

Laboratory Experiments of Induced Compton Scattering: Initial Results

Shuta Tanaka (Aoyama Gakuin U.) with Y. Kuramitsu, Y. Fukuda, R. Yamazaki, Y. Sakawa et al.

Induced Compton Scattering

Various light scattering processes

- Geometric optics limit: $R > \lambda$, R = size of scatterer, $\lambda =$ light wavelength
- Mie scattering: $R \sim \lambda$
- Rayleigh scattering: $R < \lambda$
- Brillouin scattering: Phonon, ion acoustic wave
- Raman scattering: Plasmon, vibration and/or rotational level of a molecule
- Compton scattering: an electron $\gamma + e
 ightarrow \gamma + e$
 - Thomson scattering: classical limit of Compton (*h* = 0, elastic)
 - Induced Compton scattering: induced counterpart, redshift
 - Nonlinear Compton scattering: multiple photon absorption, blueshift $N\gamma + e \to \gamma + e$
 - Double Compton scattering: photon splitting, redshift $\gamma + e \rightarrow 2\gamma + e$

Induced Compton Scattering (ICS)

- Interaction between rarefied plasma & bright radiation important in coherent radiation from PSR&FRB.
- Rarefied plasma ($\lambda < \lambda_{\rm D}, \omega > \omega_{\rm pe}$)
 - Scattering of photons by an electron
 - Cross section is given by Klein-Nishina formula
- Bright radiation $(k_{\rm B}T_{\rm b} \gg m_{\rm e}c^2)$

 $n_{\rm ph}(\nu_{-})$

- $k_{\rm B}T_{\rm b}(\nu) \equiv h\nu n_{\rm ph}(\nu) \equiv E/(\Delta t \Delta \nu) \iff \text{not the same as strength parameter Gekko}$
- n_{ph} > 2 is possible for Boson ⇔ induced process rather than exclusion one! n_{ph} ~ 10²⁷ for pulsar!!

$$\frac{dn_{\rm ph}(\nu)}{dt} \propto n_{\rm ph}(\nu_{+})(1+n_{\rm ph}(\nu)) - n_{\rm ph}(\nu)(1+n_{\rm ph}(\nu_{-}))$$

$$n_{\rm ph}(\nu_{+})$$

$$n_{\rm ph}(\nu)$$
spontaneous + induced terms

Spontaneous vs. Induced

Description of ICS

SJT, Asano & Terasawa 2015, PTEP

Kinetic Equation for Photon

 ∂

Compton scattering off photons $n_{\rm ph}(\mathbf{k})$ by plasmas $f(\mathbf{p})$.

$$\begin{pmatrix} \frac{\partial}{\partial t} + c \mathbf{\Omega} \cdot \nabla \end{pmatrix} n(\mathbf{k}) = cn_{\mathrm{pl}} \int d^{3}\mathbf{p}f(\mathbf{p}) \int d^{3}\mathbf{k}_{1} \\ \\ \hline \text{Boltzmann-Uehling-}\\ \text{Uhlenbeck Equation} \end{pmatrix} \times \begin{bmatrix} \sigma_{\mathrm{KN}}(\mathbf{k}_{1}, \mathbf{k}, \mathbf{p})n(\mathbf{k}_{1})(1 + n(\mathbf{k})) \\ - \sigma_{\mathrm{KN}}(\mathbf{k}, \mathbf{k}_{1}, \mathbf{p})n(\mathbf{k})(1 + n(\mathbf{k}_{1}))] \\ \text{induced} \\ \text{term} \end{pmatrix}$$
no isotropization (Thomson) \\ \hline \tau_{\mathrm{T}} \approx \sigma_{\mathrm{T}} ln_{\mathrm{pl}} \\ \text{uniform + isotropic + 1st order in hv << m_{e}c^{2}, \mathbf{k}_{\mathrm{B}}T_{e} << m_{e}c^{2}} \\ \hline \frac{\partial n(x)}{\partial y} = \frac{1}{x^{2}} \frac{\partial}{\partial x} x^{4} \begin{pmatrix} n(x) + n^{2}(x) + \frac{\partial n(x)}{\partial x} \\ \tau_{\mathrm{Comp}} \approx \tau_{\mathrm{T}} \frac{h\nu}{m_{e}c^{2}} \end{bmatrix} x = \frac{h\nu}{m_{e}c^{2}} n_{\mathrm{pl}}\sigma_{\mathrm{T}}c_{\mathrm{T}} \\ \text{inverse Compton } \tau_{\mathrm{IC}} \approx \tau_{\mathrm{T}} \frac{k_{\mathrm{B}}T_{\mathrm{pl}}}{m_{e}c^{2}} \approx y \\ \text{induced Compton recoil} \\ \hline \tau_{\mathrm{ind}} \approx \tau_{\mathrm{Comp}} n = \tau_{\mathrm{T}} \frac{k_{\mathrm{B}}T_{\mathrm{b}}(\nu)}{m_{e}c^{2}} \end{bmatrix}

Predictions in Experiments

SJT, Yamazaki, Kuramitsu & Sakawa 2020, PTEP

Laser Facilities

Allowed plasma parameters are found in yellow region.

High-power short pulse laser is favored for ICS experiments rather than high (total) energy laser.

We can draw the same plot for other facilities of the given parameters!

- E: total energy
- Δt : pulse width
- Δv : band width
- w_0 : minimum waist
- λ: central wavelength

Predictions Spectra of transmitted (scattered) light

Parameter	J-KAREN-P	NCU100TW	LFEX
E_0 [J]	10	3.3	400
λ_0 [nm]	820	810	1053
Δλ [nm]	50	35	3.3
Δt [fs]	30	30	1500
$w_0 [\mu m]$	0.67	4.3	50
$k_{\rm B}T_{\rm b}/m_{\rm e}c^2$	1.8×10^{14}	8.4×10^{13}	3.6×10^{15}
$\Delta\lambda/\lambda_0$	6.1×10^{-2}	4.3×10^{-2}	3.1×10^{-3}
$ heta_{ m bm}$	3.9×10^{-1}	6.0×10^{-2}	1.3×10^{-2}
$z_{\rm R}$ [μ m]	1.7	72	1.9×10^{3}
$\tau_{\rm ICS}/n_{\rm e} [{\rm cm}^3]$	9.0×10^{-17}	9.7×10^{-19}	2.7×10^{-18}
$\tau_{\rm D}/(n_{\rm e}\Theta)$ [cm ³]	9.0×10^{-18}	2.3×10^{-21}	3.3×10^{-22}
$\tau_{\rm Th}/n_{\rm e}[{\rm cm}^3]$	2.3×10^{-28}	9.5×10^{-27}	2.5×10^{-25}

Only $\pi w_0^2 2 z_R n_e \sim 10^4$ electrons at Rayleigh region

They would attain ~ PeV which is rad. reaction limited

 $\frac{dE}{dx} \approx \frac{3}{2} \frac{m_{\rm e} c^2}{r_{\rm e}} \approx 2 \times 10^{14} \text{ MeV/m} = 0.2 \text{ PeV/}\mu\text{m}$

J-KAREN Experiment 2020/12/2, 3

Initial Experiment

July 2017, National Central University @ Taiwan

Produced by Kuramitsu-san

J-KAREN experiment

- What do we try to observe?
 - spectrum of scattered light (redshifted compared with incident one)
 - no side- & back-scattering, no change of polarization
 - dependence on electron density (optical depth)
 - dependence on electron temperature
 - acceleration of electrons (radiation reaction limited)

Spectrometer

- no redshifted structures found
- scattered and incident spectra are not stable
- analyses on density and laser intensity dependences are on progress.

Imaging (Thomson scattering)

Summary

- We conducted the laboratory astrophysics experiment of ICS at J-KAREN P laser at KPSI, QST, Japan at Dec. 2020
- ICS signatures can be observed by the recent laser facility.
- Spectrometer: we still do not find the spectral redshift in observed spectra.
- Imaging (Thomson scattering): observed images are consistent with no electron at the focal spot (blown off by radiation pressure?)
- Further experiments are required in order to understand ICS => different experimental set-up? different laser facility (e.g. ELI)?

Supported by

JSPS (17K18270), Osaka Univ. (2020B2-TANAKA), Aoyama Gakuin Univ. (Early Eagle Program)