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was for black holes and singularities



Michell (1784) pointed out that since the 
gravitational escape velocity is obtained from

setting v = c yields

A mass M compressed to this radius would 
appear black.

Exactly this same expression holds in GR!

Title

Gabriel Trevino Verastegui

Department of Physics, University of California

Santa Barbara, CA 93106, USA

Abstract

Abstract goes here

1 Introduction

A new approach for reconstructing the bulk geometry was recently intro-

duced. It was shown in [?]...

1

2
mv2 =

GMm

r

r =
2GM

c2

2 New section

Acknowlegements

This work was supported in part by NSF Grant PHY-1504541.

gary@physics.ucsb.edu, gabriel@physics.ucsb.edu

1

Title

Gabriel Trevino Verastegui

Department of Physics, University of California

Santa Barbara, CA 93106, USA

Abstract

Abstract goes here

1 Introduction

A new approach for reconstructing the bulk geometry was recently intro-

duced. It was shown in [?]...

1

2
mv2 =

GMm

r

r =
2GM

c2

2 New section

Acknowlegements

This work was supported in part by NSF Grant PHY-1504541.

gary@physics.ucsb.edu, gabriel@physics.ucsb.edu

1



Surface of the black hole is the event horizon. 
The solution in general relativity describing a 
nonrotating black hole was found by 
Schwarzschild in 1916. 

r0=2GM/c2 is called the Schwarzschild radius.

Nothing happens when you cross the event 
horizon.



Hawking (1974) showed that when quantum 
effects are included, black holes radiate an 
essentially thermal spectrum, so they have a 
temperature T (and entropy) and follow the laws 
of ordinary thermodynamics.

If nothing falls in, black 
holes will evaporate.



Outline

I.  Singularities inside black holes
     
II. Singularities on black holes

III. Singularities outside black holes
     



Singularities inside
 black holes



Spacetime singularity: a region of spacetime 
where general relativity breaks down due to 
infinite curvature i.e. infinite gravitational fields.

Penrose showed that generic gravitational 
collapse produces a spacetime singularity (1965).

This usually happens deep inside the black hole.



For a Schwarzschild black hole (J = 0, 
Q = 0) the singularity is not at the 
center. It is in your future.

t

singularity

It is like an 
anisotropic big crunch 
in cosmology.



But real black holes rotate, and the story inside 
is now different. The stationary solution was 
found by Kerr (1963) and looks like this deep 
inside, so you can travel through.

t
You can also travel 
into your past near 
the singularity!



So there was some truth in the  
movie Interstellar



Unfortunately, this region of the rotating 
black hole interior is unstable. 
      (Simpson and Penrose 1973,…, Dafermos 2005)

Small perturbations will form a singularity 
that blocks off this entire region. 

However there appears to be an exception.



Charged black holes have a similar singularity 
inside (but no time travel).

The universe is accelerating and the simplest 
explanation is to add a cosmological constant  
L > 0.

It was shown in 2017 that when L > 0, the 
interior of a black hole with large charge would 
be stable.
                    (Hintz and Vasy, Cardoso et al)



However, quantum effects appear to 
restore the instability. The quantum stress 
energy tensor <Tab> diverges on a 
surface inside the black hole preventing 
any travel through.
        (Hollands, Wald, and Zahn 2020)



Singularities on
 black holes



There is a maximal Q or J that a black hole of 
given M can carry. 

Black holes that saturate this bound are 
called extremal.

Extremal black holes have T = 0.

No force between extremal BHs with J = 0 and 
same sign of Q.



Some black hole solutions

D = 4 Einstein-Maxwell theory:
   Q	≠ 0: Reissner (1916) Nordstrom (1918)
   J ≠	0: Kerr (1963)
   Q	≠ 0 and J ≠	0: Newman et. al. (1965)

D > 4 Einstein-Maxwell theory:
   Q	≠ 0: Tangherlini (1963)
   Ji ≠	0: Myers & Perry (1986)

These all 
have smooth 
extremal 
limits.



Strongly suggests that all extremal 
black holes have smooth horizons.

This is completely wrong! 
Generic extremal black holes have 

singular horizons.

Near extremal black holes generically 
have anomalously large (but finite) 

curvature. 



Anti-de Sitter space

It is hard to confine gravity inside a box.

The best "box” is anti-de Sitter space 
(AdS). Add cosmological constant L < 0.

t
Boundary at infinity.
Light can reach it in finite time.
Need to impose boundary 
conditions.



Suppose you put a black hole inside a steel 
cage, or inside AdS with inhomogeneous 
boundary conditions at infinity. What happens to 
the horizon?

For nonextremal black holes, the horizon 
becomes distorted but remains smooth.

At not constant 
or S2 not round 
on boundary



Suppose you put an extremal black hole inside a 
steel cage, or inside AdS with inhomogeneous 
boundary conditions at infinity. The horizon is 
now infinitely far away.

GR with L = 0: GR with L < 0: 
Horizon is unaffected Horizon becomes  
                                          singular 

At not constant 
or S2 not round 
on boundary



Generic, nonspherical extremal black 
holes in AdS are singular.

(Kolanowski, Santos, and GH, 2022)

They have a metric that is continuous but 
not differentiable at the horizon. The 
horizon is singular, and tidal forces diverge 
for ingoing observers.



Quantum and stringy effects produce 
higher derivative corrections to general 

relativity.

They are usually negligible when 
describing large macroscopic objects.

So we often treat general relativity as the 
leading term in a low energy effective 

action and expect it to give a good 
description of large objects.



This is not true for extremal
black holes!

(Kolanowski, Remmen, Santos, and GH, 
2023 and 2024)

Extreme rotating and charged black holes are 
very sensitive to higher derivative corrections 
to GR. Even small higher derivative terms 
cause large extremal black holes to have 
singular horizons.

Effective field theory breaks down.



In 5 spacetime dimensions, black holes can 
have two angular momenta Ji.

The general solution for rotating, charged 
black holes in 5D Einstein-Maxwell theory 
has never been found.

Why?

Perhaps because: It has a singular extremal 
limit. Only smooth for Q = 0 and both Ji ≠ 0, 
or both Ji = 0.     (Santos and GH, 2024)



Basic reason for this

Spatial geometry of a 
extremal black hole:

horizon

There is a limiting 
geometry near the 
horizon with enhanced 
symmetry.

infinite 
throat



An extremal black hole can be reached in 
finite proper time for infalling observers. 

Ingoing light rays have a natural (affine)  
parameter which remains finite at the 
surface of an extremal black hole.

Extremal black holes are not “at infinity”.



Near the horizon of an extremal black 
hole, the metric takes the form

In the known exact solutions, g = 1 and the 
horizon is smooth.

Generically, g is not an integer, and the 
horizon becomes singular.

Smooth near 
horizon geometry

Affine distance to 
horizon

smooth

1 Introduction

General relativity often arises as the leading term in a low-energy e↵ective field theory

(EFT), in which the Einstein-Hilbert term receives higher-derivative corrections associated

with new physics. These higher-derivative terms are suppressed by powers of a mass scale

associated with degrees of freedom that have been integrated out, which sets the limit

of validity of the EFT. As a result, such terms usually produce only small corrections to

the low-energy physics. It was recently shown that maximally rotating black holes are

an exception: small higher-derivative corrections to Einstein’s equation can result in tidal

force singularities on the horizon of large extremal Kerr black holes [1]. These singularities

are unusual in that all scalar curvature invariants remain finite. Nonextremal black holes

remain smooth, but the tidal forces blow up like a power of 1/T , where T is the black hole

temperature. This power is very small, so T must be exponentially small before large tidal

forces appear.

We show that the inclusion of a nonzero black hole charge Q results in a much stronger

singularity at the horizon. In particular, the divergence of tidal forces as T ! 0 is much

more rapid. Moreover, this result does not depend too much on the matter content of

the ultraviolet theory, as long as it generates higher-derivative terms containing the U(1)

gauge field, resulting in an Einstein-Maxwell EFT. For example, these terms—the so-called

Euler-Heisenberg Lagrangian—are generated if the ultraviolet contains charged particles

(in the case of our universe, the leading contribution to the Einstein-Maxwell EFT comes

from the electron loops), though a massive dilaton coupled to the Maxwell kinetic term

can also generate the e↵ects of interest at tree level.

As we review in Secs. 2 and 5, the leading EFT corrections to Einstein-Maxwell theory

in four spacetime dimensions can be reduced to three four-derivative terms [2, 3],

Z

M

d4x
p
�g

 
c6R

abcd
Fab Fcd + c7 Fab F

ab
Fcd F

cd + c8 Fab F
bc
Fcd F

da

!
. (1.1) {eq:xhd}{eq:xhd}

These terms produce singularities on the horizon for the following reason. Near an extremal

horizon the metric may be approximated as

g ⇡ gNH + ⇢
�
h, (1.2)

where gNH is the near-horizon metric, ⇢ is an a�ne distance from the horizon, h is a

smooth tensor, and the scaling dimension � is determined from the equations of motion.

For Einstein-Maxwell solutions, the horizons are smooth and the leading corrections have

integer �, starting with � = 1. The EFT corrections to the action perturb this solution.

While gNH is smooth, � can be shifted away from its integer value. For Kerr, the � = 1

mode is not shifted, but � � 2 is. We will show that for Kerr-Newman, � = 1 is shifted by

EFT corrections, and this makes a significant di↵erence in the strength of the singularity.

In ingoing null coordinates where ` = @/@⇢ is tangent to a�nely parameterized null

geodesics, and setting m = @/@� for � the coordinate of axisymmetry, the Weyl tensor

near the extremal horizon is

Cabcd`
a
m

b
`
c
m

d ⇠ �(� � 1)⇢��2
. (1.3)
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Figure 6. Left panel: The change in the tidal force, � eC(K) defined in Eq. (7.18), as a function
of the radial coordinate Y . The linear behavior in this log-log plot shows that it diverges at the
extremal horizon Y = 0. Right panel: The quantity Y

2
� eC(K) as a function of Y . The fact that

it approaches a constant confirms the near-horizon result (5.27). Both panels were generated with
q = 0.2. {fig:tidalextremal}

Though the tidal forces diverge, we expect all curvature scalar invariants to remain

small at the extremal horizon. This is essentially a consequence of the O(2, 1) symmetry

of the near-horizon geometry and the fact that the equations of motion are given in terms

of a second-rank tensor [49]. This expectation is validated by our numerical data. To see

this, we define the following auxiliary quantity

�R(K) ⌘ 
2
J

8⇡dK

RX=0 � R̄X=0

R̄X=0
with R = RabcdR

abcd and R̄ = R̄abcdR̄
abcd

, (7.19) {eq:deltaRK}{eq:deltaRK}

where R̄abcd is computed as before for a standard Kerr-Newman black hole with the same

(zero) temperature, electric charge, and angular momentum as the black hole with EFT

corrections. In Fig. 7, we plot �R(K) for K = 6, 7, 8 as a function of the radial coordinate

Y and find that it remains finite at the extremal horizon, as expected. This figure was

generated for q = 0.2, but we have checked that similar behavior occurs for other values of

q.

8 Numerical estimates for astrophysical black holes
{sec:numerics}

[Added this section. If someone can double-check the various estimates, that

would be great. - GR]With the numerical solutions from Sec. 6 in hand for nonextremal

black holes, we can ask whether there is an astrophysical scenario where these quantum

corrections—that is, higher-derivative terms in the Einstein-Maxwell action—become im-

portant for realistic black holes. The rough estimates in Sec. 1.1 indicate that such a

scenario may be rare in nature. While numerical analysis bears this conclusion out, we

will find hints that, under optimistic assumptions, detection of the enhanced near-horizon

e↵ects near extremality may be conceivable.
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Log-log plot of 
difference between 
EFT corrected 
curvature and 
extremal Kerr-
Newman black hole 
with same Q, J.

Y = 0 is horizon 
Y = 1 is infinity

Q/M = .2

Example of effect of higher derivative 
corrections on extreme black hole



Approaching the extremal limit
(with Q = J/M)

scaling with ⇢ in the extremal solution to scaling with T in the near-extremal solution [26]. We

can also confirm the prediction made in Eq. (5.26) directly, by constructing the EFT-corrected

black hole at extremality. We discuss this calculation in the next section.
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Figure 4. The (rescaled) change in the tidal force �C
(K) defined in Eq. (6.41), as a function of TQ

and plotted for the parameter choice |a| = |q|. For a given value of TQ, there are two Kerr-Newman
black holes, and we only show the family for which TQ ! 0 because T ! 0 (not Q ! 0). Other ways
to approach extremality exhibit qualitatively similar behavior. Our numerical results are given by the
filled points, with the thin curves present to guide the eye. The right-hand panel shows TQ �C

(K),
which approaches a constant as T ! 0, confirming the predicted 1/T scaling.

7 Extremal solutions

Much of the numerical construction of Sec. 6 goes through to the extremal case, but there

are a few important di↵erences that we now outline.

We generalize our metric ansatz to

ds2K =� �(r)

⌃(r,X)
F1(r,X)

⇥
dt� (1�X

2)F4(r,X)d�
⇤2

+
1�X

2

⌃(r,X)
F3(r,X)⌅(r)

⇥
F4(r,X) dt� (r2 + ā

2)d�
⇤2

+ ⌃(r,X)F2(r,X)


dr2

�(r)
+ ⌅(r)

dX2

1�X2

�
,

(7.1)

with ā =
p

M̄2 � Q̄2. Note that we have added a function ⌅(r) with respect to Eq. (6.6).

We choose

⌅(r) = 1 +
8X

K=6

r
4
+

r4

dK

M2
a
(K)

, (7.2)
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Singularities outside
 black holes



Cosmic Censorship 
Conjecture

Penrose (1969): Smooth initial data in 
general relativity cannot evolve to form 
singularities visible from infinity, i.e., 
naked singularities.

50 years later, this conjecture is still open.



Approaches to Cosmic 
Censorship

• Prove mathematical theorems

• Evolve initial data numerically

• Look for counterexamples



Naked singularities can form!
                        (Christodoulou, Choptuik, 1990’s)

Start with a spherical wave with a profile:  A p(r).
Evolve in general relativity with various A.

A black hole

t

outgoing 
waves



Naked singularities can form!
                        (Christodoulou, Choptuik, 1990’s)

Start with a spherical wave with a profile:  A p(r).
Evolve in general relativity with various A.

A

A0

black holes

t

waves 
propagate out

naked 
singularity



Cosmic Censorship 
Conjecture (revised)

Generic smooth initial data in general 
relativity cannot evolve to form naked 
singularities.

Many of us hope this is false, so we might 
directly observe effects of quantum 
gravity (expected at 10-33cm, or 1019GeV).



Generalizing Cosmic Censorship

Since this problem is so hard, people 
have studied a similar question in different 
settings:

1) What if space has more than three 
dimensions?

2) What if we add a cosmological 
constant L?



Black holes are less constrained 
in higher dimensions

• They are no longer characterized by 
just M, Q, J

• They can have nonspherical topology

• They can be unstable



CC fails in higher dimensions

Small perturbations of an unstable black 
hole cause the horizon to pinch off. 
When it does, you generically form a 
naked singularity.

Example: In one extra dimension, there 
are “black strings” with horizon S2 x R 
that are unstable (Gregory and Laflamme, 1993).



Evolution of perturbed black string
(Lehner and Pretorius, 2010)

The black string wants to 
break up into spherical 
(higher dimensional) 
black holes. 



Add a cosmological constant 

If L < 0, evolution requires boundary 
conditions at infinity. 

For reasonable boundary conditions, 
one can violate (the spirit of) cosmic 
censorship generically (in just three 
space dimensions).



A counterexample

Consider gravity coupled to a Maxwell field with 
Λ < 0. Fix the metric and vector potential on the 
AdS boundary to be

where μ(r) = a f(r) and f      0 as r     ∞.
Solutions describe static, self-gravitating 
electric fields. 
Smooth solutions exist only for a < amax.

ds2 = −dt2 + dr2 + r2dφ2, A = µ(r)dt

(Santos, Way, GH, 2016)



-  -  -  -  -  +  +  +  +  +  +  +  +  -  -  -  -  -

AdS

𝜇(𝑟)

electric 
field lines

Boundary
at	 ∞

Induced 
charge 
density



Now make the amplitude time dependent: 
a = a(t). Start with a = 0 and slowly increase 
to a(∞) > amax. 

Bulk can’t settle down to a smooth solution. 
Expect the curvature to grow without bound 
violating cosmic censorship. 
                                  
This has been confirmed by a full time 
dependent numerical relativity calculation.
                                  (Crisford and Santos, 2017)



Comments

1. The blow-up is not just on the axis, but 
over a large region.

2. The singularity does not form in finite 
time, but this clearly violates the spirit 
of cosmic censorship.

3. This violation is stronger than seen in 
higher dimensions.



Summary 

• In principle one can travel through black 
holes to other regions of the universe, 
but in practice this is probably forbidden.

• Generic extremal black holes have 
singular event horizons.

• Naked singularities are common in D > 4 
or Λ < 0, and might even occur in D = 4 
with Λ = 0.


