# Highly-magnetized neutron stars as one of the potential origins of FRBs

### Teruaki Enoto (RIKEN, Extreme natural phenomena RIKEN Hakubi team)

9:30-10:10 JST, February 12, 2021 YITP & YIPOS workshop "Fast Radio Bursts: A Mystery Being Solved?", Kyoto University



- X-ray astronomer of neutron stars. Launched a new research group at RIKEN in January, 2020 (8 members).
- A chair of the Magnetar and Magnetosphere working group of the NICER X-ray observatory.
- We are planning to launch a 6U-size CubeSat X-ray observatory "NinjaSat" in 2022.
- Spin-off research for high-energy atmospheric physics of lightning (photonuclear reactions) and thunderstorms.
- Open for RIKEN SPDR (基礎特研) fellows.

NinjaSat © NASA/GSFC, NICER Team

#### NICER © NASA/GSFC, NICER Team



# Contents

- 1. Transient magnetars & NICER results of the Galactic FRB magnetar
- 2. X-ray enhancement associated with the Crab GRPs
- Magnetar candidates in binary systems? 3.
- 4. Free precession of magnetars?



# FRB observations $\rightarrow$ Highly magnetized NS?

- Lorimer burst in 2001 was reported (Lorimer et al., Science, 2007) Further 4 FRBs reported from the Parkes (Thronton et al., Science, 2013) **FRBs were discriminated from "Peyton"** (Petroff et al., MNRAS, 2015) **Repeating FRB 121102 was discovered** (Spitler et al., Nature, 2016) Bright FRB 150827 with polarization detection (Ravi et al., Science, 2016) Host galaxy of FRB 121102 was identified (Chatterjee et al., Nature, 2017) +2 **DM-brightness of two populations?** (Shannon et al., Nature 2018) Host galaxy of non-repeating FRB 180924 & 190523 (Bannister et al., 2019,

- 2007 • 2013 • 2015 • 2016 • 2016 • 2017 • 2018 • 2019 The second repeating FRB was found (CHIME/FRB collaboration, Nature, 2019) • 2019

- Science; Ravi et al., Nature 2019)
- New 8 repeating FRBs were reported (CHIME/FRB collaboration, ApJ, 2019)
- 2019 • 2020 FRB from a Galactic magnetar SGR 1935+2154 (many papers...)
- 2020 **Periodicities detected from repeating FRBs** (CHIME/FRB collaboration+)





# Diversity of neutron stars

- >2,500 known pulsars
- 10<sup>5</sup> in our Galaxy?
- Multi-wavelength observations from radio, optical, X-rays, and gamma rays.



# **Diversity of neutron stars**

- >2,500 known pulsars
- 10<sup>5</sup> in our Galaxy?
- Multi-wavelength observations from radio, optical, X-rays, and gamma rays.
- Challenge to unification of different
   neutron star classes
- Some of FRB properties suggest young & highly magnetized neutron stars?

Which type of neutron stars or related phenomena are the origin of FRBs?



# Energy sources of neutron stars

### Rotation

Radio Pulsar (Millisecond Pulsar)

### Thermal

**Compact Central Object** X-ray Dim Isolated NS



ON STAR ILLUSTRATION

Accretion

#### **High Mass X-ray Binary** Low Mass X-ray binary

Soft Gamma Repeater Anomalous X-ray Pulsar

### Magnetic







# X-ray flux decay of outbursts of transient magnetars







# Spin-down luminosity L<sub>sd</sub> vs. X-ray luminosity L<sub>x</sub>



Spin-down luminosity

 $L_{\rm sd} \propto \dot{P}/P^3$ 

- Rotation powered pulsars:  $L_x < L_{sd}$ 
  - c.f., Eddington luminosity ~10<sup>38</sup> erg/s
- Persistent magnetars:  $L_x > ~ L_{sd}$
- Transient magnetars:  $L_x \rightarrow \langle L_{sd} \rangle$
- Possibility that many neutron stars can exhibit magnetar-like outbursts?

(Review) Enoto, Kisaka, and Shibata, **ROPP (2019)** https://iopscience.iop.org/article/ 10.1088/1361-6633/ab3def











# Magnetar spectral evolution with B-field?



Enoto et al., ApJS 2017

Rep. Prog. Phys. 82 (2019) 106901 (54pp)

#### Review

# **Observational diversity of magnetized** neutron stars

#### Teruaki Enoto<sup>1</sup>, Shota Kisaka<sup>2,3,4</sup> and Shinpei Shibata<sup>5</sup>

Department of Astronomy and The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan

- <sup>2</sup> Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, 980-8578, Japan
- <sup>3</sup> Astronomical Institute, Tohoku University, Sendai, 980-8578, Japan
- <sup>4</sup> Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
- <sup>5</sup> Department of Physics, Yamagata University, Kojirakawa 1-4- 12, Yamagata, 990-8560 Japan

E-mail: teruaki\_enoto@10.alumni.u-tokyo.ac.jp, kisaka@astr.tohoku.ac.jp and shibata.shimpei@gmail.com

Received 8 August 2018, revised 8 May 2019 Accepted for publication 22 August 2019 Published 24 September 2019

Corresponding Editor Professor Gordon Baym

Python code to daw P-Pdot diagram https://colab.research.google.com/drive/1hrA6KDAILf1IJT9NinFYIR6X9iskG\_td

https://doi.org/10.1088/1361-6633/ab3def





### **Neutron star Interior Composition ExploreR**

- **NICER** *mission*: Soft X-ray (0.2-12 keV) timing spectroscopy for neutron star structure, dynamics, and energetics.
- Platform: ISS external attached payload with active pointing
  - Launched June 3, 2017; Installed on ISS, June 13
- *Duration*: 18 months science mission + GO extension

V) timing spectroscopy and energetics.
ad with active pointing
n ISS, June 13
+ GO extension



(c) NICER Team (PI: K. Gendreau, NASA/GSFC)

### **Neutron star Interior Composition ExploreR**

- **NICER** mission: Soft X-ray (0.2-12 keV) timing spectroscopy for neutron star structure, dynamics, and energetics.
- Platform: ISS external attached payload with active pointing
  - Launched June 3, 2017; Installed on ISS, June 13
- Duration: 18 months science mission + GO extension



*I* timing spectroscopy and energetics. *A* with active pointing n ISS, June 13 *+* GO extension



(c) NICER Team (PI: K. Gendreau, NASA/GSFC)



Neutron Star Interior Composition Explorer

- (c) NICER Team
- (PI: K. Gendreau, NASA/GSFC)



- Energy band : 0.2-12 keV (Resolution : 85 eV @ 1 keV, 140 eV @ 6 keV)
- Time resolution : <100 ns RMS (absolute)</li>
- Non-imaging FOV 6 arcmin diameter
- Background : < 0.5 cps</li>
- Max rate: ~38,000 cps (3.5 Crab)

Sensitivity: 1×10<sup>-13</sup> erg/s/cm<sup>2</sup> (5σ, 0.5-10 keV, 10 ksec exposure for Crab-like)

Gendreau et al., SPIE (2012), Arzoumanian et al., (2014)

### Large Effective Area of NICER

- 56 parallel X-ray Timing Instruments (XTIs)
- XTI = X-Ray Concentrator (XRC) + Sillicon Drift Detector (SDD)



(K. Gendreau, et al., SPIE, 2012; Z. Arzoumanian, et al., SPIE, 2014)

Large effective area (x2 of XMM at 1.5 keV), Dedicated to NS surface emission.

# A new magnetar Swift J1818.0-1607



• Discovered by Swift and NICER on March 12, 2020. Radio and X-ray pulsation at 1.36 sec



• Very young characteristic age ~470 yr. A missing link between magnetars and high-B pulsars.

<u>Hu et al., ApJ (2020)</u>







# Detection of single X-ray pulses from XTE J1810-197



Pearlman et al., 2020, arXiv:2005.08410





# NICER results of the Galactic FRB magnetar SGR 1935+2154



# A FRB was found from a Galactic magnetar!!



- Galactic magnetar SGR 1935+2154
  - discovered in 2014 (~9 kpc?)
  - P=3.24 s, Pdot=1.43e-11 s/s
  - B ~ 2.2e+14 G
- A burst was detected with Swift Burst Alert Telescope on April 27, 2020.
- X-ray follow-up monitoring by several X-ray observatories, including NICER.
- X-ray burst forest was found from the Galactic magnetar SGR 1935+2154 on 2020 April 28.
- A FRB was found during this activated state!





# A FRB was found from a Galactic magnetar!!

AGILE, and Konus-Wind)



The CHIME/FRB Collaboration, arXiv:2005.10324

# Galactic FRB vs. Cosmological FRBs



- Compared with extra-Galactic FRBs, this Galactic FRB is
  - Higher fluence
  - Lower luminosity
- Implication: FRB coherent (?) radio emission and incoherent X-ray burst are related with each other.

The CHIME/FRB Collaboration, arXiv:2005.10324



# FRB-associated burst vs. Other magnetar bursts



Younes et al., arXiv: 200611358



Example of a magnetar short burst from SGR 1935+2154 observed with NICER+GBM compared with the FRB-associated event.







# X-ray burst spectrum: FRB-associated vs. others



- SGR 1935+2154: Cutoff power-law index (left) and cutoff energy (right).
- The FRB-associated burst is different from the other X-ray bursts?

Younes et al., arXiv: 200611358

Probability distribution function of X-ray spectral parameters of 24 short bursts from





# X-ray burst spectrum: FRB-associated vs. others



Younes et al.., arXiv: 200611358



- Brighter magnetar short burst shows higher cutoff energy.
- X-ray flux of the FRBassociated burst is in the distribution of the other (canonical) magnetar bursts.
- However, the cutoff energy of the FRB-associated one is higher than the others.











- Pulse profile of SGR 1935+2154 at 1 day and 21-39 days after the burst
- Folded burst peak time (light blue) does not show a clear pulse profile.

Younes et al., arXiv:2009.07886

At which pulse phase the FRB event happened?

• The pulse phase of the FRB event happened at the peak of the pulse profile.



# X-ray enhancement associated with the Crab GRPs

Chandra, Hubble, and Spitzer image (NGC 1952)



# **Rotating RAdio Transients = RRATs**



- Rotating pulsars sometimes exhibit single radio pulses
- More than 100 RRATs have detected (P and Pdot measurements only for ~25% of them).







# Giant radio pulses (GRPs)

- Sporadic sub-millisecond bursts 10<sup>2-3</sup> times brighter than the normal radio pulses.
- Only from known ~12 sources, power-law fluence distribution,



# Giant radio pulses (GRPs)



David A. Moffett et al., ApJ 468, 779-783 (1996)

Ĺμ<sup>α</sup>

Chandra, Hubble, and Spitzer image (NGC 1952)

#### (Enoto, Kisaka, and Shibata 2019)

 $\mathcal{O}$ 

00

 $\Diamond$ 





S

erg

- Radio
  - 10<sup>3-4</sup> enhancement
- Optical
  - Discovery of 3.2% enhancement  $(7.2\sigma)$ coincidences with Crab GRPs



Only upper-limits from Chandra, Suzaku, Fermi... etc

(Shearer et al., Science ,2003; Strader et al., ApJL 2013) **31** 









### **Crab Pulsar — Simultaneous with Radio**



with collaboration for radio pulsar observation in Japan

## Crab Pulsar — On-orbit actual NICER data



X-ray profile appears with accumulation in a short exposure (~1 sec) !

33.739 s accumulation (Number of Pulses = 1000, Number of Events=365256)

Start Time 17974 17:11:43:384 Stop Time 17974 23:16:40:923

# **Discovery of X-ray enhancement at GRPs**



(Enoto, Terasawa, Kisaka, et al., submitted)



# **Discovery of X-ray enhancement at GRPs**



(Enoto, Terasawa, Kisaka, et al., submitted)



#### NICER on the ISS, Usuda, and Kashima antennas are watching the Crab Pulsar





the Crab Pulsar

 X-ray
 We found that X-rays

 X-ray
 We found that X-rays

 We dealer the giant radio pulses
 for the first time.

 We were looking for this!
 We were looking for this!

 More energy is emitted
 Wore semitted

 at X-rays than radio
 the X-rays than radio

 Image: A sector of the first time.
 Image: A sector of the first time.

Detection significance ( $\sigma$ ) 0 X-ray enhancement (%)

36





S

erg

- Radio
  - 10<sup>3-4</sup> enhancement
- Optical
  - Discovery of 3.2% enhancement  $(7.2\sigma)$ coincidences with Crab GRPs

### X-ray

Discovery of 3.8% enhancement

(Shearer et al., Science ,2003; Strader et al., ApJL 2013)











# **Discovery of X-ray enhancement at GRPs**



(Enoto, Terasawa, Kisaka, et al., submitted)

- X-ray enhancement coincided with GRPs from the Crab Pulsar
  - Enhancement: 3.8±0.7 %
  - Significance: 5.4σ
- Since the energy band extends to X-rays, the total emitted energy from a GRP is revealed to be tens to hundreds of times brighter than previously thought.











# Implication of X-ray detection of the Crab GRPs

- Hypothetical bright GRP is a candidate for the origin of FRBs especially repeating source.
- The energy source of FRBs is assumed to be the spin-down luminosity.
- The discovery of X-ray enhancement suggests:
  - Since the broadband luminosity of the Crab pulsar GRPs, including the X-ray emission is revealed to be 10<sup>2-3</sup> times higher than we previously thought, the simple GRP model became more difficult for the FRB origin.
  - the connection between the coherent radio emission and incoherent X-ray radiation in the neutron star magnetosphere. This is also shown the FRBassociated bursts from SGR 1935+2154. Hypothetical bright GRP is a candidate for the origin of FRBs especially repeating source.







# Magnetar candidates in binary systems?



**Reported periodicities of FRBs** 



- FRB 180916.J0158+65
  - 16.35±0.16 day periodicity (CHIME/FRB collaboration, Nature, 2020)
  - Burst-active phase depends on frequencies (150 MHz, 600 MHz, &
- FRB 121102
  - 161 days periodicity (Rajwade+2020, Cruces+2021)

# 4 GHz)



# Two scenarios to explain the periodicities



- Binary model (e.g., loka & Zhang 2020)
- NS binary motion (orbital separation & mass) • NS deformation (ellipticity) 42
- Precession model (e.g., Levin et al. 2020)





# Magnetar in a binary system? (1) CRSF B-feild



# Magnetar in a binary system? (1) CRSF B-feild



reported from isolated magnetars







# Magnetar in a binary system? (2) Spin period



- Accretion disk rotate at the rotational (Keplerian) ferocity and interacts with a neutron star at the Alfven radius.
- Strongly-magnetized pulsars interact at larger Alfven radii where the disk rotates slowly. Thus, at the equilibrium, the NS rotates more slowly.
  - (e.g.,  $B \propto P 7/6$  for disc accretion) Davidson+1973, Alpar+82 etc; also wind/non-equilibrium models
- Are long-period pulsars in high-mass X-ray binaries (HMXBs) magnetars?
  - 4U 2206+54 (P~1.6 hour, Patel+2007)
  - IGR J16358-4726 (1.6 h, Reig+2002)
  - 4U 0114+65 (2.7 h, Li+1999)







# Symbiotic X-ray binary 4U 1954+319 (P~5.4 hr)



- Symbiotic X-ray binary (SyXB):
  - NS (long spin period) + an M-type giant
- Discovered in 1970's but virtually forgotten for 20 years. 5.4-hour pulsation varies by ~7% for 8 years
   → spin period close to the equilibrium.
- If the disk accretion,  $B > \sim 10^{15-16} G$
- No magnetar-like intense short bursts, but Irregular short flares (Δt ~10-10<sup>3</sup> s).
- Typical timing & spectral features of wind-fed X-ray pulsar of B  $> 10^{12}$  G field
  - Quasi-spheric accreting in a wind-fed system with a NS of B~10<sup>13</sup> G can explain the long spin period and the duration of short flares.



## Gamma-ray binaries as a candidate of the FRB binary model?

- Sub-class of high-mass X-ray binaries with different features from other X-ray binaries
  - Dominant non-thermal emission to TeV
  - 2 (or 3) systems have pulsars
- LS5039: Stable X-ray light curve  $\rightarrow$  wind?
  - Orbital period 3.9 days, e=0.35
  - Companion star: O-type, 22.9 M<sub>sun</sub>
  - Compact object: NS os BH, >1.5 M<sub>sun</sub>

| Source            | Opt. | Period | Orbital  |
|-------------------|------|--------|----------|
| LS 5039           | Ο    | ?      | 3.9 day  |
| FGL J1018.6-5856  | Ο    | ?      | 16.6 day |
| LMC P-3           | Ο    | ?      | 10.2 day |
| 4FGL J1405.1-6119 | Ο    | ?      | 13.7 day |

48





Orbital phase  $[\phi]$ 

| Source         | Opt. | Period | Orbital   |
|----------------|------|--------|-----------|
| HESS J0632+057 | Be   | ?      | 315.5 day |
| LS I+61 303    | Be   | ?      | 26.5 day  |
| PSR J2032+4127 | Be   | 143 ms | 50 year   |
| PSR B1259-53   | Be   | 43 ms  | 3.4 year  |

# Signature for hard X-ray pulsations of LS 5039

- LS5039 is the brightest gamma-ray binary with a short orbital period (3.9 day), being observed extensively over the entire orbit.
- We found a periodicity at 8.96±0.01 s from the Suzaku/HXD hard X-ray observation with a chance probability of 1.1×10<sup>-3</sup>.
- In the NuSTAR data 11 years after the Suzaku one, the periodic signal was also found at 9.046±0.009 s with smaller significance.
- Further confirmation is needed. If the compact object is a 9-s rotating pulsar, period derivative is Pdot~3×10<sup>-10</sup> s/s.

#### **49** Yoneda, Makishima, Enoto et al., PRL (2020)

![](_page_48_Figure_10.jpeg)

![](_page_49_Figure_0.jpeg)

- - Peat at ~20 keV  $\rightarrow$  efficient particle acceleration ( $\eta < 10$ )

  - Hard photon index  $\rightarrow$  hard electron spectrum (s < 2)
- Yoneda et al., in prep (2021) 50

 Is the dominant MeV component synchrotron emission in strong magnetic fields? • Not to overestimate the TeV emission  $\rightarrow$  strong magnetic field (B >~ 3 G)

![](_page_49_Picture_7.jpeg)

# **Reconnection model of a magnetar in a binary system?**

- Observed  $L \sim 10^{36}$  erg/s
- Spin-down luminosity
  - P~9 s & P<sub>dot</sub> ~ 3x10<sup>-10</sup> s/s →  $L_{sd} \sim 10^{34} \text{ erg/s}$  (not enough)
- Accretion powered?
  - Non-thermal, different from accreting powered pulsars, No timing variability
- Stellar wind

$$L_{\rm w} \sim \frac{1}{2} \dot{M}_{\rm w} v_{\rm w}^2 \times \frac{\pi R_{\rm A}^2}{4\pi D_{\rm sep}^2} = 6 \times 10^{31} \, {\rm erg \ s^{-1}}$$

Magnetic energy (reconnection)

 $L_{\rm BF} = \frac{B_{\rm NS}^2 R_{\rm NS}^3}{6\tau} \sim 10^{37} \times \left(\frac{B_{\rm NS}}{10^{15} \text{ G}}\right)^2 \left(\frac{R_{\rm NS}}{10 \text{ km}}\right)^3 \left(\frac{\tau}{500 \text{ yr}}\right)^{-1} \text{ erg s}^{-1} \rightarrow \cdots \rightarrow$ 

Yoneda, Makishima, Enoto et al., PRL (2020); Yoneda et al., in prep (2021) 51

![](_page_50_Figure_11.jpeg)

# Pulsations discovered from LS I +61 303

#### FAST Detected A Transient Periodic Signal In The Direction of LS I +61 303

ATel #14297; Shan-Shan Weng\* (NJNU), ZhiChen Pan\* (NAOC), Lei Qian\* (NAOC), Peng Jiang (NAOC), Ming-Yu Ge (IHEP), Jing-Zhi Yan (PMO), Qing-Zhong Liu (PMO) on 1 Jan 2021; 00:00 UT Credential Certification: Shan-Shan Weng (wengss@ihep.ac.cn)

Subjects: Radio, Gamma Ray, Binary, Neutron Star, Pulsar

🎔 Tweet

The gamma-ray binary, LS I +61 303 contains a rapid rotating B0 Ve star and a compact object with unknown nature. The Five-hundred-meter Aperture Spherical radio Telescope (FAST, Nan et al. 2011, IJMPD, 20, 989; Jiang et al. 2019, SCPMA, 62, 959502) observed it for four times on 2019-11-02, 2020-01-07, 2020-09-02, and 2020-09-03, corresponding to the orbital phases of 0.07, 0.59, 0.58, and 0.62 (Aragona et al. 2009, ApJ, 698, 514). Observations with the 19-beam receiver covering 1.05-1.45 GHz lasted for 2-3 hours on average. We detected a periodic signal (20.8 sigma) with a period of 269.196 ms and a Dispersion Measure (DM) of 241 pc cm-3 in the data obtained on <u>2020-01-07</u>. The slightly detectable acceleration of the signal might be the hint of a binary system. We adopted a DM range of 0-500 pc cm-3 but did not find any signal in any other data. As it is reported that a magnetar-like short burst was detected in the direction of LS I +61 303 (Torres et al. 2012, ApJ, 744, 106); therefore, this may indicate a strongly magnetized neutron star in the system. More FAST observations will be proposed to unveil the nature of LS I +61 303, and detailed data analysis will be reported later. FAST is a Chinese national mega-science facility, operated by National Astronomical Observatories, Chinese Academy of Sciences. We appreciate the FAST group for their support and assistance during the observations.

- LS I +61 303 is one of the brightest gamma-ray binary, but the compact object was yet unknown.
- FAST observed this object 4 times.
- They found a radio pulse from one of the observations.
  - The period is 269.196 ms with 21 sigma level !
  - This system also contains a pulsar?
  - A magnetar-like X-ray burst was reported before (Torres+12)

![](_page_51_Figure_14.jpeg)

# Two scenarios to explain the periodicities

![](_page_52_Figure_1.jpeg)

- Binary model (e.g., loka & Zhang 2020)
  - NS binary motion (orbital separation)

- Precession model (e.g., Levin et al. 2020)
  - NS deformation (ellipticity)

![](_page_52_Picture_7.jpeg)

### **Toroidal magnetic field induced NS precession?** Huge energy reserver is needed inside the magnetars

⇒ Strong toroidal Field inside NSs? (can not be measured by *P*-*P*<sub>dot</sub>)

![](_page_53_Figure_2.jpeg)

![](_page_53_Figure_5.jpeg)

(see., e.g., Landau & Lifshitz textbook)

### **Evidence for NS precession?** Prototypical AXP 4U 0142+61 (*P*=8.69 s, Poloidal field *B*<sub>d</sub>~1.3x10<sup>14</sup> G)

![](_page_54_Figure_1.jpeg)

Hard X-ray shows a sinusoidal, *T*=1.5 hour, phase modulation (amplitude 0.7 s)

Makishima, TE et al., PRL, 2014

Confirmation with NuSTAR (Makishima+2019), Similar signature was detected from 1E 1547.0-5408 (Makishima+2020)

![](_page_54_Figure_7.jpeg)

Significance of Pulsation

![](_page_54_Picture_9.jpeg)

- The NICER M&M team is happy to collaborate with radio observatories for transient magnetars and galactic giant radio sources. Please let us know if you are interested in future collaboration.
- Today: Our reserved ToO was accepted for transient magnetars during the NICER Cycle 3.

| Prop # | Title                                                                                                  | PI Name       | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|--------------------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4060   | MAGNETAR OUTBURSTS AS A CLUE FOR<br>UNDERSTANDING MAGNETIC ENERGY<br>DISSIPATION AND FAST RADIO BURSTS | TERUAKI ENOTO | Magnetar X-ray outburst is spor<br>short bursts, giant flares, and per<br>physics underlying this dissipation<br>observations of transient magnet<br>for this question, for example, de<br>radio-loud magnetar XTE J1810<br>FRB source SGR 1935+2154, a<br>and SGR 1830-0645. Prompt of<br>after the discovery of the fast ration<br>SGR 1935+2154 in 2020. Here<br>observations of transient magnet<br>with radio and hard X-ray simult |

adic magnetic energy dissipation of ersistent emission enhancement. The ion process is still unclear. Follow-up etars with NICER have provided clues letection of single X-ray pulses from the 0-197, the burst forest from the Galactic and discoveries of Swift J1818.0-1607 bservations became much more critical idio burst from the Galactic magnetar we propose reserved NICER ToO etar outbursts in soft X-rays coordinated aneous coverage.

### NICER © NASA/GSFC, NICER Team

![](_page_55_Picture_7.jpeg)

# Summary

- 1. NICER Magnetar and Magnetosphere (M&M) working group has been of transient magnetars.
  - New magnetar Swift J1818.0-1607
  - Single X-ray pulse detection from XTE J1810-197
  - X-ray burst properties of the Galactic FRB source SGR 1935+2154
- 2. Using the NICER and radio observatories, we discovered X-ray enhancement coincided with giant radio pulses from the Crab pulsar. The total emitted energy from a GRP is revealed to be tens to hundreds of times brighter than previously thought. The FRB-GRP model is disfavored.
- 3. There is no consensus whether magnetars are in binary systems. We reported a pulsation signature from LS 5039, which could be interpreted as a magnetar in the gamma-ray binary systems. There is also evidence for free precession from isolated magnetars.

coordinating multi-wavelength (especially X-rays and radio) follow-up campaigns

![](_page_56_Picture_9.jpeg)

![](_page_56_Picture_10.jpeg)

![](_page_56_Picture_11.jpeg)

# RIKEN SPDR (基礎特研) & JRA (大学院生)

- RIKEN SPDR fellows (<u>https://www.riken.jp/en/careers/programs/spdr/</u>)
  - Period: 3 years
  - Salary: 487,000 JPY/month + commuting & house allowances
  - Research fund: 1,000,000 JPY/year
- RIKEN JRA for Ph.D students (<u>https://www.riken.jp/en/careers/programs/jra/</u>)
  - Period: maximum 3 years
  - Salary: 164,000 JPY/month + commuting allowances
- If you are interested in these systems, please let me know.
- RIKEN Extreme Natural Phenomena RIKEN Hakubi Team (http://enotolab.com)

![](_page_57_Picture_11.jpeg)