Coherent radio precursors to neutron star mergers

MNRAS 501, 3184-3202 (2021)

Navin Sridhar

With: Brian Metzger, Jonathan Zrake, Lorenzo Sironi, Dimitrios Giannios

Need for a 'precursor'

- Learn before destruction
- Harbinger to enable prompt EM
 follow-up of post-merger emission.
- Drawback of GRBs: Beaming
- Massive BH-NS or NS-NS with dim or non-existent post-merger counterparts.
- Millisecond duration radio burst (final few orbits of the binary) could resemble fast radio bursts (FRBs)?

Mechanism

- At least one NS is magnetized.
- Field lines of the strongly magnetized star is opened by a resistive companion (e.g., BH).
- Orbital acceleration of the primary → powers the dipole radiation (independent of companion).
- A fraction of the power is dissipated by heating particles, and the rest in the form of Poynting flux along <u>open field lines</u>.
- The accelerating magnetized wind 'ejecta' creates internal shocks in the binary plane → synchrotron maser instability.

Larmor gyration at shock front; unstable soliton-type structure
 Circle in momentum-space, collapses and radiates

Wind calculations

- The power of the binary wind $\dot{E} = \left(\frac{f_{\Phi}}{\overline{f_{\Phi}}}\right)_{bin}^2 \frac{\mu^2 \Omega_{bin}^4}{c^3} \approx 3 \times 10^{44} \text{erg s}^{-1} \left(\frac{B_d}{10^{12} \text{G}}\right) \left(\frac{a}{R_{\text{NS}}}\right)^{-7}$
- GW-coalescence time $t_m = \frac{5}{512} \frac{c^5 a^4}{G^3 M_{NS}^3} \approx 1.2 \times 10^{-3} \left(\frac{a}{24 \text{ km}}\right)^4$.
- Wind mass-loss rate $\dot{M}_{GJ} \approx \frac{\mu_{\pm}}{e c} \frac{4\mu G M_{NS} m_e}{a^3}$. We parametrize it as $\dot{M} \propto a^{-m}$.
- A wind that converts its total (magnetic + kinetic) energy to fully kinetic* can have its Lorentz factor given by $\Gamma(t) = \frac{\dot{E}(t)}{\dot{M}(t)c^2} \propto a^{m-7}$; $(3 \le m < 7)$.

* Assuming that the ' σ -problem' is solved.

Wind profiles

m	Description
> 7	Binary wind decelerates approaching merger; no shocks
< 7	Binary wind accelerates approaching merger; internal shocks
> 5.5	Coasting fast shell
< 5.5	Fast shell sweeps up more than its own inertial mass, decelerates
> 5	Coasting fast shell meets unshocked binary wind
< 5	Coasting fast shell meets earlier-shocked binary wind
< 4	Coasting fast shell sweeps up more than its own rest mass
3	"Goldreich-Julian" scaling (Eq. 11)

<u>Representative cases:</u>

m = 5: Decelerating fast shell
m = 6: Coasting fast shell

Hydrodynamics of wind interaction

Hydro simulations supply upstream n_± and shock $\Gamma_{sh} \Rightarrow$ Bolometric luminosity (L_e), plasma frequency (ν_p).

(Plotnikov & Sironi 2019)

• Particle-in-Cell simulation supply the spectrum of synchrotron maser emission ⇒ Radio luminosity!

In-silico FRB!

 10^{4}

 L_{e}

Engine and observed properties

Take-away

- A significant fraction (~10⁻³) of the Poynting energy released during NS merger → burst of coherent radio emission.
- The emission will be beamed along orbital plane.
- For $B_d \ge 10^{12}$ G, expected fluence ~ 1 Jy ms, from ~Gpc distances.
- ~1% of the observed FRBs (~50 per day) from this channel.
- ~2 per year coincident with GW detections (<150 Mpc).
- The model self-consistently reproduces the key features of FRBs viz., duration, energetics, drifting frequency burst sub-structures.

Accepted 2020 December 1. Received 2020 November 29; in original form 2020 October 16