Entanglement, von Neumann algebras, the emergence of spacetime

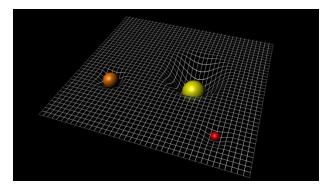
Hong Liu

Public ExU Online Colloquium Oct. 25th, 2025

Spacetime

Special relativity: spacetime

Spacetime is dynamical object, can evolve on its own, but is also curved by matter in it.



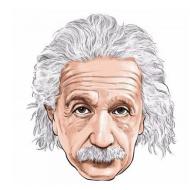
Dynamical variables: $g_{\mu\nu}(x^{\lambda})$ (metric)

describe distances, time flow, curvature,

$$G_{\mu\nu} = 8\pi G_N T_{\mu\nu}$$

G_N: Newton's constant

characterize matter's ability in curving spacetime



Quantum mechanics and gravity

The other pillar of 20th century physics is quantum mechanics.

It is widely believed that spacetime/gravity must also be quantum even though there has not been any direct evidence.

In Nature gravity is very weak

detection of quantum gravitational effects is extremely extremely difficult.

Planck length :
$$\ell_p = \sqrt{\frac{\hbar G_N}{c^3}} = 1.6 \times 10^{-35} \,\text{meter}$$

We now believe that smallness of G_N is needed to have a large universe

Nature is very good at hiding her secret

Quantum spacetime?

A natural idea:

General relativity is a classical field theory (metric field)

quantize this classical field theory, just as in the case of electromagnetism

many many difficulties

Maybe this is a wrong idea

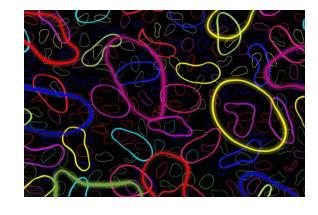
Maybe spacetime is not fundamental, but emergent in the limit

An analogue: fluid

 $G_N \to 0$

Is spacetime emergent?

A strong hint that spacetime/gravity is emergent comes from string theory.



 ℓ_s : string length

$$L \gg \ell_s$$

$$L \sim \ell_s$$

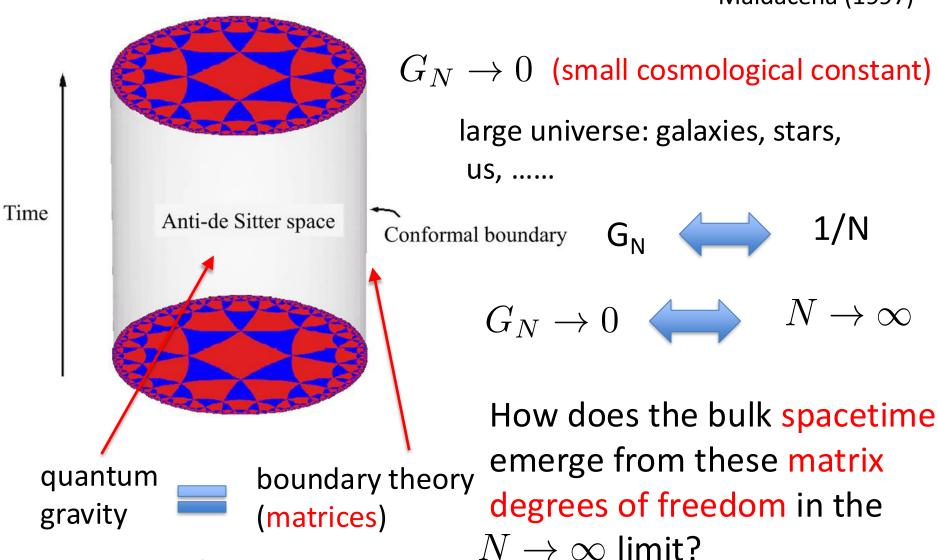
Spacetime is not fundamental, but rather an emergent concept at large-distances.

$$\ell_p \ll \ell_s$$

There are indications that stringy description may not be fundamental.

Holography: spacetime from matrices

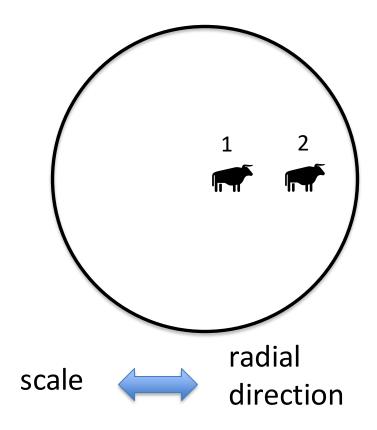
Maldacena (1997)



N: rank of matrices

Hints

Where does the extra dimension come from:



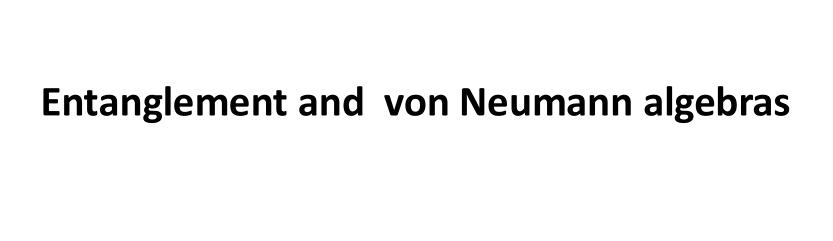
Ryu, Takayanagi (2006) ???? Spacetime **Entanglement** geometry

how spacetime emerges from entanglement?

In this talk:

1. Von Neumann (vN) algebras provide a universal language in characterizing the entanglement structure of a quantum system.

 Von Neumann algebra could provide a powerful language for understanding the emergence of spacetime and associated geometric notions.



Entanglement

Einstein, Podolsky and Rosen (1935): Alice ✓

Alice Bob

correlated electrons

"spooky action at a distance"

Schrodinger (1935): "entanglement"

Bell (1964): test quantum mechanics

1990's: resources for quantum computation, teleportation, communications

21st century: quantum many-body systems, quantum field theory, quantum gravity

Entanglement and subsystems

Heuristically, entanglement characterizes (quantum) correlations among different <u>subsets of degrees of freedom</u>.

(subsystem)

$$\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_1\otimes|\downarrow\rangle_2-|\downarrow\rangle_1\otimes|\uparrow\rangle_2\right)$$

1

2

Typical entangled states

$$\sum_{ij} a_{ij} |\psi_i\rangle_1 \otimes |\chi_j\rangle_2$$

Writing entangled states requires factorization of Hilbert space:

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$$

While the concept of a subsystem is physically very intuitive in textbook, defining it mathematically is highly unintuitive

It requires factorization of Hilbert space:

$$\mathcal{H}=\mathcal{H}_1\otimes\mathcal{H}_2$$

In fact, there are many physically interesting situations where such a definition breaks down.

This happens when there is an infinite amount of entanglement.

Infinite entanglement

an infinite number degrees of freedom

an infinite amount of entanglement

breakdown of factorization of Hilbert space

Consider two infinite chains of spins which are pairwise entangled

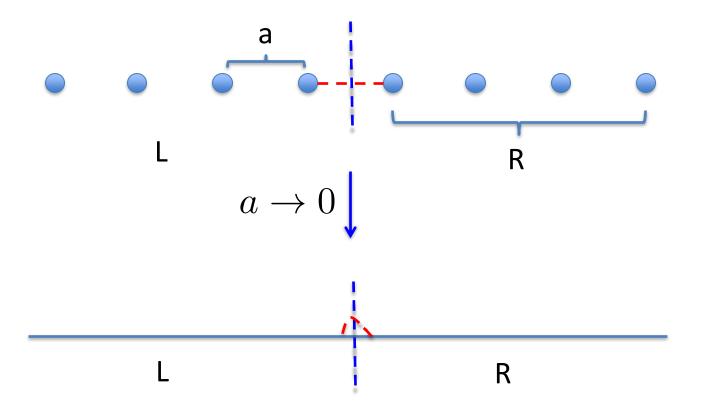


Physical Hilbert space: finite energy excitations on such a configuration

can only flip finite number of spins

$$\mathcal{H}
eq \mathcal{H}_R \otimes \mathcal{H}_L$$

Consider a 1+1-dimensional QFT on a lattice



Physical Hilbert space: finite energy excitations in the continuum limit

$$\mathcal{H}
eq \mathcal{H}_R \otimes \mathcal{H}_L$$

Factorization of Hilbert space does not exist $~\mathcal{H}
eq \mathcal{H}_R \otimes \mathcal{H}_L$

$$\sum_{ij} a_{ij} |\psi_i\rangle_1 \otimes |\chi_j\rangle_2$$

How do we describe entanglement??

von Neumann algebras

von Neumann (1927-1929): mathematical foundation of quantum mechanics.

von Neumann algebras (1929): subalgebras of observables in a quantum system

Murray and von Neumann (1936-1940's): basic theory and classifications of von Neumann algebras

Type I, II, III

Since 1970's has become a vast mathematical subject

1960's: algebraic quantum field theory (Haag, Kastler, Araki,)

Only during the last few years, did people recognize the connection to entanglement

Infinite entanglement: von Neumann algebras to the rescue

A von Neumann algebra \mathcal{A} in a quantum system is defined as:

a vector space of operators, closed under

Hermitian conjugation

operator products

limits in matrix elements

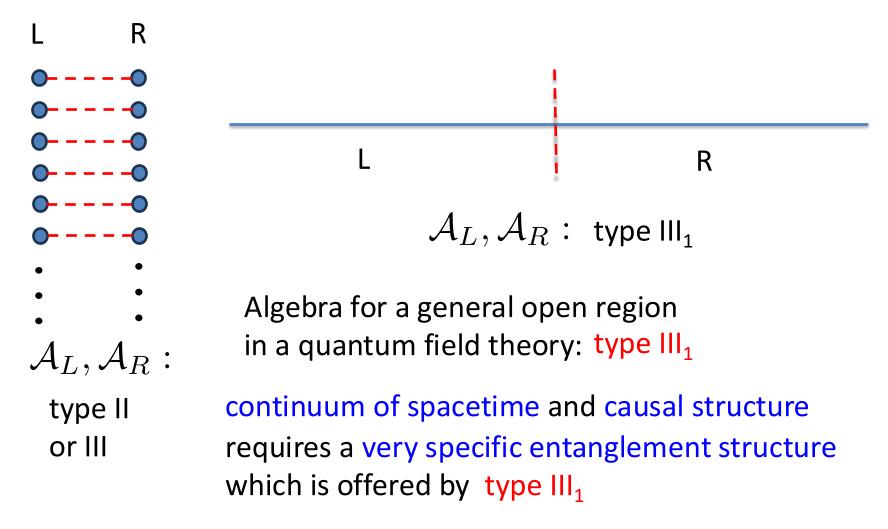
We can simply define a subsystem as a von Neumann algebra

 ${\mathcal A}$ -type I von Neumann algebra: ${\mathcal H}={\mathcal H}_1\otimes{\mathcal H}_2$ - ${\mathcal A}={\mathcal B}({\mathcal H}_1)$

This recovers the standard textbook definition of subsystem

Type II and III: Situations where factorization of Hilbert does not exist

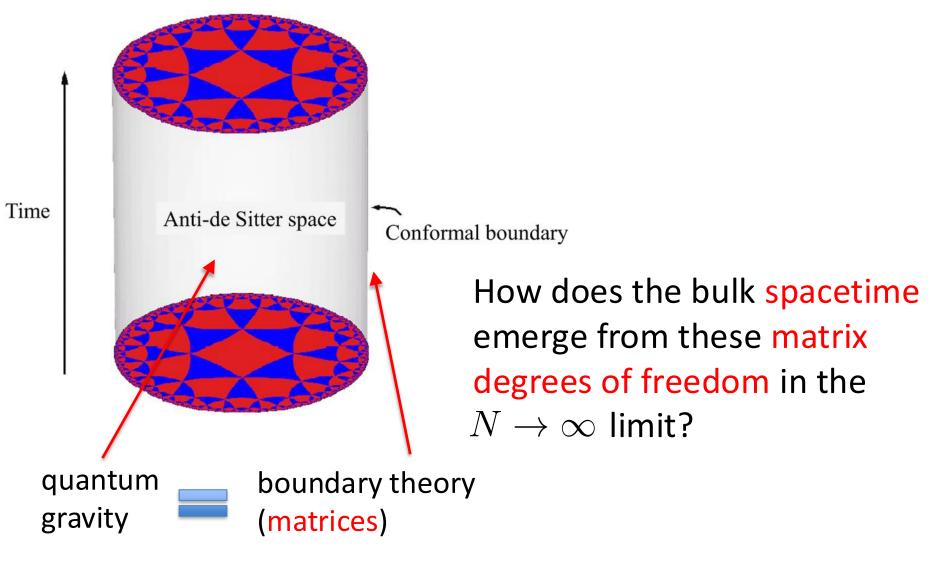
Examples



Classification of von Neumann algebras provides a classification of entanglement patterns of quantum systems!!

von Neumann algebras and emergence of spacetime

Holography: spacetime from matrices



N: rank of matrices

Emergence of spacetime:

not only the spacetime itself (including all the geometric concepts such as causal structure), but also all the physics on that spacetime (QFT in curved spacetime).

Conventional thinking:

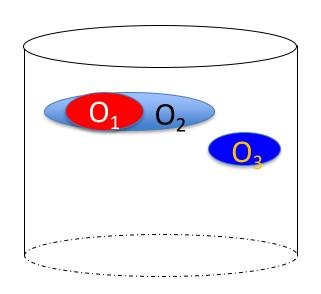
metric + Lagrangian of quantum matter on the spacetime

However, in this approach, local physics, causal structure, entanglement structure not manifest

These concepts have to do with subsystems

An alternative description

Metric + QFT in curved spacetime



Collection of physical operations in all open regions and their relations (algebraic QFT)

$$O_1 \subset O_2$$

O₁ and O₃ are spacelike separated: physical operations in them commute (causal structure)

Emergence of spacetime

emergence of physical operations in all open regions and their relations

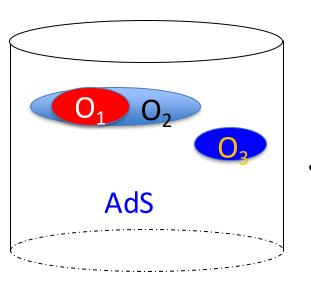
Subregion-Subalgebra duality

In the $N \to \infty$ limit

Leutheusser, HL (2022)

bulk subregion

Emergent type III₁
von Neumann subalgebra
on the boundary



 O_1

 \mathcal{A}_1

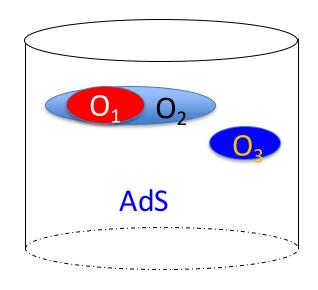
 \mathcal{A}_1 : captures all bulk physical operations in O_1 \mathcal{A}_1 emergent:

it arises in the $N \to \infty$ limit

due to an infinite amount of entanglement in the limit

type III₁: needed to capture bulk local physics and causal structure

Subregion-Subalgebra duality



$$\mathcal{A}_1 \subset \mathcal{A}_2$$

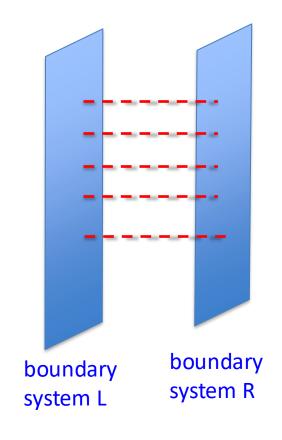
O₁ and O₃ are spacelike separated (causal structure)

$$[\mathcal{A}_1, \mathcal{A}_3] = 0$$

bulk entanglement of O₁

type ${\sf III}_1$ structure of ${\cal A}_1$

Thermofield double (TFD) state



$$\mathcal{H} = \mathcal{H}_L \otimes \mathcal{H}_R$$

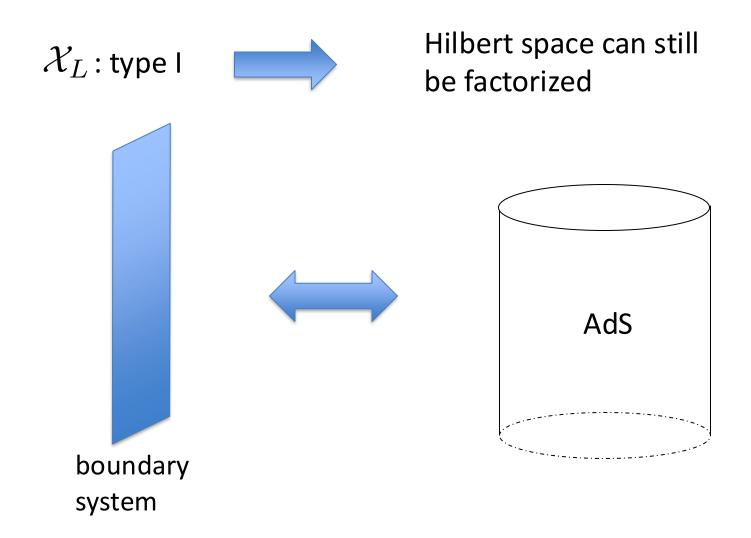
In the TFD state, L and R systems are entangled in such a way that each subsystem appears thermal.

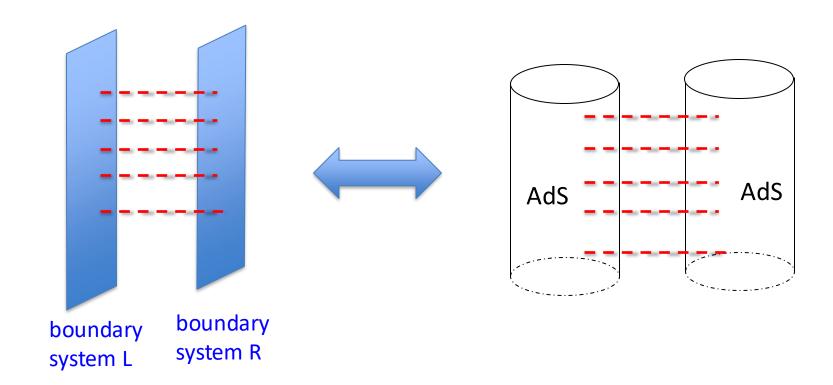
 \mathcal{B}_L : operator algebra of the L system

type I von Neumann algebra at finite N

$$N \to \infty$$
 $\lim_{N \to \infty} \mathcal{B}_L = \mathcal{X}_L$

At low temperatures, entanglement between L and R remains finite as N goes infinity.



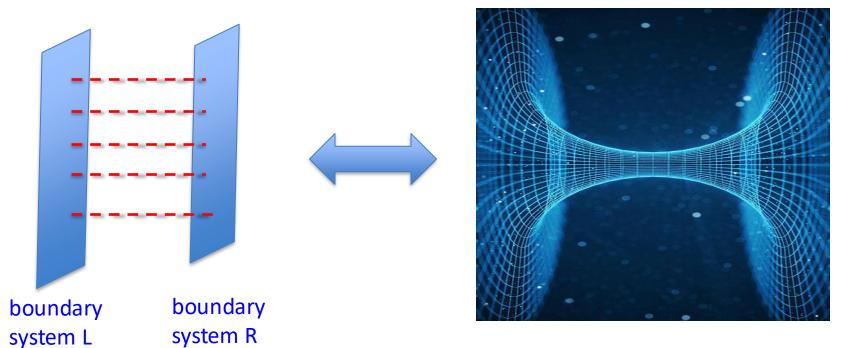


At sufficiently high temperature, entanglement between L and R systems becomes infinite

$$N \to \infty$$
 $\lim_{N \to \infty} \mathcal{B}_L = \mathcal{X}_L$

 \mathcal{X}_L : $\mathsf{type} \, \mathsf{III}_\mathtt{1}$

Hilbert space can **NOT** be factorized



two universes connected by a wormhole!

Subregion-subalgebra duality is reminiscent of the Gelfand duality in mathematics.

In mathematics, the Gelfand duality is the starting point of formulating the concept of noncommutative geometry (Connes).

Philosophically, subregion-subalgebra duality may be considered as a vast generalization of the Gelfand duality.

It gives us a more general/flexible language to talk about spacetime and physics in it,

which may be valid even in the stringy or quantum gravitational regime.

Summary

In the $N \to \infty$ limit

the boundary system becomes infinitely entangled

new emergent type III₁ algebras

bulk spacetime and all the physical operations in it

Using operator algebras to understand quantum gravity brings new powerful tools:

New understanding of de Sitter entropy

Chandrasekaran, Longo, Penington, Witten

New understanding of generalized entropies

Chandrasekaran, Penington, Witten
Jensen, Sorce, Speranza
Kudler-Flam, Leutheusser, Satishchandran

- Algebraic ER=EPR: emergence of spacetime connectivity
 Engelhardt, HL
- Formulation of stringy black holes (stringy horizon)

Gesteau, HL

Enhancement of quantum tasks

Leutheusser, HL

• • • • • •

Mathematical structure of quantum gravity?

Hilbert space plays a fundamental role in quantum mechanics.

There are indications that Hilbert space is not fundamental in quantum gravity,

but a derived concept

Hopefully, we are not too far from it

Thank you!