)w) !

thermalization

[

rel

ETH does not tell us about the timescale of thermalization



importance of the choice of observables

S. Goldstein, T. Hara, and H. Tasaki, Phys. Rev. Lett. (2013)
Any realistic quantum many-body system has an observable whose

relaxation time behaves as 7| = e®N) with N being the number of
degrees of freedom (the number of particles, volume,...)

0= |¢1)(b,]

E  —E
(O)y = Z R OR =

energy level spacing ~ ¢ W)

we should focus on a specific class of observables!
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local or few-body observables

local operators: operators acting to spatially local region
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local or few-body observables

local operators: operators acting to spatially local region
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local or few-body observables

local operators: operators acting to spatially local region
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local or few-body observables

local operators: operators acting to spatially local region
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local or few-body observables

few-body operators: operators acting on a finite number of sites

>
>
<
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a®,
(local operators) C (few-body operators)
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local or few-body observables

many-body operators: operators acting on a macroscopically large
number of sites

Q—O—COr
O—O—O
O—O—©
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() ()
O—0O0—0—=06

We do not consider this class of observables

In the following, we consider thermalization of local or few-body
observables
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3. slow relaxation
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prethermalization

Let’s focus on simple situations: large separation of timescales

<é>l/f(t)

two-step relaxation
initial relaxation (prethermalization): fast degrees of freedom
second relaxation (thermalization): slow degrees of freedom «

review: TM, T. N. Ikeda, E. Kaminishi, and M. Ueda, J. Phys. B (2018)
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Fermi’s golden rule

example: nearly integrable systems

= H,+ AV
integrable Hamiltonian small perturbation

(é),/,(t)

>

In ¢
perturbative treatment: Fermi’s golden rule

transition rate between two energy eigenstates of ﬁo x A2

relaxation time o A2
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anomalously slow thermalization

In some cases, the relaxation time can be much longer

example: strong-coupling Hubbard model U>J /1~ i

U
JZ Z €, ,+1(,+hc)+U2 N 41 |

i=lo=t,} i=1

small perturbatlon

exponentially slow relaxation 7 ~ %) = ¢OWUY)

SEER N. Strohmaier et al. (2010)
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rigorous theorem on Floguet systems

similar slow relaxations are found in periodically driven (Floquet)
many-body systems at high frequencies

Hty=Hy,+ V() VO =Vt+T) o=—

@ > g (local energy scale of PAIO)
small parameter: 1 = g/w

physically, the system absorbs energy from driving fields (heating)
and eventually heats up to the infinite temperature

Theorem: heating is exponentially slow with respect to w/g
- eO(l//l) — eO(a)/g)

Trel

T. Kuwahara, TM, K. Saito (2016); TM, T. Kuwahara, and K. Saito (2016)
D. Abanin, W. De Roeck, W. W. Ho, F. Huveneers (2017)
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strong-coupling Hubbard = Floquet

small perturbation unitary transformation

v

L
Ho =% 1), ), @ ¢y ,+he)| ¥,
=1 o=1,]

Note that #, = U, rwith T = 2z/U

R A 27
HoO)y=HG@+T) a)=7: U>J

exponentially slow relaxation in the strong-coupling Hubbard model is

explained by the theorem on Floquet systems
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4. open-system analysis of thermalization
timescale in isolated systems
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open systems

external periodic driving

quantum many-body system ///

dissipation to environment
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Lindbladian (Liouvillian) and its eigenvalues

Vo

H
000000006 06060600006060
- - - - - - - - - -

1
L) = — fr_
p(t) iH, p(D] + 7 Z, ( Lip()L, > {L, l,p(t)})

=: Zp(t) Lindbladian

eigenvalues of Lindbladian — Liouvillian gap g

lp(®) — pyill,, ~ €78 asymptotic decay rate in the long-time limit

y—+0
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operator growth and acceleration of dissipation

general property of weak bulk dissipation: acceleration of dissipation
mechanism: operator growth + weak bulk dissipation
é(t) = ethé.e_i?h LoD L dissipation
| 00000000S I .-
N N N N N N N N N
1 0000000 O®O® o 0 00,0,

5

T. Shirai and TM, Phys. Rev. Lett. (2024)
instantaneous decay rate « y X (average operator size)

~ yVI
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nontrivial Liouvillian gap in the weak dissipation limit

operator growth — amplification of dissipation

infinitesimally weak dissipation (y — + 0) can provide a finite
asymptotic decay rate (i.e. a finite Liouvillian gap)

Im Im g =:2>0
y—+0 L—> o0

remark: if we take the limit of y — + O before the thermodynamic limit, the Liouvillian gap always
tends to zero

Iim Iim g =20
L—o00 y—+0
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finite Liouvillian gap in the weak dissipation limit

TM, Phys. Rev. B (2024)

kicked Ising chain (J, b, 7) = (1,0.8090,0.9045, 0.7)
L 00 L
A =Y (~I6365, —hé) + Y, 84—nT) Y (~haD

+ bulk dephasing of strength y ii = 0;

(b) T=0.7
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relation with the timescale of thermalization

TM, Phys. Rev. B (2024)

numerical result for the kicked Ising chain
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The non-zero Liouvillian gap in the weak dissipation limit describes
the timescale of thermalization!

note: this is an analogue of Ruelle-Pollicott resonance in classical chaos
M. Pollicott (1985); D. Ruelle (1986)
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summary

® Typicality and ETH explain quantum thermalization

® Timescale of thermalization is non-trivial
(model dependent, observable dependent,...)

® Slow relaxation after prethermalization: perturbative
approach (Fermi’s golden rule) sometimes doesn’t work

® Anomalously slow relaxation in Floguet systems and some
static systems (e.g. Hubbard) is explained by our rigorous
theorems

® New approach to thermalization: adding weak dissipation
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