
強相関物性の量子シミュレーションと
スパイラル基底量子トモグラフィ

(Simulating strongly correlated quantum systems 
via spiral-basis quantum tomography)

Daisuke Yamamoto

Tue 9/17/2024

CHS, Nihon Univ., Japan

2024 JPS meeting@Hokkaido University

“Dynamics in quantum many-body systems ~ ExU symposium”

「極限宇宙」
B02:人工量子物質による
量子ブラックホールの解明



Today’s talk

□ Recent trends in “quantum simulation” of many-body systems

□ Ultracold atom systems for strongly correlated electron physics

□ Basics of quantum state tomography (QST)
- Reconstruction of density matrix

□ Spiral quantum state tomography (spiral-QST)

- Efficient reconstruction of density matrix

- Demonstration: 
How to measure entanglement entropy via spiral-QST 



Quantum computer/quantum simulator
Nature isn't classical, dammit, and if you want to make a simulation 
of nature, you'd better make it quantum mechanical, and by golly 
it's a wonderful problem, because it doesn't look so easy. - Richard P. Feynman -
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Quantum computer/quantum simulator

Digital quantum computer Analog quantum simulator

Nature isn't classical, dammit, and if you want to make a simulation 
of nature, you'd better make it quantum mechanical, and by golly 
it's a wonderful problem, because it doesn't look so easy. - Richard P. Feynman -

Use quantum gates to perform general-purpose
quantum computations and require error correction.

Mimics the behavior of a specific quantum system 
by using another controllable quantum system.

XH

H

Superconducting qubits, trapped ions, photonic qubits, 
semiconductor quantum dots, neutral atom qubits, …

Cold atoms in optical lattices, trapped ions, Rydberg atom 
arrays, superconducting circuits, photonic simulators, …

？
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Quantum simulation on digital quantum computers
Quantum computer 

Challenges:
☐ Quantum Error Correction

☐ Quantum Decoherence and Noise
☐ Scalability
☐ High-Fidelity Gates and Operations

☐ Fault-Tolerance (耐障害性)

☐ Algorithm and Software etc.

NISQ era     --------------->    FTQC era
(Noisy Intermediate-Scale Quantum) (Fault-Tolerant Quantum Computing)

Mid-term targets for applications are highly desired! 
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Quantum computer 

Challenges:
☐ Quantum Error Correction

☐ Quantum Decoherence and Noise
☐ Scalability
☐ High-Fidelity Gates and Operations

☐ Fault-Tolerance (耐障害性)

☐ Algorithm and Software etc.

NISQ era     --------------->    FTQC era
(Noisy Intermediate-Scale Quantum) (Fault-Tolerant Quantum Computing)

Mid-term targets for applications are highly desired! 

10,45(2024)

5,106(2019)

Suzuki-Trotter
decomposition

Nat. Phys. 19, 1314 
(2023)

SC qubits（IBM）
SC qubits（IBM）

Sci. Adv. 8, 7652 (2022)

Nat. Commun. 14, 3263
(2023)

SC qubits



Quantum simulation on digital quantum computers

and many others...

3/19

Evidence for the utility of quantum 
computing before fault tolerance
Nature 618, 500 (2023)

Simulating large-size quantum spin 
chains on cloud-based 
superconducting quantum 
computers
Phys. Rev. Research 5, 013183 (2023)

Realizing the Nishimori transition 
across the error threshold for 
constant-depth quantum circuits
arXiv:2309.02863

Scalable Circuits for Preparing Ground 
States on Digital Quantum Computers: 
The Schwinger Model Vacuum on 100 
Qubits
PRX Quantum 5, 020315 (2024)

Quantum Simulations of Hadron Dynamics 
in the Schwinger Model using 112 Qubits
Phys. Rev. D 109, 114510 (2024)

Chemistry Beyond Exact Solutions on a 
Quantum-Centric Supercomputer
arXiv:2405.05068

mRNA secondary structure prediction using 
utility-scale quantum computers
arXiv:2405.20328



Why is “quantum simulation” important?

Physics across different length/time/energy scales 
can be interconnected through the language of “quantum information.”
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Physics across different length/time/energy scales 
can be interconnected through the language of “quantum information.”

e.g.) Ryu-Takayanagi Formula PRL 96,181602 (2006)

Entanglement entropy
in quantum materials

Gravitational theory 
for the universe 

(i) The limit of space
(ii) The limit of time
(iii) The limit of matter

quantum information



Cold-atom analog quantum 
simulator for SCES

*SCES ― Strongly Correlated Electron System



Cold-atom “Hubbard model” simulation 5/19

～ 102-103 nm

Laser beams 
(optical lattice)

Ideal Hubbard model system

mimicking the SCES physics!

Two different hyperfine 
states of Fermi atoms

LBCO

High-Tc superconductivity
Quantum magnetism
Spin liquid
Heavy fermion  etc.
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～ 102-103 nm

Laser beams 
(optical lattice)

Ideal Hubbard model system

mimicking the SCES physics!

Two different hyperfine 
states of Fermi atoms

LBCO

High-Tc superconductivity
Quantum magnetism
Spin liquid
Heavy fermion  etc.

Nature 545, 462 (2017)

6Li

Mott 
insulator

metal metal
high entropy

low entropy

high entropy

~ 12 nKSpin exchange:

Temperature: T ~ 10 nK (~ J /kB)

How to achieve lower temperatures?
⇒ DY, K. Morita, PRL 132, 213401 (2024).  



Quantum-gas microscope (QGM) imaging 6/19

A. Mazurenko et al., Nature 545 (2017).

Single-site resolved imaging
for particle occupancy

W. S. Bakr et al., 
Nature 462 (2009).

Harvard University website

Removing one spin component enables 
us to perform “all-Z measurement.” 



Quantum-gas microscope (QGM) imaging 6/19

A. Mazurenko et al., Nature 545 (2017).

Single-site resolved imaging
for particle occupancy

W. S. Bakr et al., 
Nature 462 (2009).

Harvard University website

Removing one spin component enables 
us to perform “all-Z measurement.” 

¥

n-point correlation functions can be calculated 
by averaging the QGM shots over many samples.

Correlation length ξ ~ 10 sites at the lowest T.

e.g.) two-point AF correlations



Entanglement entropy 7/19

In order to advance an artificial quantum system from being
“just another platform for cond-mat experiments” to a “quantum information processor,”    
it is essential to achieve the capability to measure entanglement.
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In order to advance an artificial quantum system from being
“just another platform for cond-mat experiments” to a “quantum information processor,”    
it is essential to achieve the capability to measure entanglement.

von Neumann “entanglement” entropy (EE)

Quantum states are described by density matrix ρ. 

pure state

mixed state

state vector

von Neumann entropy

mixing fraction

When the entire state is pure, 

trace out a part of the system 

(reduced density matrix)

subsystem A

If

If

(still pure)

(become mixed )

A and A are
unentangled

entangled
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How do you measure quantum state or density matrix ρ?
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QGM

2N values

2 options (included or not) 
for each site
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Quantum state tomography (QST) of density matrix 8/19

QGM QGM after global spin rotations

2N values

2 options (included or not) 
for each site

π/2 Rabi 
pulse

canted AF 

2N values ×2

Brown et al., Science 357 (2017).
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Quantum state tomography (QST) of density matrix 8/19

QGM QGM after global spin rotations

2N values

2 options (included or not) 
for each site

π/2 Rabi 
pulse

canted AF 

2N values ×2

For full tomography of ρ,
only the global rotations are not enough.

All 4N combinations (3N setups) are needed!

Challenges:

□ Exponential growth as system size N
□ Individual single-site addressing

Brown et al., Science 357 (2017).

How do you measure quantum state or density matrix ρ?

⇒ Doable by collecting enough information of expectation values. (but how many?) 

For N spins (S = 1/2), dimension is d=2N.  ⇒  ρ is 2N×2N Hermitian matrix with trace 1. ⇒ 4N-1 parameters!



Spiral quantum state tomography 
(spiral-QST)

Collaborators: Giacomo Marmorini (Nihon Univ., ExU postdoc),
Hideki Ozawa, Takeshi Fukuhara (RIKEN)



Spiral measurements (e.g. for 1D) 9/19

Spiral operators in 3 planes:
The measurement axis twisted in spiral with pitch angle q

Experimental advantages:

 Preparable only with global manipulations
- Temporary magnetic field gradient
- Global π/2 pulses 

 Different settings obtained only by changing the 
application time of magnetic field gradient 

# of different pitch angles (~ N) 

2N expectation values × 3 planes ×

* Still not enough for full tomography (4N-1)



Spiral quantum state tomography (spiral-QST) 10/19

Taking many QGM shots 
for each setting

Rotation into spiral-spin basis

Compressed sensing
for low-rank matrix

Collecting expectation values 
of different spiral operators

global π/2 Rabi pulse
+ magnetic-field gradient  

Gross et al., PRL 105 (2010)
Reconstruct 
density matrix

Entanglement entropies

(von Neumann)

(n-th Rényi)

with different q



Compressed sensing for a low-rank matrix

Singular value thresholding (SVT) algorithm:

Recover a low-rank matrix M by approximate X:

Minimize                      subject to

sampled set

Minimize                      

convex relaxation

subject to                                              : orthogonal projector

τ : a large value

Repeat 
until convergence 

: singular value thresholding

See Cai et al., arxiv:0810.3286 for technical details

11/19

QST via compressed sensing

with m random Pauli measurements 
from 4N-1 options:

Gross et al., PRL 105 (2010)

in units of 4N

8-site rank-3 random states

Does it work also for spiral measurements?



Numerical experiments I: Random states (rank=1) 12/19

Target ρ: Random pure states (N=8 sites)

Noise:

- depolarizing noise λ = 0.05 for state preparation

- Gaussian noise σ = 0.1/2N for measurement 

Pitch angles:

Phase shift: 

Spiral measurements: 
Random m measurements

from
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Target ρ: Random pure states (N=8 sites)

Noise:

- depolarizing noise λ = 0.05 for state preparation

- Gaussian noise σ = 0.1/2N for measurement 

Pitch angles:

Phase shift: 

Spiral measurements: 
Random m measurements

from

N=8 random pure states 

Spiral measurements

Pauli measurements

 Accuracy of the matrix recovery by spiral QST is quite good
with only less than 10％ of 4N expectation values!

(～ 26 experimental setups)



Realistic experimental source of noise 13/19

Main source of measurement noise: 
zero-point fluctuations of the magnetic field gradient

Each QGM shot is affected.

# of reps. must 
be large enough. 

*We will not consider any other sources hereafter.



Numerical experiments II: Heisenberg ground state 14/19

Target ρ: 
Ground state of the N=8 Heisenberg model

Noise: Magnetic field zero-point fluctuations

Phase shift: 

Scheduled spiral measurements: 

# of reps. for expectation values: 

in units of lattice spacing

for

100, 500, 1000

(AFM)
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(AFM)

Target ρ: 
Ground state of the N=8 Heisenberg model

Numerical experiments II: Heisenberg ground state 14/19

Noise: Magnetic field zero-point fluctuations

Phase shift: 

Scheduled spiral measurements: 

# of reps. for expectation values: 

in units of lattice spacing

for

100, 500, 1000

# of repetitions ≃ 500 is sufficient to 
obtain accurate expectation values 
for each spiral measurement. 

The dependence on σzp is quite weak!
σzp = 0.01 ⇔ experimental accuracy of 10 μGauss



Numerical experiments II: Heisenberg ground state 14/19

Target ρ: 
Ground state of the N=8 Heisenberg model

Noise: Magnetic field zero-point fluctuations

Phase shift: 

Scheduled spiral measurements: 

# of reps. for expectation values: 

in units of lattice spacing

for

100, 500, 1000

(AFM)

The dependence on σzp is quite weak!
σzp = 0.01 ⇔ experimental accuracy of 10 μGauss

The lowest m (= 3×2N) already 
gives a quite good fidelity.

*Only global measurements in 3 planes.

Only q=0
q=0 and π/8

# of repetitions ≃ 500 is sufficient to 
obtain accurate expectation values 
for each spiral measurement. 



Numerical experiments III: Heisenberg + DM g.s. 15/19

Target ρ: 
Ground state of the N=6 Heisenberg +DM

Noise: Magnetic field zero-point fluctuations

Phase shift: 

Scheduled spiral measurements: 

# of reps. for expectation values: 

in units of lattice spacing

500

(FM) (Dzyaloshinskii-Moriya)

for



Numerical experiments III: Heisenberg + DM g.s. 15/19

Target ρ: 
Ground state of the N=6 Heisenberg +DM

Noise: Magnetic field zero-point fluctuations

Phase shift: 

Scheduled spiral measurements: 

# of reps. for expectation values: 

in units of lattice spacing

500

(FM) (Dzyaloshinskii-Moriya)

Only 
q=0

{0, π/6} {0, π/6, π/3}

 In general, only q=0 measurements are not enough. 

 Appropriate scheduling on the q’s sequence may 
reduce the experimental cost for spiral-QST.  

for



Numerical experiments IV: Reduced density matrix 16/19

(reduced density matrix)

subsystem A  Entire density matrix ρ is not needed. 

 Spiral-QST directly reconstruct the reduced matrix ρA!

Target ρA: 

(AFM)

*The other conditions are the same as before.

for

Ground state of the 
N=14 Heisenberg model

ρ: 



Numerical experiments IV: Reduced density matrix 16/19

(reduced density matrix)

subsystem A  Entire density matrix ρ is not needed. 

 Spiral-QST directly reconstruct the reduced matrix ρA!

Target ρA: 

(AFM)

*The other conditions are the same as before.

for

Ground state of the 
N=14 Heisenberg model

ρ: 

Only 
q=0

 Reduced density matrix (mixed) can also be reconstructed with good accuracy. 



Evaluation of entanglement entropy 17/19

(von Neumann)

 For low-entangled cases, the accuracy seems bad.
Compressed sensing tends to lose the information of 
the smaller eigenvalues of the reduced density matrix. 

exact
spiral-QST



Evaluation of entanglement entropy 17/19

(von Neumann) (n-th Rényi)

 For low-entangled cases, the accuracy seems bad.
Compressed sensing tends to lose the information of 
the smaller eigenvalues of the reduced density matrix. 

 For larger-order Rényi entropy, the difference  
from the exact value gets smaller. 

exact
spiral-QST

exact
spiral-QST



Case of frustrated NN+NNN model g.s. 18/19

N=14 
(NN AFM) (NNN AFM)



Case of frustrated NN+NNN model g.s. 18/19

(von Neumann) (n-th Rényi)

N=14 
(NN AFM) (NNN AFM)

exact
spiral-QST

exact
spiral-QST



Summary 19/19

- Cooling of system
-̂

- Detection of entanglement

⇒ DY, K. Morita, PRL 132, 213401 (2024).  

“Just another platform for experiments” 
⇒ “Quantum information processor”

Cold atoms in an optical lattice

 No single-site addressing is required!
 Strategy in the sequence of q’s can reduce the costs.
 Reasonable expectation of entanglement measurement 
in upcoming experiments.

Spiral quantum state tomography!

paper (coming soon)

Future works
□ Experimental realizations 

□ Applications to “extreme universe”

□ Combine with other QST methods, 
like tensor network description of quantum state

*But the application is not limited to cold atoms.
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