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Today’s talk

Recent trends in “guantum simulation” of many-body systems

Ultracold atom systems for strongly correlated electron physics

Basics of quantum state tomography (QST)
- Reconstruction of density matrix

Spiral quantum state tomography (spiral-QST)

- Efficient reconstruction of density matrix

- Demonstration:
How to measure entanglement entropy via spiral-QST



Quantum computer/quantum simulator

Nature isn't classical, dammit, and if you want to make a simulation

of nature, you'd better make it quantum mechanical, and by golly

" : l
it's a wonderful problem, because it doesn't look so easy. - Richard P. Feynman -




Quantum computer/quantum simulator

Nature isn't classical, dammit, and if you want to make a simulation

of nature, you'd better make it quantum mechanical, and by golly

" : l
it's a wonderful problem, because it doesn't look so easy. - Richard P. Feynman -

Digital quantum computer Analog quantum simulator
Use quantum gates to perform general-purpose Mimics the behavior of a specific quantum system
guantum computations and require error correction. by using another controllable quantum system.
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Superconducting qubits, trapped ions, photonic qubits, Cold atoms in optical lattices, trapped ions, Rydberg atom
semiconductor quantum dots, neutral atom qubits, ... arrays, superconducting circuits, photonic simulators, ...




Quantum simulation on digital quantum computers

m computer
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Challenges:

[] Quantum Error Correction

[J Fault-Tolerance (i fEE %)

[] Quantum Decoherence and Noise
[] Scalability

[] High-Fidelity Gates and Operations
[] Algorithm and Software etc.

NISQera --------------- > FTQCera

(Noisy Intermediate-Scale Quantum) (Fault-Tolerant Quantum Computing)

Mid-term targets for applications are highly desired!

2/19
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npj ‘ Quantum Information 5, 106 (2019)
ARTICLE OPEN

Simulating quantum many-body dynamics on a current digital
quantum computer

Adam Smith®"?*, M. S. Kim', Frank Pollmann? and Johannes Knolle'

Suzuki-Trotter :[
decomposition
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Challenges: o » :[ :I_'_
[] Quantum Error Correction . :[—
[J Fault-Tolerance (i fEE %)
] Scalability Hunting for quantum-classical crossover
in condensed matter problems
I:l ngh'FideIity Gates and Operatlons Nobuyuki Yoshioka ® **04, Tsuyoshi Okubo ®@3*[, Yasunari Suzuki ®°° <, Yuki Koizumi® &
Wataru Mizukami®®7” >4
[1 Algorithm and Software  etc. Iy gomrs WIS
Circuit Physics Chemi§try
NISQera -----------m--- > FTQC era &95 el 3333"-~ .
(Noisy Intermediate-Scale Quantum) (Fault-Tolerant Quantum Computing) _
#Qubits 0(1034) 0(109) 0(109) 0(107)
Mid-term targets for applications are highly desired! Runtime  Hours Hours ) Days Days




Quantum simulation on digital
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SC qubits (IBM)
Sci. Adv. 8, 7652 (2022)
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Nat. Phys. 19, 1314
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Evidence for the utility of quantum
computing before fault tolerance
Nature 618, 500 (2023)

Quantum Simulations of Hadron Dynamics
in the Schwinger Model using 112 Qubits
Phys. Rev. D 109, 114510 (2024)

Simulating large-size quantum spin
chains on cloud-based
superconducting quantum
computers

Phys. Rev. Research 5, 013183 (2023)

Chemistry Beyond Exact Solutions on a
Quantum-Centric Supercomputer
arXiv:2405.05068

EDEDED Realizing the Nishimori transition

. “se .. mRNA secondary structure prediction using
o] o] ) across the error threshold for Tl

Y E9- e tant-depth : cuit - utility-scale quantum computers
0.52(1) § 0.64(1) ) 0.54(1 Cons an = e uan um leCUl S .“: :"..r,n,w .

DEDED Pth q ol arXiv:2405.20328

oSNNS 3rXiv:2309.02863

Scalable Circuits for Preparing Ground

States on Digital Quantum Computers:

The Schwinger Model Vacuum on 100 and many others...
Qubits

PRX Quantum 5, 020315 (2024)
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Why is “quantum simulation” important?

Physics across different length/time/energy scales
can be interconnected through the language of “guantum information.”
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Why is “quantum simulation” important?

Physics across different length/time/energy scales
can be interconnected through the language of “guantum information.”

QIUANITUIV

e.g.) Ryu-Takayanagi Formula  PRL96,181602 (2006)

Area(vya)
SA =
y 1G
Entanglement entropy . Gravitational theory
in quantum materials for the universe

Grant-in-Ald for Transformative Ressarch Areas (A)

Extreme Universe

(i) The limit of space
quantum information — (ii) The limit of time

(iii) The limit of matter
o — _/




Cold-atom analog quantum
simulator for SCES

*SCES — Strongly Correlated Electron System



Cold-atom “Hubbard model” simulation

Two different hyperfine
states of Fermi atoms \Q

¥ ~ 102103 nm

Ideal Hubbard model system

H=—t> > (et +He ) +U D Airnyy
(i.4) @ '

mimicking the SCES physics!

High-T_ superconductivity
Quantum magnetism
Spin liquid

Heavy fermion etc.




Cold-atom “Hubbard model” simulation

Two different hyperfine
states of Fermi atoms

Ideal Hubbard model system
(eloeio + He ) +U D gy

mimicking the SCES physics!

H=—t)»

(i,j) ©

High-T_ superconductivity
Quantum magnetism
Spin liquid

Heavy fermion etc.

a
b L
R

Nature 545, 462 (2017)
A cold-atom Fermi-Hubbard antiferromagnet

Anton Mazurenko!, Christie S. Chiu!, Geoffrey Ji', Maxwell F. Parsons!, Mdrton Kanasz-Nagy!, Richard Schmidt!, Fabian Grusdt!,
Eugene Demler!, Daniel Greif! & Markus Greiner!

DMD /—@—\
‘ © Reservoir Q Reservoir
Anticonfining g \T/
tential +
(650-nm $ Vs "
Imaging Position g
(671-nm metal — metal
light) high entropy Mott high entropy
insulator
low entropy
Sample, Q
e e o ] . 2t2
” | pin exchange: J — _U ~ 12 nK
g i. ii 6L
o7
& S
) Temperature: T~ 10 nK (N J/kB)
Ult=7.2(2)

How to achieve lower temperatures?
= DY, K. Morita, PRL 132, 213401 (2024).



Quantum-gas microscope (QGM) imaging

~

Single-site resolved imaging
for particle occupancy

W. S. Bakr et al.,
Nature 462 (2009).

\_ Harvard University website

DMD \

Anticonfining
potential
(650-nm
light)

Imaging
(671-nm
light) Dichroic
mirror

Sample, Q@ N — Reservoir
5
é%; ;ii Removing one spin component enables
t us to perform “all-Z measurement.”
Ult=7.2(2)

A. Mazurenko et al., Nature 545 (2017). M=2®2&---87



Quantum-gas microscope (QGM) imaging

\_ Harvard University website

Single-site resolved imaging
for particle occupancy

W. S. Bakr et al.,
Nature 462 (2009).

~

DMD \

Anticonfining
potential
(650-nm
light)

Imaging
(671-nm

light) Dichroic

mirror

Sample, @ G Reservoir

I H

t

Ult=7.2(2)
A. Mazurenko et al., Nature 545 (2017).

Removing one spin component enables
us to perform “all-Z measurement.”

M=ZR~/2Q---Q21

n-point correlation functions can be calculated
by averaging the QGM shots over many samples.

Nsample

A A A 1
¢ ~

Nsample

QGM outcomes
!

e.g.) two-point AF correlations
1 S A A ~ N
Ca = 55 (=1 ((8785) = (S:)(8))
i

0.3

02| © e
o

01¢

0.0

Correlation length £ ~ 10 sites at the lowest T.




Entanglement entropy

In order to advance an artificial guantum system from being
“just another platform for cond-mat experiments” to a “quantum information processor,”
it is essential to achieve the capability to measure entanglement.




Entanglement entropy

In order to advance an artificial guantum system from being

“just another platform for cond-mat experiments” to a “quantum information processor,”
it is essential to achieve the capability to measure entanglement.

von Neumann “entanglement” entropy (EE)

Quantum states are described by density matrix p.

pure state von Neumann entropy

p=1T)(¥| wp S(p)=-Tr[plogp]
) =0

state vector

mixed state

P = Zfin‘q]nﬂqjﬂ » S(p)>0

mixing fraction

When the entire state is pure, p = |U)(V
| oun i un mm g

‘ trace out a part of the system
subsystem A
¢ 9O 0 ¢ ¢ ¢ 0O

pa = Trz[p] (reduced density matrix)

_ A and A are
S (pa)= 0 (still pure) unentangled

It S(pA)> 0 (become mixed) » entangled




Quantum state tomography (QST) of density matrix ~ 8/19

How do you measure quantum state or density matrix p?
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Quantum state tomography (QST) of density matrix ~ 8/19

How do you measure quantum state or density matrix p?

= Doable by collecting enough information of expectation values. (but how many?)

(M) = Tr[pM]

For N spins (S = 1/2), dimension is d=2V. = pis 2V X 2NV Hermitian matrix with trace 1. = 4V-1 parameters!

+ QGM after global spin rotations

0.1

, 010

2 58 1. canted AF
pulse ol w %

0

(i)

0.1 ©

-0.2

A Brown et al., Science 357 (2017).
<5'sz . S7) 2Nvalues
2 options (included or not) M=YQRY® --QY

for each site 2N values x 2



Quantum state tomography (QST) of density matrix

8/19

How do you measure quantum state or density matrix p?

= Doable by collecting enough information of expectation values. (but how many?)

(M) = Tr[pM]

For N spins (S = 1/2), dimension is d=2V. = pis 2V X 2NV Hermitian matrix with trace 1. = 4V-1 parameters!

+ QGM after global spin rotations

0.1

0

= |-

2 58 1. canted AF
pulse ol w %

0 -
0.1 v

=0.2
Brown et al., Science 357 (2017).

M=XXQ - -X
M=YQRQY® QY

2N values x2

C(i,9)

a)

Sk> 2N values

o

2 options (included or not)
for each site

For full tomography of p,
only the global rotations are not enough.

~ N <
~ N <

All 4N combinations (3" setups) are needed!

Challenges:
O Exponential growth as system size N

O Individual single-site addressing




Spiral quantum state tomography
(spiral-QST)

Collaborators: Giacomo Marmorini (Nihon Univ., ExU postdoc),
Hideki Ozawa, Takeshi Fukuhara (RIKEN)



Spiral measurements (e.g. for 1D)

The measurement axis twisted in spiral with pitch angle g . ]
Spiral operators in 3 planes:

~

MXY (q) = 7MW@ 72 @ 78 & ... g 7N
MYZ(q) — Z(l)// R Z(2)// R Z(S)// Q- ® Z(N)H,
MZX(Q) — Z(l)/// R Z(z)/// ® Z(S)/// Q- ® Z(N)///

~

4 .
ZW" = cos(qi + 0)X + sin(qi + 0)Y,
ZWO" = cos(qi + 0)Y + sin(qi + 0) Z,
ZO" — cos(qi 4+ 0)Z + sin(qi + 0) X

- /

D

2N expectation values x 3 planes x 724

A

# of different pitch angles (~ N)

Experimental advantages:

V1 Preparable only with global manipulations
- Temporary magnetic field gradient
- Global it/2 pulses

V1 Different settings obtained only by changing the
application time of magnetic field gradient

* Still not enough for full tomography (4V-1)




Spiral guantum state tomography (spiral-QST)

Collecting expectation values
of different spiral operators

(MY (q)), (MY Z(q)), (M?*(q)) with different g

N

Reconstruct
density matrix 0O

¥

global /2 Rabi pulse Entanglement entropies
+ magnetic-field gradient

Taking many QGM shots

Tor ceh g Compressed sensing

for low-rank matrix
Gross et al., PRL 105 (2010)

Rotation into spiral-spin basis

S(pa) = —Tr [pa log pa] (von Neumann)

1
Sn(pA) = 1_ 1,

log Tr [pk]  (n-th Rényi)



Compressed sensing for a low-rank matrix

QST via compressed sensing
Gross et al., PRL 105 (2010)

Minimize rank(X) subject to Xij — M, [(z’,j) c Q] with m random Pauli measurements

from 4N-1 options:

l‘ Ll Ll LI LI L) 1 1 I 1 1 1 1 l

1 I | Ll
a—
- /T

0.9 -L o 2 10.9
08l Fidelity = Tr (\ / \/ﬁprec\/ﬁ) 108

Recover a low-rank matrix M by approximate X:

~ N
~ N
~ N

|

convex relaxation ’v sampled set

1
Minimize 7|X|« + §\|X\|% [ T: alarge value ]

subject to Pao(X) = Pa(M) [PQ(') - orthogonal projector] ., 107
> 0.6 - 106 é
5 05} 8-site rank-3 random states 1os &
= 04l 104 3

Singular value thresholding (SVT) algorithm:

0.3 ZL Jo3 F
02Ff : Jo2
. X Trace Distance = ||p — p™||1/2 |
Repeat {X’c =D, (YF 1), 0.1} Jou

. . U |||||||||||||||||| 0
YE =Y 1 4§, Po(M — XF*) until convergence 0.05 0.1 0.15 0.2

Sparsity: m/d>
parsity: m/ v

[DT(~) : singular value thresholding] in units of 4N

See Cai et al., arxiv:0810.3286 for technical details Does it work also for spiral measurements?



Numerical experiments |: Random states (rank=1)  12/19

Target p: Random pure states (N=8 sites)

Noise:

- depolarizing noise A = 0.05 for state preparation
p— (L=XNp+ 31
- Gaussian noise 0 = 0.1/2N for measurement
(M(q)) = N(p = (M(q)),0)

Spiral measurements:
Random m measurements | M*Y (¢)

from— MY Z(q)

Pitch angles: -
g = %l (l=-N+1,-N+2,...,N)

Phase shift: 6 = —q¢(L +1)/2




Numerical experiments I:

Target p: Random pure states (N=8 sites)

Noise:

- depolarizing noise A = 0.05 for state preparation
p— (L=XNp+ 31
- Gaussian noise 0 = 0.1/2N for measurement
(M(q)) = N(p = (M(q)),0)

Spiral measurements:
Random m measurements

from —

Pitch angles:

—N+1,-N+2,...,N)

7

Phase shift: 6 = —q¢(L +1)/2

Random states (rank=1)  12/19
1.0 \_Ir ucl -~ 0~0-0—@—0—O—O—CO—O0—0
o
0.8] ® N=8 random pure states 1=
()
L O
> 0.6 | &
© O B spiral measurements o
© ©
. 0.4} , | ©
il O Pauli measurements §
§ | ° =
0.2} I
O
B g s o
0.0 ° .8 g 5 " " p m.m w.m
0.00 0.05 0.10 0.15 0.20
mid?

M Accuracy of the matrix recovery by spiral QST is quite good

with only less than 10% of 4" expectation values!

(~ 26 experimental setups)



Realistic experimental source of noise

zero-point 20 o
fluctuations 0zp

Main source of measurement noise:
zero-point fluctuations of the magnetic field gradient

qi — q(t — dp)
[5zp — N(N =0, Uzp)J

*We will not consider any other sources hereafter.

Each QGM shot is affected.

frepetitions

N\

N
‘¢

outcome
for M“?(q)

outcome
for M°A(q)

outcome
for M*?(q)

outcome
for M*?(q)

Average
over reps.

(M*P(q))

each for m different
spiral operators

# of reps. must
be large enough.




Numerical experiments Il: Heisenberg ground state  14/19

Target p:
Ground state of the N=8 Heisenberg model

H=> S-Sy (AFM)

Noise: Magnetic field zero-point fluctuations

ozp = 0.01,0.05,0.1 in units of lattice spacing

Scheduled spiral measurements:

s
¢ =l (1=0,1,2,...) for 4 8¥7(q)

Phase shift: 6 = —¢(L +1)/2

# of reps. for expectation values:
100, 500, 1000




Numerical experiments Il: Heisenberg ground state  14/19

Target p: 1007
AN A
Ground state of the N=8 Heisenberg model 8 ., "
X o L 095 - T
— .. S AFM
H Z Si - Sir1 (AFM) %‘ reps=1000
1
i 0-90] - 03,=0.01 |
Noise: Magnetic field zero-point fluctuations " 0,,=0.05
0, = 0.01,0.05,0.1 in units of lattice spacing 0.85] Oz,=0.1 |
1.00— L - i '
Scheduled spiral measurements: £ 0, . ., . & v
MXY (q) 0.95! = ¢ & & 7 ; ¢
T R L
¢=xt =0.1,2,..) for 1 414 (q) ] % Pt ¢ %
5 T
MZX S 0.90 % :
- (9) b %) - reps=100
Phase shift: 6 = —q¢(L +1)/2 ;=01 = reps=500
0.85 _ :
# of reps. for expectation values: o reps=1000
000 002 004 006 008 0.10
100, 500, 1000 mld?




Numerical experiments Il: Heisenberg ground state

14/19

. . 1.00~
The dependence on o, is quite weak! "
N n
g,, = 0.01 < experimental accuracy of 10 pGauss _ & ¢ o o °
. [
L P = reps=1000
i [
i 0-90] - 03,=0.01 |
Noise: Magnetic field zero-point fluctuations " 0,,=0.05
0, = 0.01,0.05,0.1 in units of lattice spacing 0.85] Oz=0.1 |
1.00— ' '
Scheduled spiral measurements: ., 8 @
_ MXY (q) 095, _ % * B 8 : ; ¢
LL
0=l (1=0.1,2,...) for MYZ(@/‘/ % % % :
5 T
S 0.90 % |
L %) - reps=100
P # of repetitions = 500 is sufficient to ;=01 = reps=500
obtain accurate expectation values 0.85 reps=1000 |
for each spiral measurement. 000 002 004 006 008 010
IUU, ODUU, TUUU - - ' m/d2 - ' '



Numerical experiments Il: Heisenberg ground state  14/19

The dependence on o, is quite weak!
g,, = 0.01 < experimental accuracy of 10 pGauss ¢ o o °
T L, A R = reps=1000
1
The lowest m (= 3 X 2V) already © Op=0.01
Noise: Magnetic field ze . . . . = 0,,=0.05
& gives a quite good fidelity. Oz =03
Ozp = OO]., 005, 0.1 in Uzp=0-1 ]
*Only global measurements in 3 planes. | | |
Scheduled spiral measurements: & ® ¢
g & 8 ; 3]
s
qzﬁl (120,1,2,...) for % ¢
I |
» reps=100
P # of repetitions = 500 is sufficient to ;=01 = reps=500
obtain accurate expectation values 0.85' reps=1000 |
for each spiral measurement. 000 002 004 006 008 010

11UV, OUV, 1UUU




Numerical experiments Ill: Heisenberg + g.s. 15/19

Target p:
Ground state of the N=6 Heisenberg +DM

H=—> (8- Sit1+55, —5'S!)
' (FM) (Dzyaloshinskii-Moriya)

Noise: Magnetic field zero-point fluctuations

0,p = 0.1 in units of lattice spacing

Scheduled spiral measurements:

q = (l:O71727) fOl"‘MYZ(q)

m
Nl

Phase shift: 6 = —¢(L +1)/2

# of reps. for expectation values: 500




Target p:
Ground state of the N=6 Heisenberg +DM
H=— Z(Si - Sit1 + gfgégﬂ — 5 Azﬂl)

' (FM) (Dzyaloshinskii-Moriya)

Noise: Magnetic field zero-point fluctuations

0,p = 0.1 in units of lattice spacing

Scheduled spiral measurements:

q = (l:O71727) fOl"‘MYZ(q)

m
Nl

Phase shift: 6 = —¢(L +1)/2

# of reps. for expectation values: 500

0.2}

{0, n/6} {0, m/6, /3}

Trace distance T

Only / / O2p=0.1
_ reps=500
g=0 o -
m 0 =

B T SRR
0.00 0.05 0.10 0.15 0.20 0.25 0.30

m/d?

VM In general, only g=0 measurements are not enough.

V¥ Appropriate scheduling on the g’s sequence may

reduce the experimental cost for spiral-QST.



Numerical experiments IV: Reduced density matrix ~ 16/19

subsystem A

¢ ¢ 0 ¢ ¢ ¢ ¢ ¢

pa = Trz|p| (reduced density matrix)

V1 Entire density matrix p is NOt needed.

¥ Spiral-QST directly reconstruct the reduced matrix p,/

p: Ground state of the
N=14 Heisenberg model

=355
i (AFM)
Target p,:

pa(Na) for Ny = 2,3,4,5,6,7

*The other conditions are the same as before.



Numerical experiments IV: Reduced density matrix ~ 16/19

subsystem A U Entire density matrix p is not needed.

¢ ¢ 0 ¢ ¢ ¢ ¢ ¢

pa = Trz|p| (reduced density matrix)

¥ Spiral-QST directly reconstruct the reduced matrix p,/

1.00—
p: Ground state of the -
N=14 Heisenberg model 098 Na = 7
. A LL [ ®
H=> 8 Si >0096 @ ; @ o
i (AFM) D :
So94 oy ¢ & °
Target p,: LL . g=0
[ J,,=0.1 |
pa(Na) for Npo =2,3,4,5,6,7 0-92: re;:=500 |
090
*The other conditions are the same as before. 0.00 0.05 0.10 0.15 0.20

m/d?

¥ Reduced density matrix (mixed) can also be reconstructed with good accuracy.



Evaluation of entanglement entropy

S(pA) = —TIr [pA log pA] (von Neumann)

0.8 o o o
_ O O I:I:
0.6_— . .
S04|°
%)
0.2+
0@: E ;D. IIIIIIIIIIIII
"2 3 “~4-" 5 6 14
Ny @ exact
@ spiral-QST

4 For low-entangled cases, the accuracy seems bad.

¥ Compressed sensing tends to lose the information of
the smaller eigenvalues of the reduced density matrix.



Evaluation of entanglement entropy

S(pA) = —TIr [pA log pA] (von Neumann)

0.8

. o 8
_ O O I:I:
0.6} o
é_'f 04 @
& ,
0.2
O@ 0 i .“|:| ..............
o 3 st 5 6 4
Ny @ exact
@ spiral-QST

4 For low-entangled cases, the accuracy seems bad.

¥ Compressed sensing tends to lose the information of

the smaller eigenvalues of the reduced density matrix.

1
Sn(pa) = ] log Tr [pk] (n-th Rényi)
—n
08
| @ @ f
0.6;
< |
S04
» | o o,
0.27e XY
O@ﬁ = -|:| ,,,,,,,,,,,,,,
2 3 el o 6 I
N4 @ exact
@ spiral-QST

V1 For larger-order Rényi entropy, the difference
from the exact value gets smaller.



Case of frustrated N+ NNVN model g.s.

/H:JIZS?J'S?J—I—I‘I_JQZS?J'S?J+2 Jo = Jq
s © (NN AFM) ©  (NNN AFM)
7 N=14




Case of frustrated N+ NNVN model g.s.

ﬂzjlzéi'§@+1+efzzt§i'-§@+2 Jo = J

I T V- i (NN AFM) i (NNN AFM)
J5 N=14
1
S(pa) = —Tr [pa log pa] (von Neumann) Sn(pa) = T log Tr [p'x] (n-th Rényi)
1.4 | | | R 1.4 | |
1.2:8 o ° : 1.2 _
1.0 s " & ~10% °
g 0.8 : . : é 0.8 7 : 0 -
% 06 % 0.6 o
0.4 ] 0.4 0
0.2/ 0.2
0.0° ' ' ' 0.0 ' ' '
2 3 4 5 6 7 2 3 4 5 6 7
N, @ exact N, @ exact

@ spiral-QST @ spiral-QST



Summary

Sl ISR [ XD [SIEEl [ E1E8e - Cooling of system = DY, K. Morita, PRL 132, 213401 (2024).
: - Detection of entanglement

[T——
Spiral quantum state tomography!

“Just another platform for experiments”
= “Quantum information processor”

*But the application is not limited to cold atoms.

Future works

MXY (q)

[ Experimental realizations M No single-site addressing is required!

[1 Combine with other QST methods, V] Strategy in the sequence of g’s can reduce the costs.

like tensor network description of quantum state V1 Reasonable expectation of entanglement measurement

in upcoming experiments.
[1 Applications to “extreme universe” paper (coming soon)
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