Coherent emission from
relativistic magnetized shocks:
a source of FRBs?
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Coherent emission in FRBs

Why do FRBs require coherent emission?
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Coherent emission mechanisms

[Melrose 86]

e Antenna:

e Bunches of electrons localized in space and momentum, radiating as a
macro-charge.

e Back reaction leads to spreading in space, and self-suppression.

» Reactive instability:

e Localization in momentum leads to self-bunching and phase-coherent
wave growth.

e Back reaction leads to spreading in momentum, and self-suppression
when the spread causes the bandwidth to exceed the growth rate.

e Maser instability:

* Population inversion, with growth corresponding to negative absorption.

e Back reaction leads to relaxation of the population inversion.



FRBs from magnetars

 Energy may be released by a “magnetar quake”, launching Alfven waves
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(credit: SDO, SOHO)




FRBs from magnetars

 Energy may be released by a “magnetar quake”, launching Alfven waves

e Alfven waves become nonlinear, driving magnetic reconnection and shocks
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(Yuan+ 20)

Sites of FRB generation:

e inner magnetosphere via antenna (e.g., talks by Kumar, Lu, Zhang)
e outer magnetosphere via reconnection (Lyubarsky 20)

e blast wave / shock (Lyubarsky 14, Metzger+ 19, Beloborodov 20)



Coherent emission from reconnection
Bg

e Relativistic reconnection, with large “magnetization” o = > 1

A7 pc?

is highly dynamical, with copious formation of plasmoids.
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Coherent emission from reconnection
Bg

e Relativistic reconnection, with large “magnetization” o = > 1

A7 pc?

is highly dynamical, with copious formation of plasmoids.
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(credit: N. Sridhar)
* Plasmoid mergers produce fast magnetosonic waves,
which can escape as vacuum e.m. waves.

* Invoked for pulsar giant radio pulses (Lyubarsky 19, Philippov+ 19).




Relativistic shocks from magnetar flares

e Ultra-relativistic: Lorentz factor yo»>1
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* Magnetized: oz1 (possibly o>1)
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e Pre-shock medium:
* magnetar e-e* wind, or
e e-e*p* shell ejected in a prior flare
(lwamoto’s talk)



Studying the mechanism: the PIC method

Particle-in-Cell (PIC) method: Move particles under

Lorentz force

It is the most fundamental way of | EM felos
capturing the interplay of charged

) R Interpolate EM fields on Deposit current from
particles and electromagnetic fields, the grid to the particles in _ particle motion in the

the cells - —— particles cells onto the grid
¢ % in the cells

with no assumptions.

Spatial Domain

Solve for EM fields on the
grid

The computational challenge:
The microscopic scales resolved by PIC simulations are much smaller than astronomical scales.

Typical length (c/wp) and time (1/wp) scales are:
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FRBs are not GRBs

* GRB (low-0) shocks: accelerated particles — filamentation instabilities

e

P gy

(LS et al 13)

0=0.1
perp shock
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e-e*

(LS & Spitkovsky 11)




The synchrotron maser

The synchrotron maser:

(1) Electrons and positrons gyrate

coherently in the shock field.
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The synchrotron maser

The synchrotron maser:

(1) Electrons and positrons gyrate
coherently in the shock field.

y-momentum

(2) Shocked particles form an unstable
“ring” distribution in momentum space.

The population inversion is constantly

replenished. Time
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The synchrotron maser

The synchrotron maser:

(1) Electrons and positrons gyrate
coherently in the shock field.

(3) Collapse of the unstable ring
results in the emission of e.m.
“precursor’ waves.

— FRBs [?] from first principles!

(Plotnikov & LS 19)

0=0.3 ; y0=10 ; e-e*
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Shock-powered coherent emission

5=0.6; 70=10 ; e~e*

(Nattila, LS+ 21, in prep)

— Synchrotron maser emission is robust in 1D, 2D, 3D



PIC simulations allow to assess from first principles:

(1) Efficiency

(2) Spectrum

(3) Beaming

(4) Polarization



Preamble: high-o shocks are fast

Shock Lorentz factor in post-shock frame: [RZANEERYos

Shock speed in post-shock frame: JoRRESE R W os




(1) Efficiency



(1) Efficiency vs magnetization
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(Plotnikov & LS 19)

The precursor emission reaches a steady state.

Its fractional amplitude [FE=RCII0sH4 drops for o<1, it is ~ constant for o=1.



(1) Efficiency vs magnetization

Y0=1O

Efficiency:

)( 1_:Bsh
l+0o :80+ﬁsh

Ein=incoming energy (kineticte.m.)

Eo.ut=escaping energy (e.m.)

(Plotnikov & LS 19)

e 1D, 2D and 3D give similar efficiencies for o=1.

e At high o, the efficiency drops as «1/0.




(1) Efficiency vs temperature
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(Babul & LS 20)
Nearly constant efficiency for kT/mc? between 10-5 and 0.03.
Vanishing efficiency for kT/mc2z0.1, in both 1D and 2D.

A large longitudinal momentum spread kills the synchrotron maser.
CLLLLLLLL———_—_——_—_——_—————SSSSSSSSShEEEE




(1) Efficiency vs flow Lorentz factor

Dependence on Yo

1000 2000 3000 4000 5000
twp (Plotnikov & LS 19)

The precursor efficiency does not depend on vy,

eoB
Equivalently, it does not depend on the wave strength 7l N fg)/o

mcw




(2) Spectrum



(2) Spectrum VS magnetlzauon

The shock acts as a
high-pass filter:

Uph (W) = vsn

The spectrum peaks at higher
frequencies for larger o.

The fractional spectral width
iIs Aw/w~1, but with

narrower line-like features.

w/wy, or (kz(z/wlz) 4

(Plotnikov & LS 19)




The shock cavi
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(2) The spectral peak

, ‘ At high o, the spectral peak
Shock front structure i .

o =10, tw, = 2808 iIs an eigenmode of the
shock cavity.

Peak frequency

In post-shock frame, [ NEERCEINS 11V ¥ Vo]
In pre-shock (observer) frame,

(Plotnikov & LS 19)




(2) Spectrum vs temperature

(Babul & LS 20)

For warmer plasmas, less power at high frequencies.
For warmer plasmas, more distinct line-like features.




(3) Beaming



2D
vo=10

(3) Beaming

The precursor waves can escape ahead of the shock only if
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(4) Polarization



(4) Polarization

e In 1D and 2D with out-of-plane By:
Only the X-mode with 6B // By can grow.

The emission is 100% polarized.

 In 2D with in-plane By and 3D:
Also the O-mode with 8B 1 By can be generated.

This may decrease the degree of linear polarization.



(4) Polarization

X mode
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(Nattila, LS+ 21, in prep)

* The polarization degree (PD) increases with o.

» We expect >99% linear polarization for 0=z30.



Implications for FRBSs:

(1) Efficiency

In cold plasmas, m

— constraints on the energetics of the FRB engine.

Much lower efficiency in hot plasmas, if

— constraints on the “lag time” betweenMBs.
(2) Spectrum

In cold plasmas, broad spectrum peaking at
— downwards frequency drift as the shock decelerates.

Line-like features in warm plasmas.
— FRB sub-pulses may be due to lines drifting into the observing band.




Implications for FRBSs:

(3) Beaming

Shock Lorentz factor at high 0 is EYRESERVAS

— FRB duration shrinks by an extra 1/o.

Emission is beamed within |§ 0.7/ Vo around the shock normal
— Doppler transformation does not smear out narrow spectral features.

(4) Polarization

0.3
Emission is highly polarized with
o

— preference for high o.

Polarization vector is dependent on pre-shock field orientation.




Wave generation Wave impact
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Hessels et al. (2019)

Frequency modulation
with 100-400 MHz bandwidth
(not produced by
diffractive interstellar scintillation)

Sub-bursts
with 0.5-1 ms duration

(other FRBs show 0.01 ms sub-bursts)

What is producing
the time-frequency structure?



Non-linear propagation effects in FRBs

If electrons are non-relativistic,
the propagation of e.m. waves in plasmas is a linear problem described by the
dispersion relation

w? =2k + w%
The electron velocity in the electromagnetic field of the wave is a fraction
)
apgp —

~ 27vme
of the speed of light.

In typical FRBs, the electron velocity is relativistic close to the source:

0.9 ( v )—1 L 1/2 R =
ag ~ 0.
° GHz 1042 erg s—1 104 cm

Non-linear propagation effects are important close to the source!




Self-modulation

Self-modulation is a classical non-linear propagation effect
It has been extensively studied in laser-plasma interaction (e.g. Mourou et al. 2006)

FRB plasma _ _
Non-linearity due to

H increase of the effective electron mass
in regions with high radiation intensity.

The refraction index increases.

> This effect creates a converging lens,
1l 7_ ”m }”” which further increases
Ao D the intensity of radiation.

Modulations in the transverse direction



Self-modulation

Self-modulation is a classical non-linear propagation effect
It has been extensively studied in laser-plasma interaction (e.g. Mourou et al. 2006)

FRB plasma _ _
Non-linearity due to

H increase of the effective electron mass
in regions with high radiation intensity.

The refraction index increases.

. The group velocity depends on the
F radiation intensity.

Modulations in the longitudinal direction



Self-modulation

Self-modulation is a classical non-linear propagation effect
It has been extensively studied in laser-plasma interaction (e.g. Mourou et al. 2006)

FRB plasma

Self-modulation breaks the burst
into pancakes

Az

(instability growth rate) x (light crossing time of the plasma slab) > 1

-3 N L
R < Ry ~ 1017 (L) = = .
St GHz 102 cm=3 ) \ 102 ergs—1 ) "



FRB

Frequency structure

plasma at R < Rt §
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frequency modulation bandwidth ~ 1/(scattering time):
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Time structure

FRB plasma at R ~ Rt
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Electron-proton shocks

12 Py 6=0.1

1.0F

0.8F e.m. precursor wave

0.6F — radiation pressure on electrons

0.4 .wwwwm«wwj

0.1

1 electrostatic plasma oscillations

600
500
400 E
Ye 200 Bk
200
100

electron-ion energy exchange in
upstream (Lyubarsky 2006)
— electron heating & bulk

) ) ) ) = acceleration before the shock

. 240 400 600 800 (lwamoto & Hoshino 19)

K [e/wg]

We expect lower efficiency (due to electron heating)

We expect lower frequencies (due to bulk acceleration)
CLLLLLLLL———_—_——_—_——_—————SSSSSSSSShEEEE



magnetar

magnetized Building blocks of the model:

outflow

e magnetar flares drive relativistic
Beloborodov 17,19; Margalit & Metzger 18; magnetlzed Slele &
Metzger, Margallt & LS 19; Margallt, Metzger ° Synchrotron maser at the ShOCk
& LS 20

produces the FRB
Implications of the model: e shock decelerates

linear polarization for high o

~ constant polarization angle

narrow-band ~GHz frequency bursts

downward frequency drift

possible fluence, duration, frequency correlations
high-energy (X,y,optical) afterglow



(1) The wave strength

1D v =10

Wave strength / wiggler
parameter:

B edk,

a =

M,CW

Particles have transverse
momentum oscillations ~am ¢

(Plotnikov & LS 19)

For FRBs, we expect a»1 (e.g., Margalit+20). What should happen?

e Relativistic bulk acceleration of upstream plasma away from the shock.
* Internal motions (heating) of upstream with typical momenta ~ a m c.



* Bulk acceleration
occurs, but the flux
of particles into the
shock stays the
same.

Upstream density

* The mean energy
per incoming particle
Is the same, and
longitudinal heating
Is small.
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(2) Spectrum

rald ™ 7=

w/wp or (]mz(z/wvl-) + 1)1/2

Peak frequency

-
-

cyclotron frequency in
shock-compressed field



Statistics of field fluctuations
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No departures from Gaussian.



