X-ray Properties of Magnetar SGR J1935+2154

Lin Lin (林琳) llin@bnu.edu.cn Beijing Normal University (北京师范大学)

YITP FRB workshop 2021

Thank you, my collaborators!

Chryssa Kouveliotou, George Younes, Alexander van der Horst @GWU

- Ersin Gogus, Yuki Kaneko @Sabancı University
- Oliver Roberts @USRA

Matthew Barning @Rice University

The Insight-HXMT team @IHEP, CAS The FAST-FRB collaboration

Outline

- The general behavior of Magnetars in X-rays
- The most active prolific transient: SGR J1935+2154
 - Bursts
 - Hard X-ray burst associated with FRB 200428
 - Outbursts
- The seeded players may be

Neutron stars with extremely strong magnetic fields

- Soft-Gamma Repeaters (SGRs)& Anomalous X-ray Pulsars (AXPs)
- $L_X \sim 10^{33} 10^{35} \text{erg/s} > L_{rot}$
- $P = 2 \sim 12 \text{ s}, \dot{P} = 10^{-10} \sim 10^{-13} \text{ s} \cdot \text{s}^{-1}$
- $B_{surf} \sim 10^{14} 10^{15} \text{ G}$
- ~ 30 known magnetars
- Most are galactic sources, only two in S/LMC e

SGR 0418+5729 low B? RPPs with high B SGR 0755-2933,P~308s HMXB? CCO in SNR RCS103, P~6.67hr

Olausen & Kaspi 2014

Giant Flare: the most energetic but the rarest event

- Short hard spike +
 - long soft periodic tail
- 3 GFs form 3 SGRs
 SGR 0526-66, 1979-3-5
 SGR 1900+14, 1998-8-27
 SGR 1806-20, 2004-12-27
- Radio NONE-detection of SGR 1806-20 GF with Parkes side lob (Tendulkar et al. 2016)

Peak Luminosity

~10⁴⁵ erg s⁻¹

~10⁴¹ erg s⁻¹

Intermediate Flares

Burst forest from SGR 1900+14 on 2006-3-29 observed with Swift/BAT in 15-100 keV

Peak Luminosity

Short Burst

- The most common events but unpredictable
- From both SGRs and AXPs

YITP FRB workshop 2021

SGR J0501+4516 Fermi/GBM Lin et al. 2011

The burst spectrum : almost all are thermal

BB+BB:

Low kT ~ 4.4 keV High kT ~ 16 keV <u>Cut-off PL:</u> Epeak ~ 45 keV

We need the broad energy coverage (e.g. 1-200 keV) to study the burst spectra.

Israel et al. 2008, Lin et al. 2012

During a magnetar outburst the persistent emission may change in

- Luminosity, 1-2 order of mag.
- X-ray spectrum, harder
- pulse profile

• Glitch/anti-glitch

The outburst of magnetars

AXPs with bursts/flares	persistent flux stable	1E 1841-045
	persistent flux enhanced	1E 2259+586, 4U 0142+61, XTE J1810-197
SGRs: Transients	with a Giant Flare	SGRs 1806-20, 1900+14, 0526+66
	prolific transients	SGRs 1550-5418, 1935+2154 , 0501+4516, 1627-41
	with low burst rates	SGRs 0418+5729, 1833- 0832

SGR J1935+2154

- $P = 3.25 \text{ s}, \dot{P} = 1.4 \times 10^{-11} \text{ s} \cdot \text{s}^{-1}$

One of the most active magnetars:

2014-07, 2015-02, 2016-05, 2016-06, 2019-11, 2020-04, 2021-01

Lin et al. 2020 ApJ, ApJL

YITP FRB workshop 2021

SGR J1935+2154

 A burst forest happened at the beginning of the 2020-04-27 activity, and lasted for ~130 s.

• These data are not included in the current analysis.

SGR J1935+2154

- Bursts are slightly softer than typical and to a magnetar bursts.
- Bursts are slightly softer in later episodes.

11 Bursts detected with HXMT on April 28

Trigger time (UTC)	Fluence	Duration	Δt
	$10^{-8} \mathrm{erg} \mathrm{cm}^{-2}$	S	S
2020-04-28T08:03:34.35	5.65 ± 1.14	0.11	-23458.65
2020-04-28T08:05:50.15	5.04 ± 1.39	0.07	-23322.85
2020-04-28T09:08:44.30	1.37 ± 1.86	0.06	-19548.70
2020-04-28T09:51:04.90	25.58 ± 2.51	0.42	-17008.10
2020-04-28T11:12:58.55	1.30 ± 1.41	0.06	-12094.45
2020-04-28T12:54:02.20	0.87 ± 1.09	0.40	-6030.80
2020-04-28T14:20:52.50	2.93 ± 1.17	0.60	-820.50
2020-04-28T14:20:57.90	2.06 ± 2.45	0.06	-815.10
2020-04-28T14:34:24.00	63.68 ± 6.62	0.53	-9.00
2020-04-28T17:15:26.25	0.25 ± 0.42	0.08	9653.25
2020-04-28T19:01:59.85	3.01 ± 1.22	0.16	16046.85

- The radio LC (CHIME)v.s. the X-ray LC (HXMT)
- Two short spikes, separated by ~30ms
- The time difference between radio and X-ray is ~8.62s, agree with the DM prediction.

These two spikes are the key evidence of the association between FRB and the hard X-ray burst.

The burst location using HXMT data is 3.7 arcmin away from SGR J1935+2154, with 1σ uncertainty of 10 arcmin. This agrees with the Integral result.

YITP FRB workshop 2021

The hard X-ray burst -

Non-thermal: cutoffPL

 $n_{\rm H} = (2.79^{+0.18}_{-0.17}) \times 10^{22} \ {\rm cm}^{-2}$

Photon index $= 1.56 \pm 0.06$

 $E_{\rm cut} = 83.89^{+9.08}_{-7.55} \text{ keV} \qquad E_{\rm peak} \sim 37 \text{ keV}$

The unabsorbed fluence is $(7.14^{+0.41}_{-0.38}) \times 10^{-7} \text{ erg cm}^{-2}$

Such an X-ray burst is non-detectable if placed at a normal FRB distance.

This burst is spectrally different.

24 bursts observed with NICER-GBM

Younes et al. arXiv:2006.11358

This burst is spectrally different.

Younes et al. arXiv:2006.11358

SGR J1935+2154: outbursts

Swift/XRT, Chandra and XMM-Newton

Younes et al. 2017

Outbursts in 2014-2016:

- Flux increase accompanied by hardening of spectra
- Flux increase ∝ total burst energy
- Decay slower in 2014-2015; faster in 2016

YITP FRB workshop 2021

SGR J1935+2154: outbursts

Outbursts in 2020:

- Flux increase accompanied by hardening of spectra
- Flux increase ~10 times ∝ total burst energy
- Two decay trends ~0.65 day,
 ~75 day
- The spin-down rate is ~2.7 times larger than that measured in 2014
- The pulse profile changed

Younes et al. 2020 ApJL

SGR J1935+2154: outbursts

- SGR J1550-5418
 - 3 active episodes in 2008-2009
 - Burst forest on Jan. 22, 2009
- SGR J1935+2154
 - 6 active episodes in 2014-2020
 - Burst forest on Apr. 27, 2020"

✓ hundreds of bursts in several minutes

✓Enhanced hard X-ray persistent emission in GBM

✓Burst spectral properties evolve

- SGR J1550-5418
 - The bursts in 2008 only need only one BB (von Kienlin et al. 2012)
 - The bursts in 2009 require BB+BB (Israel et al. 2008, van der Horst et al. 2009, Lin et al. 2012)
- SGR J1935+2154
 - Bursts are slightly softer in later episodes.

✓ Based on STEMS model, the surface magnetic field may change.

B_{surf} > B_{dip} (Ng et al. 2010, Gogus et al. 2020)

- ✓X-ray pulse profile
 - Pulse profile may change
 - Pulse fraction reduced

(Ng et al. 2010, Younes et al. 2020 submitted, Gogus et al. 2020 submitted)

Ng et al. 2010

Bright radio pulses from SGR J1550-5418 covered by X-ray observations

2020-12-24 T

- 2019-02-03, ~5 days after the peak of the burst forest
- The radio pulse highly saturated the Parkes.
- The 6 GHz radio flux >1Jy, pulse width ~200 ms
- An X-ray burst was detected ~1 s ahead of one radio pulse

Israel et al. 2020

Summary and questions

- In general, magnetars are sources full of surprises.
- Bursts and outbursts
 - Trigger and emission mechanisms
 - Physical properties of magnetar
- SGR1935+2154: the most active prolific transient
- Magnetars with burst forest are the seeded players (to me)